Expression, Rapid Purification and Functional Analysis of DnaK from Rhodococcus ruber

Author(s): Xin Fan, Yuan Yuan, Fan Zhang, Lei Ai, Zhonghao Wu, Ren Peng*

Journal Name: Protein & Peptide Letters

Volume 28 , Issue 9 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Heat shock proteins (HSPs) represent a group of important proteins which are produced by all kinds of organisms especially under stressful conditions. DnaK, an Hsp70 homolog in prokaryotes, has indispensable roles when microbes was confronted with stress conditions. However, few data on DnaK from Rhodococcus sp. were available in the literature. In a previous study, we reported that toluene and phenol stress gave rise to a 29.87-fold and 3.93-fold increase for the expression of DnaK from R. ruber SD3, respectively. Thus, we deduced DnaK was in correlation with the organic solvent tolerance of R. ruber SD3.

Objective: To elucidate the role of DnaK in the organic solvent tolerance of R. ruber SD3, expression, purification and functional analysis of Dnak from R. ruber SD3 were performed in the present paper.

Methods: In this article, DnaK from R. ruber SD3 was heterologously expressed in E. coli BL21(DE3) and purified by affinity chromatography. Functional analysis of DnaK was performed using determination of kinetics, docking, assay of chaperone activity and microbial growth.

Results: The recombinant DnaK was rapidly purified by affinity chromatography with the purification fold of 1.9 and the recovery rate of 57.9%. Km, Vmax and Kcat for Dnak from R. ruber SD3 were 80.8 μM, 58.1 nmol/min and 374.3 S-1, respectively. The recombinant protein formed trimer in vitro, with the calculated molecular weight of 214 kDa. According to in-silico analysis, DnaK interacted with other molecular chaperones and some important proteins in the metabolism. The specific activity of catalase in the presence of recombinant DnaK was 1.85 times or 2.00 times that in the presence of BSA or Tris-HCl buffer after exposure to 54 °C for 1h. E. coli transformant with pET28-dnak showed higher growth than E. coli transformant with pET28 at 43°C and in the presence of phenol, respectively.

Conclusion: The biochemical properties and the interaction analysis of DnaK from R. ruber SD3 deepened our understanding of DnaK function. DnaK played an important role in microbial growth when R. ruber was subjected to various stress such as heating and organic solvent.

Keywords: Dnak, heat shock protein, expression and purification, organic solvent tolerance, Rhodococcus ruber, catalase.

Jahangirizadeh, Z.; Ghafouri, H.; Sajedi, R.H.; Sarikhan, S.; Taghdir, M.; Sariri, R. Molecular cloning, prokaryotic expression, purification, structural studies and functional implications of Heat Shock Protein 70 (Hsp70) from Rutilus frisii kutum. Int. J. Biol. Macromol., 2018, 108, 798-807.[] [PMID: 29107750]
Ellison, M.A.; Ferrier, M.D.; Carney, S.L. Salinity stress results in differential Hsp70 expression in the Exaiptasia pallida and Symbiodinium symbiosis. Mar. Environ. Res., 2017, 132, 63-67.[] [PMID: 29108677]
Ninomiya, H.; Ohgami, N.; Oshino, R.; Kato, M.; Ohgami, K.; Li, X.; Shen, D.; Iida, M.; Yajima, I.; Angelidis, C.E.; Adachi, H.; Katsuno, M.; Sobue, G.; Kato, M. Increased expression level of Hsp70 in the inner ears of mice by exposure to low frequency noise. Hear. Res., 2018, 363, 49-54.[] [PMID: 29519617]
Mayer, M.P.; Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci., 2005, 62(6), 670-684.[] [PMID: 15770419]
Li, X.; Shao, H.; Taylor, I.R.; Gestwicki, J.E. Targeting allosteric control mechanisms in Heat Shock Protein 70 (Hsp70). Curr. Top. Med. Chem., 2016, 16(25), 2729-2740.[] [PMID: 27072701]
Yoshimune, K.; Yoshimura, T.; Nakayama, T.; Nishino, T.; Esaki, N. Hsc62, Hsc56, and GrpE, the third Hsp70 chaperone system of Escherichia coli. Biochem. Biophys. Res. Commun., 2002, 293(5), 1389-1395.[] [PMID: 12054669]
Popp, S.L.; Reinstein, J. Functional characterization of the DnaK chaperone system from the archaeon Methanothermobacter thermautotrophicus DeltaH. FEBS Lett., 2009, 583(3), 573-578.[] [PMID: 19162025]
Kumar, M.; Prasanna, R.; Lone, S.; Padaria, J.C.; Saxena, A.K. Cloning and expression of dnaK gene from Bacillus pumilus of hot water spring origin. Appl. Transl. Genomics, 2013, 3(1), 14-20.[] [PMID: 27275408]
Boshoff, A.; Hennessy, F.; Blatch, G.L. The in vivo and in vitro characterization of DnaK from Agrobacterium tumefaciens RUOR. Protein Expr. Purif., 2004, 38(2), 161-169.[] [PMID: 15555931]
Tokunaga, H.; Yamakawa, M.; Mizukami, M.; Takagi, H.; Tokunaga, M. Molecular cloning of the dnaK locus, and purification and characterization of a DnaK protein from Bacillus brevis HPD31. Biochim. Biophys. Acta, 1998, 1387(1-2), 65-79.[] [PMID: 9748507]
Kim, S.W.; Choi, I.H.; Kim, S.N.; Kim, Y.H.; Pyo, S.N.; Rhee, D.K. Molecular cloning, expression, and characterization of dnaK in Streptococcus pneumoniae. FEMS Microbiol. Lett., 1998, 161(2), 217-224.[] [PMID: 9570114]
Klostermeier, D.; Seidel, R.; Reinstein, J. Functional properties of the molecular chaperone DnaK from Thermus thermophilus. J. Mol. Biol., 1998, 279(4), 841-853.[] [PMID: 9642065]
Fukuda, D.; Watanabe, M.; Sonezaki, S.; Sugimoto, S.; Sonomoto, K.; Ishizaki, A. Molecular characterization and regulatory analysis of dnaK operon of halophilic lactic acid bacterium Tetragenococcus halophila. J. Biosci. Bioeng., 2002, 93(4), 388-394.[] [PMID: 16233219]
Liang, W.C.; Wang, X.H.; Lin, M.G.; Lin, L.L.A. A 70-kDa molecular chaperone, DnaK, from the industrial bacterium Bacillus licheniformis: gene cloning, purification and molecular characterization of the recombinant protein. Indian J. Microbiol., 2009, 49(2), 151-160.[] [PMID: 23100764]
Jiao, L.; Ran, J.; Xu, X.; Wang, J. Heat, acid and cold stresses enhance the expression of DnaK gene in Alicyclobacillus acidoterrestris. Food Res. Int., 2015, 67, 183-192.[]
Pasqua, R.D.; Mauriello, G.; Mamone, G.; Ercolini, D. Expression of DnaK, HtpG, GroEL and Tf chaperones and the corresponding encoding genes during growth of Salmonella Thompson in presence of thymol alone or in combination with salt and cold stress. Food Res. Int., 2013, 52, 153-159.[]
Kuang, S.; Fan, X.; Peng, R. Quantitative proteomic analysis of Rhodococcus ruber responsive to organic solvents. Biotechnol. Biotec. Eq., 2018, 32, 1418-1430.[]
Kang, H.J.; Heo, D.H.; Choi, S.W.; Kim, K.N.; Shim, J.; Kim, C.W.; Sung, H.C.; Yun, C.W. Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress. Biochem. Biophys. Res. Commun., 2007, 358(3), 743-750.[] [PMID: 17512907]
Alsaker, K.V.; Paredes, C.; Papoutsakis, E.T. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol. Bioeng., 2010, 105(6), 1131-1147.[] [PMID: 19998280]
Segura, A.; Molina, L.; Fillet, S.; Krell, T.; Bernal, P.; Muñoz-Rojas, J.; Ramos, J.L. Solvent tolerance in Gram-negative bacteria. Curr. Opin. Biotechnol., 2012, 23(3), 415-421.[] [PMID: 22155018]
Wang, Q.; Peng, R.; Chen, W.; Du, Y.; Yang, G.; Jian, M. The study on screening of phenol-degrading microbes and their degradation performance. J. Jiangxi Normal Univ., 2012, 36, 317-320.
Fan, X.; Peng, R. Whole-genome sequencing and expression analysis of heat shocking protein DnaK from Rhodococcus ruber. Genom. Appl. Biol., 2020, 39, 1613-1620.
Chakraborty, C.; Agrawal, A. Computational analysis of C-reactive protein for assessment of molecular dynamics and interaction properties. Cell Biochem. Biophys., 2013, 67(2), 645-656.[] [PMID: 23494263]
Sievers, F.; Higgins, D.G. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol., 2014, 1079, 105-116.[] [PMID: 24170397]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.[] [PMID: 29788355]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.[] [PMID: 5432063]
Hora, A.; Shetty, V.K. Partial purification and characterization of chromate reductase of a novel Ochrobactrum sp. strain Cr-B4. Prep. Biochem. Biotechnol., 2015, 45(8), 769-784.[] [PMID: 25127065]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.[] [PMID: 942051]
Wittig, I.; Braun, H.P.; Schägger, H. Blue native PAGE. Nat. Protoc., 2006, 1(1), 418-428.[] [PMID: 17406264]
Crosara, K.T.B.; Moffa, E.B.; Xiao, Y.; Siqueira, W.L. Merging in-silico and in vitro salivary protein complex partners using the STRING database: a tutorial. J. Proteomics, 2018, 171, 87-94.[] [PMID: 28782718]
Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.H.; Vreven, T.; Weng, Z. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 2014, 30(12), 1771-1773.[] [PMID: 24532726]
Schägger, H.; Cramer, W.A.; von Jagow, G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem., 1994, 217(2), 220-230.[] [PMID: 8203750]
Sugimoto, S.; Higashi, C.; Saruwatari, K.; Nakayama, J.; Sonomoto, K. A gram-negative characteristic segment in Escherichia coli DnaK is essential for the ATP-dependent cooperative function with the co-chaperones DnaJ and GrpE. FEBS Lett., 2007, 581(16), 2993-2999.[] [PMID: 17544398]
Evstigneeva, Z.G.; Solov’eva, N.A.; Sidel’nikova, L.I. Structures and functions of chaperones and chaperonins. Appl. Biochem. Microbiol., 2001, 37, 1-13.[]
Woo, H.J.; Jiang, J.; Lafer, E.M.; Sousa, R. ATP-induced conformational changes in Hsp70: molecular dynamics and experimental validation of an in silico predicted conformation. Biochemistry, 2009, 48(48), 11470-11477.[] [PMID: 19883127]
Chen, B.E.; Lin, M.G.; Lo, H.F.; Wang, T.F.; Chi, M.C.; Lin, L.L. Introduction of a unique tryptophan residue into various positions of Bacillus licheniformis DnaK. Int. J. Biol. Macromol., 2013, 52, 231-243.[] [PMID: 23085489]
Calloni, G.; Chen, T.; Schermann, S.M.; Chang, H.C.; Genevaux, P.; Agostini, F.; Tartaglia, G.G.; Hayer-Hartl, M.; Hartl, F.U. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep., 2012, 1(3), 251-264.[] [PMID: 22832197]
Li, W.; Cui, T.; Hu, L.; Wang, Z.; Li, Z.; He, Z.G. Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity. Nat. Commun., 2015, 6, 8330.[] [PMID: 26390966]
Kim, Y.E.; Hipp, M.S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F.U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem., 2013, 82, 323-355.[] [PMID: 23746257]
Genest, O.; Hoskins, J.R.; Camberg, J.L.; Doyle, S.M.; Wickner, S. Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc. Natl. Acad. Sci. USA, 2011, 108(20), 8206-8211.[] [PMID: 21525416]
Hayer-Hartl, M.; Bracher, A.; Hartl, F.U. The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci., 2016, 41(1), 62-76.[] [PMID: 26422689]
Groemping, Y.; Reinstein, J. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response. J. Mol. Biol., 2001, 314(1), 167-178.[] [PMID: 11724541]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 01 March, 2021
Page: [1023 - 1032]
Pages: 10
DOI: 10.2174/0929866528666210301150421
Price: $65

Article Metrics

PDF: 366