Predicting Protein Surface Property with its Surface Hydrophobicity

Author(s): Sen Tang, Junsheng Li*, Guoxia Huang, Liujuan Yan

Journal Name: Protein & Peptide Letters

Volume 28 , Issue 8 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

This article reviews and discusses the relationship between surface hydrophobicity and other surface properties of proteins and the possibility of using surface hydrophobicity as a key indicator to predict and evaluate the changes in the surface properties of a protein. Hydrophobicity is the main driving force of protein folding; it affects the structure and functions. Surface hydrophobicity and other surface properties of proteins are controlled by their spatial structures. Due to the hydrophobic interactions, most proteins fold into their globular structures, and they lack sufficient hydrophobic residues on the molecular surface; thus, they do not exhibit excellent surface properties. Surface hydrophobicity is closely related to the changes in the surface property of proteins because it directly reflects the actual distribution of the hydrophobic residues on the surface of a protein. The molecular structure of a protein can be changed or modified to remove the constraints of spatial structures and expose more hydrophobic residues on the molecular surface, which may improve the surface properties of proteins. Therefore, the changes in the surface hydrophobicity caused by changes in the molecular structure can be an ideal key indicator to predict and evaluate the changes in the surface properties of a protein.

Keywords: Prediction, evaluation, surface property, surface hydrophobicity, proteins, indicator.

[1]
Kinsella, J.E. Functional properties of proteins: possible relationships between structure and function in foams. Food Chem., 1981, 7(4), 273-288.
[http://dx.doi.org/10.1016/0308-8146(81)90033-9]
[2]
Kinsella, J.E. Relationships between structure and functional properties of food proteins, 1st ed; Applied Science Publishers: London, 1982.
[3]
Kristo, E.; Corredig, M. Functional Properties of Food Proteins, 1st ed; New York, 2015.
[4]
Madhu, A.N.; Prapulla, S.G. Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Appl. Biochem. Biotechnol., 2014, 172(4), 1777-1789.
[http://dx.doi.org/10.1007/s12010-013-0649-5] [PMID: 24258794]
[5]
Schor, M.; Reid, J.L.; MacPhee, C.E.; Stanley-Wall, N.R. The diverse structures and functions of surfactant proteins. Trends Biochem. Sci., 2016, 41(7), 610-620.
[http://dx.doi.org/10.1016/j.tibs.2016.04.009] [PMID: 27242193]
[6]
Wagner, J.R.; Guéguen, J. Surface functional properties of native, acid-treated, and reduced soy glycinin. 1. Foaming properties. J. Agric. Food Chem., 1999, 47(6), 2173-2180.
[http://dx.doi.org/10.1021/jf980977b] [PMID: 10794605]
[7]
Wagner, J.R.; Guéguen, J. Surface functional properties of native, acid-treated, and reduced soy glycinin. 2. Emulsifying properties. J. Agric. Food Chem., 1999, 47(6), 2181-2187.
[http://dx.doi.org/10.1021/jf9809784] [PMID: 10794606]
[8]
Campbell, N.F.; Shih, F.F.; Marshall, W.E. Enzymatic phosphorylation of soy protein isolate for improved functional properties. J. Agric. Food Chem., 1991, 40(3), 403-406.
[http://dx.doi.org/10.1021/jf00015a008]
[9]
Sung, H.Y.; Chen, H.J.; Liu, T.Y.; Jong-Ching, S.U. Improvement of the functionalities of soy protein isolate through chemical phosphorylation. J. Food Sci., 2010, 48(3), 716-721.
[http://dx.doi.org/10.1111/j.1365-2621.1983.tb14882.x]
[10]
Segat, A.; Misra, N.N.; Fabbro, A.; Buchini, F.; Lippe, G.; Cullen, P.J.; Innocente, N. Effects of ozone processing on chemical, structural and functional properties of whey protein isolate. Food Res. Int., 2014, 66, 365-372.
[http://dx.doi.org/10.1016/j.foodres.2014.10.002]
[11]
Petruccelli, S.; Anon, M.C. Partial reduction of soy protein isolate disulfide bonds. J. Agric. Food Chem., 1995, 43(8), 2001-2006.
[http://dx.doi.org/10.1021/jf00056a008]
[12]
Chen, N.; Zhao, M.; Sun, W.; Ren, J.; Cui, C. Effect of oxidation on the emulsifying properties of soy protein isolate. Food Res. Int., 2013, 52(1), 26-32.
[http://dx.doi.org/10.1016/j.foodres.2013.02.028]
[13]
Jiang, L.; Wang, Z.; Li, Y.; Meng, X.; Sui, X.; Qi, B.; Zhou, L. Relationship between surface hydrophobicity and structure of soy protein isolate subjected to different ionic strength. Int. J. Food Prop., 2015, 18(5), 1059-1074.
[http://dx.doi.org/10.1080/10942912.2013.865057]
[14]
Wang, W.; Li, J.; Yan, L.; Huang, G.; Dong, Z. Effect of oxidization and chitosan on the surface activity of soy protein isolate. Carbohydr. Polym., 2016, 151, 700-706.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.004] [PMID: 27474616]
[15]
Li-Chan, E.; Nakai, S.; Wood, D.F. Hydrophobicity and solubility of meat proteins and their relationship to emulsifying properties. J. Food Sci., 2010, 49(2), 345-350.
[http://dx.doi.org/10.1111/j.1365-2621.1984.tb12418.x]
[16]
Dorh, N.; Zhu, S.; Dhungana, K.B.; Pati, R.; Luo, F.T.; Liu, H.; Tiwari, A. BODIPY-based fluorescent probes for sensing protein surface-hydrophobicity. Sci. Rep., 2015, 5, 18337-18346.
[http://dx.doi.org/10.1038/srep18337] [PMID: 26679512]
[17]
Cardamone, M.; Puri, N.K. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J., 1992, 282(Pt 2), 589-593.
[http://dx.doi.org/10.1042/bj2820589] [PMID: 1546973]
[18]
Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437(7059), 640-647.
[http://dx.doi.org/10.1038/nature04162] [PMID: 16193038]
[19]
Grujicic, M.; Yavari, R.; Snipes, J.; Ramaswami, S. Mitigation of blast and impact loading via the use of a zeolite-absorbent/nano-fluidics protection system. Int. J. Struct. Integr., 2015, 6(3), 367-389.
[http://dx.doi.org/10.1108/IJSI-09-2014-0041]
[20]
Silverstein, T.P. The real reason why oil and water don’t mix. J. Chem. Educ., 1998, 75(1), 116-118.
[http://dx.doi.org/10.1021/ed075p116]
[21]
Pace, C.N.; Shirley, B.A.; McNutt, M.; Gajiwala, K. Forces contributing to the conformational stability of proteins. FASEB J., 1996, 10(1), 75-83.
[http://dx.doi.org/10.1096/fasebj.10.1.8566551] [PMID: 8566551]
[22]
Compiani, M.; Capriotti, E. Computational and theoretical methods for protein folding. Biochemistry, 2013, 52(48), 8601-8624.
[http://dx.doi.org/10.1021/bi4001529] [PMID: 24187909]
[23]
Callaway, D.J. Solvent-induced organization: a physical model of folding myoglobin. Proteins, 1994, 20(2), 124-138.
[http://dx.doi.org/10.1002/prot.340200203] [PMID: 7846023]
[24]
Kauzmann, W. Some factors in the interpretation of protein denaturation. Adv. Protein Chem., 1959, 14(14), 1-63.
[http://dx.doi.org/10.1016/S0065-3233(08)60608-7] [PMID: 14404936]
[25]
Kauzmann, W. Thermodynamics of unfolding. Nature, 1987, 325(6107), 763-764.
[http://dx.doi.org/10.1038/325763a0]
[26]
Tolstoguzov, V. Origins of globular structure in proteins. FEBS Lett., 1999, 444(2-3), 145-148.
[http://dx.doi.org/10.1016/S0014-5793(99)00040-X] [PMID: 10050747]
[27]
Chan, H.S.; Dill, K.A. Origins of structure in globular proteins. Proc. Natl. Acad. Sci. USA, 1990, 87(16), 6388-6392.
[http://dx.doi.org/10.1073/pnas.87.16.6388] [PMID: 2385597]
[28]
Pace, C.N.; Fu, H.; Fryar, K.L.; Landua, J.; Trevino, S.R.; Shirley, B.A.; Hendricks, M.M.; Iimura, S.; Gajiwala, K.; Scholtz, J.M.; Grimsley, G.R. Contribution of hydrophobic interactions to protein stability. J. Mol. Biol., 2011, 408(3), 514-528.
[http://dx.doi.org/10.1016/j.jmb.2011.02.053] [PMID: 21377472]
[29]
Giovambattista, N.; Lopez, C.F.; Rossky, P.J.; Debenedetti, P.G. Hydrophobicity of protein surfaces: separating geometry from chemistry. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2274-2279.
[http://dx.doi.org/10.1073/pnas.0708088105] [PMID: 18268339]
[30]
Mittal, J.; Hummer, G. Interfacial thermodynamics of confined water near molecularly rough surfaces. Faraday Discuss., 2010, 146(1), 341-352.
[http://dx.doi.org/10.1039/b925913a] [PMID: 21043431]
[31]
Daub, C.D.; Wang, J.; Kudesia, S.; Bratko, D.; Luzar, A. The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop. Faraday Discuss., 2010, 146(1), 67-77.
[http://dx.doi.org/10.1039/b927061m] [PMID: 21043415]
[32]
Giovambattista, N.; Debenedetti, P.G.; Rossky, P.J. Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity. J. Phys. Chem. C, 2007, 111(3), 1323-1332.
[http://dx.doi.org/10.1021/jp065419b]
[33]
Lan, H.; Zangi, R.; Berne, B.J. Hydrophobic interactions and dewetting between plates with hydrophobic and hydrophilic domains. J. Phys. Chem. C, 2009, 113(13), 5244-5253.
[http://dx.doi.org/10.1021/jp8088758]
[34]
Acharya, H.; Vembanur, S.; Jamadagni, S.N.; Garde, S. Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins. Faraday Discuss., 2010, 146(1), 353-365.
[http://dx.doi.org/10.1039/b927019a] [PMID: 21043432]
[35]
Wang, J.; Bratko, D.; Luzar, A. Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach. Proc. Natl. Acad. Sci. USA, 2011, 108(16), 6374-6379.
[http://dx.doi.org/10.1073/pnas.1014970108] [PMID: 21460249]
[36]
Patel, A.J.; Garde, S. Efficient method to characterize the context-dependent hydrophobicity of proteins. J. Phys. Chem. B, 2014, 118(6), 1564-1573.
[http://dx.doi.org/10.1021/jp4081977] [PMID: 24397378]
[37]
Rose, G.D.; Geselowitz, A.R.; Lesser, G.J.; Lee, R.H.; Zehfus, M.H. Hydrophobicity of amino acid residues in globular proteins. Science, 1985, 229(4716), 834-838.
[http://dx.doi.org/10.1126/science.4023714] [PMID: 4023714]
[38]
Gallagher, K.R.; Sharp, K.A. A new angle on heat capacity changes in hydrophobic solvation. J. Am. Chem. Soc., 2003, 125(32), 9853-9860.
[http://dx.doi.org/10.1021/ja029796n] [PMID: 12904053]
[39]
Brini, E.; Fennell, C.J.; Fernandez-Serra, M.; Hribar-Lee, B.; Lukšič, M.; Dill, K.A. How water’s properties are encoded in its molecular structure and energies. Chem. Rev., 2017, 117(19), 12385-12414.
[http://dx.doi.org/10.1021/acs.chemrev.7b00259] [PMID: 28949513]
[40]
Haskard, C.A.; Li-Chan, E.C.Y. Hydrophobicity of Bovine Serum Albumin and Ovalbumin Determined Using Uncharged (PRODAN) and Anionic (ANS-) Fluorescent Probes. J. Agric. Food Chem., 1998, 46(7), 2671-2677.
[http://dx.doi.org/10.1021/jf970876y]
[41]
Young, L.; Jernigan, R.L.; Covell, D.G. A role for surface hydrophobicity in protein-protein recognition. Protein Sci., 1994, 3(5), 717-729.
[http://dx.doi.org/10.1002/pro.5560030501] [PMID: 8061602]
[42]
Mahn, A.; Lienqueo, M.E.; Salgado, J.C. Methods of calculating protein hydrophobicity and their application in developing correlations to predict hydrophobic interaction chromatography retention. J. Chromatogr. A, 2009, 1216(10), 1838-1844.
[http://dx.doi.org/10.1016/j.chroma.2008.11.089] [PMID: 19100553]
[43]
Ron, E.Z.; Rosenberg, E. Natural roles of biosurfactants. Environ. Microbiol., 2001, 3(4), 229-236.
[http://dx.doi.org/10.1046/j.1462-2920.2001.00190.x] [PMID: 11359508]
[44]
Cheung, D.L.; Samantray, S. Molecular dynamics simulation of protein biosurfactants. Colloids Interfaces, 2018, 2, 1-19.
[http://dx.doi.org/10.3390/colloids2030039]
[45]
Xia, J.D.; Nnanna, I.A. An overview of basis, technology, and surface phenomena of protein-based surfactants. In: Protein-based surfactants: syhtesis, physicochemical properties and applications; Xia, J.D.; Nnanna, I.A., Eds.; Marcel Dekker: New York, 2001; pp. 1-14.
[http://dx.doi.org/10.1201/9781482269710-7]
[46]
Susheelamma, N.S.; Rao, M.V. Purification and characterization of the surface active proteins of black gram (Phaseolus mungo). Int. J. Pept. Protein Res., 1978, 12(2), 93-102.
[http://dx.doi.org/10.1111/j.1399-3011.1978.tb02872.x] [PMID: 711375]
[47]
Phillips, L.G.; Kinsella, J.E. Effects of succinylation on β-lactoglobulin foaming properties. J. Food Sci., 2010, 55(6), 1735-1739.
[http://dx.doi.org/10.1111/j.1365-2621.1990.tb03612.x]
[48]
Wohlleben, W.; Subkowski, T.; Bollschweiler, C.; von Vacano, B.; Liu, Y.; Schrepp, W.; Baus, U. Recombinantly produced hydrophobins from fungal analogues as highly surface-active performance proteins. Eur. Biophys. J., 2010, 39(3), 457-468.
[http://dx.doi.org/10.1007/s00249-009-0430-4] [PMID: 19290518]
[49]
Kallio, J.M.; Rouvinen, J. Amphiphilic nanotubes in the crystal structure of a biosurfactant protein hydrophobin HFBII. Chem. Commun. (Camb.), 2011, 47(35), 9843-9845.
[http://dx.doi.org/10.1039/c1cc13139g] [PMID: 21808803]
[50]
Beeley, J.G.; Eason, R.; Snow, D.H. Isolation and characterization of latherin, a surface-active protein from horse sweat. Biochem. J., 1986, 235(3), 645-650.
[http://dx.doi.org/10.1042/bj2350645] [PMID: 3753435]
[51]
Mackenzie, C.D.; Smith, B.O.; Meister, A.; Blume, A.; Zhao, X.; Lu, J.R.; Kennedy, M.W.; Cooper, A. Ranaspumin-2: structure and function of a surfactant protein from the foam nests of a tropical frog. Biophys. J., 2009, 96(12), 4984-4992.
[http://dx.doi.org/10.1016/j.bpj.2009.03.044] [PMID: 19527658]
[52]
Casals, C.; Cañadas, O. Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. Biochim. Biophys. Acta, 2012, 1818(11), 2550-2562.
[53]
Raikos, V.; Campbell, L.; Euston, S.R. Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Res. Int., 2007, 40, 347-355.
[http://dx.doi.org/10.1016/j.foodres.2006.10.008]
[54]
Wösten, H.A.B.; Schuren, F.H.; Wessels, J.G.H. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J., 1994, 13(24), 5848-5854.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06929.x] [PMID: 7813424]
[55]
Wessels, J.G.H. Fungal hydrophobins: proteins that function at an interface. Trends Plant Sci., 1996, 1(1), 9-14.
[http://dx.doi.org/10.1016/S1360-1385(96)80017-3]
[56]
Linder, M.B. Hydrophobins: proteins that self assemble at interfaces. Curr. Opin. Colloid Interface Sci., 2009, 14(5), 356-363.
[http://dx.doi.org/10.1016/j.cocis.2009.04.001]
[57]
Kennedy, M.W. Latherin and other biocompatible surfactant proteins. Biochem. Soc. Trans., 2011, 39(4), 1017-1022.
[http://dx.doi.org/10.1042/BST0391017] [PMID: 21787340]
[58]
Vance, S.J.; McDonald, R.E.; Cooper, A.; Smith, B.O.; Kennedy, M.W. The structure of latherin, a surfactant allergen protein from horse sweat and saliva. J. R. Soc. Interface, 2013, 10(85), 20130453.
[http://dx.doi.org/10.1098/rsif.2013.0453] [PMID: 23782536]
[59]
Cooper, A.; Vance, S.J.; Smith, B.O.; Kennedy, M.W. Frog foams and natural protein surfactants. Colloids Surf. A Physicochem. Eng. Asp., 2017, 534, 120-129.
[http://dx.doi.org/10.1016/j.colsurfa.2017.01.049] [PMID: 29276339]
[60]
Lopezrodriguez, E.; Pérezgil, J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. BBA - Biomembranes, 2014, 1838(6), 1568-1585.
[61]
Peypoux, F.; Bonmatin, J.M.; Wallach, J. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol., 1999, 51(5), 553-563.
[http://dx.doi.org/10.1007/s002530051432] [PMID: 10390813]
[62]
Singh, P.; Cameotra, S.S. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol., 2004, 22(3), 142-146.
[http://dx.doi.org/10.1016/j.tibtech.2004.01.010] [PMID: 15036865]
[63]
Bayry, J.; Aimanianda, V.; Guijarro, J.I.; Sunde, M.; Latgé, J.P. Hydrophobins--unique fungal proteins. PLoS Pathog., 2012, 8(5), e1002700.
[http://dx.doi.org/10.1371/journal.ppat.1002700] [PMID: 22693445]
[64]
Hol, W.G.J. Applying knowledge of protein structure and function. Trends Biotechnol., 1987, 5(5), 137-143.
[http://dx.doi.org/10.1016/0167-7799(87)90008-4]
[65]
Brasseur, R. Simulating the folding of small proteins by use of the local minimum energy and the free solvation energy yields native-like structures. J. Mol. Graph., 1995, 13(5), 312-322.
[http://dx.doi.org/10.1016/0263-7855(95)00052-6] [PMID: 8603060]
[66]
Gao, Y.; Mehta, K. Interchain disulfide bonds promote protein cross-linking during protein folding. J. Biochem., 2001, 129(1), 179-183.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002830] [PMID: 11134973]
[67]
Wang, X.Y.; Meng, F.G.; Zhou, H.M. The role of disulfide bonds in the conformational stability and catalytic activity of phytase. Biochem. Cell Biol., 2004, 82(2), 329-34.
[http://dx.doi.org/10.1139/o03-082]
[68]
Lakbub, J.C.; Shipman, J.T.; Desaire, H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal. Bioanal. Chem., 2018, 410(10), 2467-2484.
[http://dx.doi.org/10.1007/s00216-017-0772-1] [PMID: 29256076]
[69]
Braselmann, E.; Chaney, J.L.; Clark, P.L. Folding the proteome. Trends Biochem. Sci., 2013, 38(7), 337-344.
[http://dx.doi.org/10.1016/j.tibs.2013.05.001] [PMID: 23764454]
[70]
Kinsella, J.E. Functional properties of soy proteins. J. Am. Oil Chem. Soc., 1979, 56(3), 242-258.
[http://dx.doi.org/10.1007/BF02671468] [PMID: 536568]
[71]
Wagner, J.R.; Gueguen, J. Effects of dissociation, deamidation, and reducing treatment on structural and surface active properties of soy glycinin. J. Agric. Food Chem., 1995, 42(8), 1993-2000.
[http://dx.doi.org/10.1021/jf00056a007]
[72]
Maria, S.D.; Ferrari, G.; Maresca, P. Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin. Innov. Food Sci. Emerg. Technol., 2016, 33, 67-75.
[http://dx.doi.org/10.1016/j.ifset.2015.11.025]
[73]
Zhu, S.M.; Lin, S.L.; Ramaswamy, H.S.; Yu, Y.; Zhang, Q.T. Enhancement of functional properties of rice bran proteins by high pressure treatment and their correlation with surface hydrophobicity. Food Bioprocess Technol., 2016, 10(2), 317-327.
[http://dx.doi.org/10.1007/s11947-016-1818-7]
[74]
Baier, A.K.; Knorr, D. Influence of high isostatic pressure on structural and functional characteristics of potato protein. Food Res. Int., 2015, 77(7), 753-761.
[http://dx.doi.org/10.1016/j.foodres.2015.05.053]
[75]
Kim, S.H.; Kinsella, J.E. Surface active properties of food proteins: effects of reduction of disulfide bonds on film properties and foam stability of glycinin. J. Food Sci., 1987, 52(1), 128-131.
[http://dx.doi.org/10.1111/j.1365-2621.1987.tb13987.x]
[76]
Ning, X.; Wang, J.; Yang, X.; Yin, S.; Qi, J.; Lei, H.; Zhou, X. Preparation and characterization of protein from heat-stabilized rice bran using hydrothermal cooking combined with amylase pretreatment. J. Food Eng., 2012, 110(1), 95-101.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.12.004]
[77]
Sathe, S.K.; Deshpande, S.S.; Salunkhe, D.K. Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. J. Food Sci., 1982, 47(2), 491-497.
[http://dx.doi.org/10.1111/j.1365-2621.1982.tb10110.x]
[78]
Zhou, L.; Yao, Z.; Zhao, C.; Lin, H.; Wang, Z.; Fei, W. Structural and functional properties of rice bran protein oxidized by peroxyl radicals. Int. J. Food Prop., 2017, 20, 1456-1467.
[http://dx.doi.org/10.1080/10942912.2017.1352596]
[79]
Wang, M.; Hettiarachchy, N.S.; Qi, M.; Burks, W.; Siebenmorgen, T. Preparation and functional properties of rice bran protein isolate. J. Agric. Food Chem., 1999, 47(2), 411-416.
[http://dx.doi.org/10.1021/jf9806964] [PMID: 10563909]
[80]
Coskun, A.E.I.; Sağlam, D.; Venema, P.; Linden, E.V.D.; Scholten, E. Preparation, structure and stability of sodium caseinate and gelatin micro-particles. Food Hydrocoll., 2015, 45, 291-300.
[http://dx.doi.org/10.1016/j.foodhyd.2014.11.026]
[81]
Krämer, A.C.; Torreggiani, A.; Davies, M.J. Effect of oxidation and protein unfolding on cross-linking of β-lactoglobulin and α-lactalbumin. J. Agric. Food Chem., 2017, 65(47), 10258-10269.
[82]
Nakai, S.; Ho, L.; Helbig, N.; Kato, A.; Tung, M.A. Relationship between hydrophobicity and emulsifying properties of some plant proteins. Can. Inst. Food Technol. J., 1980, 13(1), 23-27.
[http://dx.doi.org/10.1016/S0315-5463(80)73297-2]
[83]
Petruccelli, S.; Anon, M.C. Soy protein isolate components and their interactions. J. Agric. Food Chem., 1994, 43(7), 1762-1767.
[http://dx.doi.org/10.1021/jf00055a004]
[84]
Were, L.; Hettiarachchy, N.S.; Kalapathy, U. Modified soy proteins with improved foaming and water hydration properties. J. Food Sci., 1997, 62(4), 821-824.
[http://dx.doi.org/10.1111/j.1365-2621.1997.tb15463.x]
[85]
Qi, M.; Hettiarachchy, N.S.; Kalapathy, U. Solubility and emulsifying properties of soy protein isolates modified by pancreatin. J. Food Sci., 1997, 62(6), 1110-1115.
[http://dx.doi.org/10.1111/j.1365-2621.1997.tb12224.x]
[86]
Wu, W.U.; Hettiarachchy, N.S.; Qi, M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. J. Am. Oil Chem. Soc., 1998, 75(7), 845-850.
[http://dx.doi.org/10.1007/s11746-998-0235-0]
[87]
Nir, I.; Feldman, Y.; Aserin, A.; Garti, N. Surface properties and emulsification behavior of denatured soy proteins. J. Food Sci., 1994, 59(3), 606-610.
[http://dx.doi.org/10.1111/j.1365-2621.1994.tb05573.x]
[88]
Lin, L.H.; Chen, K.M. Preparation and surface activity of modified soy protein. J. Appl. Polym. Sci., 2006, 102(4), 3498-3503.
[http://dx.doi.org/10.1002/app.24651]
[89]
Nakai, S. Structure-function relationships of food proteins: with an emphasis on the importance of protein hydrophobicity. J. Agric. Food Chem., 1983, 31(4), 676-683.
[http://dx.doi.org/10.1021/jf00118a001]
[90]
Voutsinas, L.P.; Cheung, E.; Nakai, S. Relationships of hydrophobicity to emulsifying properties of heat denatured proteins. J. Food Sci., 2010, 48(1), 26-32.
[http://dx.doi.org/10.1111/j.1365-2621.1983.tb14781.x]
[91]
Petruccelli, S.; Añón, M.C. Relationship between the method of obtention and structural and functional properties of soy protein isolates. 2. Surface properties. J. Agric. Food Chem., 1994, 42(10), 2170-2176.
[http://dx.doi.org/10.1021/jf00046a018]
[92]
Lam, R.S.H.; Nickerson, M.T. Food proteins: a review on their emulsifying properties using a structure-function approach. Food Chem., 2013, 141(2), 975-984.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.038] [PMID: 23790876]
[93]
Lin, C.; Chen, J.; Lin, Y.; Wu, K. Improved emulsifying capabilities of hydrolysates of soy protein isolate pretreated with high pressure microfluidization. Lebensm. Wiss. Technol., 2016, 69, 1-8.
[http://dx.doi.org/10.1016/j.lwt.2016.01.030]
[94]
Bigelow, C.C. On the average hydrophobicity of proteins and the relation between it and protein structure. J. Theor. Biol., 1967, 16(2), 187-211.
[http://dx.doi.org/10.1016/0022-5193(67)90004-5] [PMID: 6048539]
[95]
Keshavarz, E.; Nakai, S. The relationship between hydrophobicity and interfacial tension of proteins. Biochim. Biophys. Acta, 1979, 576(2), 269-279.
[http://dx.doi.org/10.1016/0005-2795(79)90402-1]
[96]
Kato, A.; Nakai, S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochim. Biophys. Acta, 1980, 624(1), 13-20.
[http://dx.doi.org/10.1016/0005-2795(80)90220-2] [PMID: 7407231]
[97]
Matulis, D.; Baumann, C.G.; Bloomfield, V.A.; Lovrien, R.E. 1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers, 1999, 49(6), 451-458.
[http://dx.doi.org/10.1002/(SICI)1097-0282(199905)49:6<451::AID-BIP3>3.0.CO;2-6] [PMID: 10193192]
[98]
Stryer, L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J. Mol. Biol., 1965, 13(2), 482-495.
[http://dx.doi.org/10.1016/S0022-2836(65)80111-5] [PMID: 5867031]
[99]
Willis, M.S.; Hogan, J.K.; Prabhakar, P.; Liu, X.; Tsai, K.; Wei, Y.; Fox, T. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Protein Sci., 2005, 14(7), 1818-1826.
[http://dx.doi.org/10.1110/ps.051433205] [PMID: 15937284]
[100]
Cowieson, N.P.; Wensley, B.; Listwan, P.; Hume, D.A.; Kobe, B.; Martin, J.L. An automatable screen for the rapid identification of proteins amenable to refolding. Proteomics, 2006, 6(6), 1750-1757.
[http://dx.doi.org/10.1002/pmic.200500056] [PMID: 16475229]
[101]
Dobson, C.M. Protein folding and misfolding. Nature, 2003, 426(6968), 884-890.
[http://dx.doi.org/10.1038/nature02261] [PMID: 14685248]
[102]
Kella, N.K.D.; Barbeau, W.E.; Kinsella, J.E. Effect of disulfide bond cleavage on the structure and conformation of glycinin. Int. J. Pept. Protein Res., 1986, 27(4), 421-432.
[http://dx.doi.org/10.1111/j.1399-3011.1986.tb01037.x]
[103]
Kim, S.H.; Kinsella, J.E. Surface active properties of proteins: effects of progressive succinylation on film properties and foam stability of glycinin. J. Food Sci., 1987, 52(5), 1341-1343.
[http://dx.doi.org/10.1111/j.1365-2621.1987.tb14077.x]
[104]
Damodaran, S. Interfaces, protein films, and foams. Adv. Food Nutr. Res., 1990, 34, 1-79.
[http://dx.doi.org/10.1016/S1043-4526(08)60006-6]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 28
ISSUE: 8
Year: 2021
Published on: 22 February, 2021
Page: [938 - 944]
Pages: 7
DOI: 10.2174/0929866528666210222160603
Price: $65

Article Metrics

PDF: 140
HTML: 3