Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Cannabis Sativa L. Flower and Bud Extracts Inhibited In vitro Cholinesterases and β-Secretase Enzymes Activities: Possible Mechanisms of Cannabis Use in Alzheimer Disease

Author(s): Teboho Mooko, Asis Bala, Satyajit Tripathy, Chethan S. Kumar, Chandrashekara P. Mahadevappa, Sushil K. Chaudhary and Motlalepula G. Matsabisa*

Volume 22, Issue 3, 2022

Published on: 22 February, 2021

Page: [297 - 309] Pages: 13

DOI: 10.2174/1871530321666210222124349

Abstract

Background: There are anecdotal claims on the use of Cannabis sativa L. in the treatment of Alzheimer’s disease, but there is a lack of scientific data to support the efficacy and safety of Cannabis sativa L. for Alzheimer’s disease.

Aim: The aim of the study was to evaluate the effect of aerial parts of Cannabis sativa L. on the cholinesterases and β-secretase enzymes activities as one of the possible mechanisms of Alzheimer’s disease.

Methods: The phytochemical and heavy metal contents were analysed. The extracts were screened for acetylcholinesterase, butyrylcholinesterase and β-secretase activity. Cytotoxicity of extracts was performed in normal vero and pre-adipocytes cell lines. The extracts were characterized using high-performance thin layer chromatography and high-performance liquid chromatography for their chemical fingerprints. Alkaloids, flavonoids and glycosides were present amongst the tested phytochemicals. Cannabidiol concentrations were comparatively high in the hexane and dichloromethane than in dichloromethane: methanol (1:1) and methanol extracts.

Results: Hexane and dichloromethane extracts showed a better inhibitory potential towards cholinesterase activity, while water, hexane, dichloromethane: methanol (1:1) and methanol showed an inhibitory potential towards β-secretase enzyme activity. All extracts showed no cytotoxic effect on pre-adipocytes and vero cells after 24- and 48-hours of exposure.

Conclusion: Therefore, this may explain the mechanism through which AD symptoms may be treated and managed by Cannabis sativa L. extracts.

Keywords: Cannabis sativa L., HPTLC, Cholinesterase inhibition, β-secretase inhibition, cytotoxicity, Alzheimer’s Disease.

Graphical Abstract
[1]
Martinez, A.; Castro, A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs, 2006, 15(1), 1-12.
[http://dx.doi.org/10.1517/13543784.15.1.1] [PMID: 16370929]
[2]
Aso, E.; Ferrer, I. Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic. Front. Pharmacol., 2014, 5(37), 37.
[PMID: 24634659]
[3]
Jevtic, S.; Sengar, A.S.; Salter, M.W.; McLaurin, J. The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Res. Rev., 2017, 40, 84-94.
[http://dx.doi.org/10.1016/j.arr.2017.08.005] [PMID: 28941639]
[4]
Kocagoncu, E.; Quinn, A.; Firouzian, A.; Cooper, E.; Greve, A.; Gunn, R.; Green, G.; Woolrich, M.W.; Henson, R.N.; Lovestone, S.; Rowe, J.B. Tau pathology in early Alzheimer’s disease is linked to selective disruptions in neurophysiological network dynamics. Neurobiol. Aging, 2020, 92, 141-152.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.03.009] [PMID: 32280029]
[5]
Alzheimer’s Association report. Alzheimer’s disease facts and figures. Alzheimer’s Dement., 2020, 11(3), 1-88.
[6]
Caraci, F.; Iulita, M.F.; Pentz, R.; Flores Aguilar, L.; Orciani, C.; Barone, C.; Romano, C.; Drago, F.; Cuello, A.C. Searching for new pharmacological targets for the treatment of Alzheimer’s disease in Down syndrome. Eur. J. Pharmacol., 2017, 817, 7-19.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.004] [PMID: 28987272]
[7]
Paes, D.; Lardenoije, R.; Carollo, R.M.; Roubroeks, J.A.Y.; Schepers, M.; Coleman, P.; Mastroeni, D.; Delvaux, E.; Pishva, E.; Lunnon, K.; Vanmierlo, T.; van den Hove, D.; Prickaerts, J. Increased isoform-specific phosphodiesterase 4D expression is associated with pathology and cognitive impairment in Alzheimer’s disease. Neurobiol. Aging, 2021, 97, 56-64.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.10.004] [PMID: 33157432]
[8]
de Jager, C.A.; Joska, J.A.; Hoffman, M.; Borochowitz, K.E.; Combrinck, M.I. Dementia in rural South Africa: A pressing need for epidemiological studies. S. Afr. Med. J., 2015, 105(3), 189-190.
[http://dx.doi.org/10.7196/SAMJ.8904] [PMID: 26294824]
[9]
Rajan, K.B.; Weuve, J.; Barnes, L.L.; Wilson, R.S.; Evans, D.A. Prevalence and incidence of clinically diagnosed Alzheimer’s disease dementia from 1994 to 2012 in a population study. Alzheimers Dement., 2019, 15(1), 1-7.
[http://dx.doi.org/10.1016/j.jalz.2018.07.216] [PMID: 30195482]
[10]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[11]
Menting, K.W.; Claassen, J.A. β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6(165), 165.
[PMID: 25100992]
[12]
Yan, X.; Tang, J.; dos Santos Passos, C.; Nurisso, A.; Simões-Pires, C.A.; Ji, M.; Lou, H.; Fan, P. Characterization of Lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. J. Agric. Food Chem., 2015, 63(49), 10611-10619.
[http://dx.doi.org/10.1021/acs.jafc.5b05282] [PMID: 26585089]
[13]
Masondo, N.A.; Stafford, G.I.; Aremu, A.O.; Makunga, N.P. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S. Afr. J. Bot., 2019, 120, 39-64.
[http://dx.doi.org/10.1016/j.sajb.2018.09.011]
[14]
Hanseeuw, B.J.; Betensky, R.A.; Jacobs, H.I.L.; Schultz, A.P.; Sepulcre, J.; Becker, J.A.; Cosio, D.M.O.; Farrell, M.; Quiroz, Y.T.; Mormino, E.C.; Buckley, R.F.; Papp, K.V.; Amariglio, R.A.; Dewachter, I.; Ivanoiu, A.; Huijbers, W.; Hedden, T.; Marshall, G.A.; Chhatwal, J.P.; Rentz, D.M.; Sperling, R.A.; Johnson, K. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol., 2019, 76(8), 915-924.
[http://dx.doi.org/10.1001/jamaneurol.2019.1424] [PMID: 31157827]
[15]
Alzheimer’s Association. 2019 Alzheimer’ s disease facts and figures. Alzheimers Dement., 2019, 13(4), 325-373.
[16]
Elsohly, M.A.; Slade, D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci., 2005, 78(5), 539-548.
[http://dx.doi.org/10.1016/j.lfs.2005.09.011] [PMID: 16199061]
[17]
Bala, A.; Mukherjee, P.K.; Braga, F.C.; Matsabisa, M.G. Comparative inhibition of MCF-7 breast cancer cell growth, invasion and angiogenesis by Cannabis sativa L. sourced from sixteen different geographic locations. S. Afr. J. Bot., 2018, 119, 154-162.
[http://dx.doi.org/10.1016/j.sajb.2018.07.022]
[18]
Peters, M.; Mechoulam, R.; Murillo‐Rodriguez, E.; Hanuš, L.O. Cannabidiol – recent advances. J. Chem. Biodiver., 2007, 4, 1678-1692.
[19]
Currais, A.; Quehenberger, O.; M Armando, A.; Daugherty, D.; Maher, P.; Schubert, D. Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids. NPJ Aging Mech. Dis., 2016, 2, 16012.
[http://dx.doi.org/10.1038/npjamd.2016.12] [PMID: 28721267]
[20]
Smeriglio, A.; Giofrè, S.V.; Galati, E.M.; Monforte, M.T.; Cicero, N.; D’Angelo, V.; Grassi, G.; Circosta, C. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol. Fitoterapia, 2018, 127, 101-108.
[http://dx.doi.org/10.1016/j.fitote.2018.02.002] [PMID: 29427593]
[21]
Eubanks, L.M.; Rogers, C.J.; Beuscher, A.E., IV; Koob, G.F.; Olson, A.J.; Dickerson, T.J.; Janda, K.D. A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol. Pharm., 2006, 3(6), 773-777.
[http://dx.doi.org/10.1021/mp060066m] [PMID: 17140265]
[22]
Li, H.; Liu, Y.; Tian, D.; Tian, L.; Ju, X.; Qi, L.; Wang, Y.; Liang, C. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease. Eur. J. Med. Chem., 2020, 192, 112163.
[http://dx.doi.org/10.1016/j.ejmech.2020.112163] [PMID: 32109623]
[23]
Ameh, G.I.; Eze, C.S. Phytochemical constituents of some Nigerian plants. Biotechnol. Res., 2010, 8(1), 685-688.
[24]
Sheikh, N.; Kumar, Y.; Misra, A.K.; Pfoze, L. Phytochemical screening to validate the ethnobotanical importance of root tubers of Dioscorea species of Meghalaya. J. Med. Plant Studies, 2013, 1(6), 62-69.
[25]
Mir, M.A.; Sawhney, S.S.; Jassal, M.M.S. Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Pharm. Pharmacol., 2013, 2(1), 1-5.
[26]
Audu, B.S.; Ofojekwu, P.C.; Ujah, A.; Aija, M.N. Phytochemical, proximate composition, amino acid profile and characterisation of marijuana (Canabis sativa L). Phytopharmacology, 2014, 3(1), 35-43.
[27]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[28]
Rhee, I.K.; van de Meent, M.; Ingkaninan, K.; Verpoorte, R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A, 2001, 915(1-2), 217-223.
[http://dx.doi.org/10.1016/S0021-9673(01)00624-0] [PMID: 11358251]
[29]
Adewusi, E.A.; Fouche, G.F.; Steenkamp, V.V. Antioxidant, acetylcholinesterase inhibitory activity and cytotoxicity assessment of the crude extracts of Boophane disticha. African J. Pharm. Ther, 2012, 1(3), 78-83.
[30]
Li, P.; Liu, S.; Liu, Q.; Shen, J.; Yang, R.; Jiang, B.; He, C.; Xiao, P. Screening of acetylcholinesterase inhibitors and characterizing of phytochemical constituents from Dichocarpum auriculatum (Franch.) W.T. Wang & P. K. Hsiao through UPLC-MS combined with an acetylcholinesterase inhibition assay in vitro. J. Ethnopharmacol., 2019, 245, 112185.
[http://dx.doi.org/10.1016/j.jep.2019.112185] [PMID: 31446073]
[31]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[32]
Fischedick, J.T.; Glas, R.; Hazekamp, A.; Verpoorte, R. A qualitative and quantitative HPTLC densitometry method for the analysis of cannabinoids in Cannabis sativa L. Phytochem. Anal., 2009, 20(5), 421-426.
[http://dx.doi.org/10.1002/pca.1143] [PMID: 19609880]
[33]
Brighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J. Pharm. Biomed. Anal., 2017, 143, 228-236.
[http://dx.doi.org/10.1016/j.jpba.2017.05.049] [PMID: 28609672]
[34]
Ahmmed, S.M.; Mukherjee, P.K.; Bahadur, S.; Harwansh, R.K.; Kar, A.; Bandyopadhyay, A.; Al-Dhabi, N.A.; Duraipandiyan, V. CYP450 mediated inhibition potential of Swertia chirata: An herb from Indian traditional medicine. J. Ethnopharmacol., 2016, 178, 34-39.
[http://dx.doi.org/10.1016/j.jep.2015.11.046] [PMID: 26657265]
[35]
Abarca-Vargas, R.; Peña, M.C.F.; Petricevich, V.L. Characterization of chemical compounds with antioxidant and cytotoxic activities in Bougainvillea x buttiana Holttum and Standl, (var. rose) extracts. Antioxidants, 2016, 5(4), 45-49.
[http://dx.doi.org/10.3390/antiox5040045] [PMID: 27918436]
[36]
Cokugras, A.N. Butyrylcholinesterase: structure and physiological importance. Turkish J. Biochem., 2003, 28(2), 54-61.
[37]
Van, P.B. Characterization of medicinal properties of Cannabis sativa L. roots. Life Sci., 2008. https://hemp-eaze.com/wp-content/uploads/Characterization-of-Medicinal-Properties-of-Cannabis-sativa.pdf
[38]
Rhee, I.K.; van Rijn, R.M.; Verpoorte, R. Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem. Anal., 2003, 14(3), 127-131.
[http://dx.doi.org/10.1002/pca.675] [PMID: 12793457]
[39]
Selkoe, D. β-secretase inhibitors for Alzheimer’s disease: heading in the wrong direction? Lancet Neurol., 2019, 18(7), 624-626.
[http://dx.doi.org/10.1016/S1474-4422(19)30202-9] [PMID: 31202466]
[40]
Wang, H.; Shen, Y.; Chuang, H.; Chiu, C.; Ye, Y.; Zhao, L. Neuroinflammation in Alzheimer’s Disease: Microglia, Molecular Participants and Therapeutic Choices. Curr. Alzheimer Res., 2019, 16(7), 659-674.
[http://dx.doi.org/10.2174/1567205016666190503151648] [PMID: 31580243]
[41]
Abdel-Salam, O.M.; Youness, E.R.; Khadrawy, Y.A.; Sleem, A.A. Acetylcholinesterase, butyrylcholinesterase and paraoxonase 1 activities in rats treated with cannabis, tramadol or both. Asian Pac. J. Trop. Med., 2016, 9(11), 1089-1094.
[http://dx.doi.org/10.1016/j.apjtm.2016.09.009] [PMID: 27890370]
[42]
Coucke, L.; Massarini, E.; Ostijn, Z.; Beck, O.; Verstraete, A.G. Δ(9)-Tetrahydrocannabinol concentrations in exhaled breath and physiological effects following cannabis intake - A pilot study using illicit cannabis. Clin. Biochem., 2016, 49(13-14), 1072-1077.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.06.003] [PMID: 27288550]
[43]
Street, R.A. Heavy metals in medicinal plant products — an African perspective. S. Afr. J. Bot., 2012, 82, 67-74.
[http://dx.doi.org/10.1016/j.sajb.2012.07.013]
[44]
Nallagouni, C.; Reddy, P.K. Aluminium and fluoride impacts cortex and hippocampus structure in rats: protective role of resveratrol. Int. J. Appl. Biol. Pharm. Technol., 2017, 8(1), 89-98.
[45]
Hussien, H.M.; Abd-Elmegied, A.; Ghareeb, D.A.; Hafez, H.S.; Ahmed, H.E.A.; El-Moneam, N.A. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem. Toxicol., 2018, 111, 432-444.
[http://dx.doi.org/10.1016/j.fct.2017.11.025] [PMID: 29170048]
[46]
Vidal, M.N.P.; Granjeiro, J.M. Cytotoxicity tests for evaluating medical devices: an alert for the development of biotechnology health products. Biomed. Sci. Eng., 2017, 10(9), 431-443.
[http://dx.doi.org/10.4236/jbise.2017.109033]
[47]
Hostettmann, M. Methods in plant biochemistry: assays for bioactivity; academic press Ltd.: London, United Kingdom, 1990.
[48]
Boik, J. Natural Compounds in Cancer Therapy, 1st ed; Minnesota, USA, 2001.
[49]
Mbaveng, A.T.; Manekeng, H.T.; Nguenang, G.S.; Dzotam, J.K.; Kuete, V.; Efferth, T. Cytotoxicity of 18 Cameroonian medicinal plants against drug sensitive and multi-factorial drug resistant cancer cells. J. Ethnopharmacol., 2018, 222, 21-33.
[http://dx.doi.org/10.1016/j.jep.2018.04.036] [PMID: 29709646]
[50]
Parulekar, P.P.; Mali, B.D. Diazotized dapsone as a reagent for the detection of cannabinoids on thin-layer chromatograpic plates. J. Chromatogr. A, 1988, 457, 383-386.
[http://dx.doi.org/10.1016/S0021-9673(01)82088-4]
[51]
Omar, S.H. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed. Pharmacother., 2017, 89, 396-413.
[http://dx.doi.org/10.1016/j.biopha.2017.02.051] [PMID: 28249241]
[52]
Asis, B.; Sunelle, R.; Kevin, N.K.; Ninesh, M.; Matsabisa, M.G. UPLC-MS analysis of Cannabis sativa L. using tetrahydrocannabinol (THC), Cannabidiol (CBD) and tetrahydrocannabinolic acid (THCA) as marker compounds: Inhibition of breast cancer cell survival and progression. Nat. Product Commun., 2019.
[53]
Asis, B.; Matsabisa, M.G. Possible importance of Cannabis sativa L. in regulation of insulin and IL-6R/MAO-A in cancer cell progression and migration of breast cancer patients with diabetes. S. Afr. J. Sci., 2018, 114(7/8)
[http://dx.doi.org/10.17159/sajs.2018/a0279]
[54]
Chetia, P.; Khandelwal, B.; Haldar, P.K.; Bala, A. Dietary antioxidants significantly reduced phorbol myristate acetate induced oxidative stress of peripheral blood mononuclear cells of patients with rheumatoid arthritis. Curr. Rheumatol. Rev., 2020, 16, 1.
[http://dx.doi.org/10.2174/1573397116999200729154954] [PMID: 32729420]
[55]
Singh, V.; Reddy, R.; Sinha, A.; Marturi, V.; Panditharadyula, S.S.; Bala, A. A review on phytopharmaceuticals having concomitant experimental anti-diabetic and anti-cancer effects as potential sources for targeted therapies against insulin-mediated breast cancer cell invasion and migration. Curr. Cancer Ther. Rev., 2020, 16, 1.
[http://dx.doi.org/10.2174/1573394716999200831113335]
[56]
Iqbal, Z.; Ahmad, A.; Haque, Z.; Khan, M.S.; Khan, M.S.; Iqbal, M.S. RP-HPLC Estimation of flavonol derivatives and phenolic acids in capsicum annuum l. and their correlation with in vitro anti-inflammatory activity. Curr. Pharm. Biotechnol., 2020, 21(2), 149-157.
[http://dx.doi.org/10.2174/1389201020666190930115035] [PMID: 31566132]
[57]
Bouhenna, M.M.; Bensouici, C.; Khattabi, L.; Chebrouk, F.; Mameri, N. Chemical composition, antioxidant, alpha-glucosidase inhibitory, anticholinesterase and photoprotective activities of the aerial parts of Schinus molle L. Curr. Bioact. Compd., 2020, 16, 1.
[http://dx.doi.org/10.2174/1573407216999201014153251]
[58]
Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv. Nutr., 2011, 2(1), 32-50.
[http://dx.doi.org/10.3945/an.110.000117] [PMID: 22211188]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy