Pleiotropic Regulatory Genes as A Tool for Streptomyces Strains Bioprospecting and Improvement

Author(s): Bohdan Ostash*

Journal Name: Current Biotechnology

Volume 10 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Many taxa within class Actinobacteria, most notably genus Streptomyces, are known for the abundant presence of specialized biosynthetic pathways that convert essential cellular metabolites (amino acids, acyl moieties, such as acetyl-CoA, nucleotides etc.) into diverse natural products (NPs). NPs remain one of the pillars of modern pharmaceutical industry, and use of NPs as antibiotics is perhaps the most notable example of the commercial success of NPs. Nowadays, as humankind faces a formidable challenge to counter the rise of antimicrobial resistance and viral infections, there is renewed interest in streptomycetes as a source of novel NPs. This prompted the investigation of a variety of approaches to discover novel NPs and to improve the production of known ones. The focus of this review is on the use of regulatory genes to discover novel NPs. The two-layered scheme of regulation of NP biosynthesis is described and terms referring to cryptic NP gene cluster are detailed. Major players in global regulatory network are described as well as how their manipulation may be used to access the secondary metabolomes of Streptomyces and Actinobacteria in general. The value of studying the NP regulation in the era of synthetic biology is summarized in the last section.

Keywords: Actinobacteria, Streptomyces, natural products, cryptic gene clusters, global regulators.

[1]
Schrader SM, Vaubourgeix J, Nathan C. Biology of antimicrobial resistance and approaches to combat it. Sci Transl Med 2020; 12(549): eaaz6992.
[http://dx.doi.org/10.1126/scitranslmed.aaz6992] [PMID: 32581135]
[2]
Wright GDQ. Q&A: antibiotic resistance: what more do we know and what more can we do? BMC Biol 2013; 11: 51.
[http://dx.doi.org/10.1186/1741-7007-11-51] [PMID: 23683650]
[3]
Bisacchi GS, Manchester JI. A new-class antibacterial-almost. lessons in drug discovery and development: a critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV. ACS Infect Dis 2015; 1(1): 4-41.
[http://dx.doi.org/10.1021/id500013t] [PMID: 27620144]
[4]
Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 2007; 6(1): 29-40.
[http://dx.doi.org/10.1038/nrd2201] [PMID: 17159923]
[5]
Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell 2020; 180(4): 688-702.
[http://dx.doi.org/10.1016/j.cell.2020.01.021]
[6]
Lyu J, Wang S, Balius TE, et al. Ultra-large library docking for discovering new chemotypes. Nature 2019; 566(7743): 224-9.
[http://dx.doi.org/10.1038/s41586-019-0917-9] [PMID: 30728502]
[7]
Johnson EO, LaVerriere E, Office E, et al. Large-scale chemical- genetics yields new M. tuberculosis inhibitor classes. Nature 2019; 571(7763): 72-8.
[http://dx.doi.org/10.1038/s41586-019-1315-z] [PMID: 31217586]
[8]
Cimermancic P, Medema MH, Claesen J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 2014; 158(2): 412-21.
[http://dx.doi.org/10.1016/j.cell.2014.06.034]
[9]
Behnken S, Hertweck C. Anaerobic bacteria as producers of antibiotics. Appl Microbiol Biotechnol 2012; 96(1): 61-7.
[http://dx.doi.org/10.1007/s00253-012-4285-8] [PMID: 22854892]
[10]
Walker MC, Eslami SM, Hetrick KJ, Ackenhusen SE, Mitchell DA, van der Donk WA. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 2020; 21(1): 387.
[http://dx.doi.org/10.1186/s12864-020-06785-7] [PMID: 32493223]
[11]
Landwehr W, Wolf C, Wink J. Actinobacteria and myxobacteria – two of the most important bacterial resources for novel antibiotics. Curr Top Microbiol Immunol 2016; 398: 273-302.
[http://dx.doi.org/10.1007/82_2016_503] [PMID: 27704272]
[12]
Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA 2017; 114(22): 5601-6.
[http://dx.doi.org/10.1073/pnas.1614680114] [PMID: 28461474]
[13]
Belknap KC, Park CJ, Barth BM, Andam CP. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci Rep 2020; 10(1): 2003.
[http://dx.doi.org/10.1038/s41598-020-58904-9] [PMID: 32029878]
[14]
Kumagai T, Koyama Y, Oda K, Noda M, Matoba Y, Sugiyama M. Molecular cloning and heterologous expression of a biosynthetic gene cluster for the antitubercular agent D-cycloserine produced by Streptomyces lavendulae. Antimicrob Agents Chemother 2010; 54(3): 1132-9.
[http://dx.doi.org/10.1128/AAC.01226-09] [PMID: 20086163]
[15]
McCafferty DG, Cudic P, Frankel BA, Barkallah S, Kruger RG, Li W. Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers 2002; 66(4): 261-84.
[http://dx.doi.org/10.1002/bip.10296] [PMID: 12491539]
[16]
Westhoff S, Otto SB, Swinkels A, Bode B, van Wezel GP, Rozen DE. Spatial structure increases the benefits of antibiotic production in Streptomyces. Evolution 2020; 74(1): 179-87.
[http://dx.doi.org/10.1111/evo.13817] [PMID: 31393002]
[17]
Rohr J, Beale JM, Floss HG. Urdamycins, new angucycline antibiotics from Streptomyces fradiae. IV. Biosynthetic studies of urdamycins A-D. J Antibiot 1989; 42(7): 1151-7.
[http://dx.doi.org/10.7164/antibiotics.42.1151] [PMID: 2753820]
[18]
Ostash B, Campbell J, Luzhetskyy A, Walker S. MoeH5: a natural glycorandomizer from the moenomycin biosynthetic pathway. Mol Microbiol 2013; 90(6): 1324-38.
[http://dx.doi.org/10.1111/mmi.12437] [PMID: 24164498]
[19]
Ostash B, Yan X, Fedorenko V, Bechthold A. Chemoenzymatic and bioenzymatic synthesis of carbohydrate containing natural products. Top Curr Chem 2010; 297: 105-48.
[http://dx.doi.org/10.1007/128_2010_78]
[20]
Flatt PM, Mahmud T. Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat Prod Rep 2007; 24(2): 358-92.
[http://dx.doi.org/10.1039/B603816F] [PMID: 17390001]
[21]
Retzlaff L, Distler J. The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol Microbiol 1995; 18(1): 151-62.
[http://dx.doi.org/10.1111/j.1365-2958.1995.mmi_18010151.x] [PMID: 8596455]
[22]
Horbal L, Rebets Y, Rabyk M, et al. Characterization and analysis of the regulatory network involved in control of lipomycin biosynthesis in Streptomyces aureofaciens Tü117. Appl Microbiol Biotechnol 2010; 85(4): 1069-79.
[http://dx.doi.org/10.1007/s00253-009-2108-3] [PMID: 19585113]
[23]
Tomono A, Tsai Y, Yamazaki H, Ohnishi Y, Horinouchi S. Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 2005; 187(16): 5595-604.
[http://dx.doi.org/10.1128/JB.187.16.5595-5604.2005] [PMID: 16077104]
[24]
Rigali S, Titgemeyer F, Barends S, et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 2008; 9(7): 670-5.
[http://dx.doi.org/10.1038/embor.2008.83] [PMID: 18511939]
[25]
Otani H, Higo A, Nanamiya H, Horinouchi S, Ohnishi Y. An alternative sigma factor governs the principal sigma factor in Streptomyces griseus. Mol Microbiol 2013; 87(6): 1223-36.
[http://dx.doi.org/10.1111/mmi.12160] [PMID: 23347076]
[26]
Higo A, Hara H, Horinouchi S, Ohnishi Y. Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res 2012; 19(3): 259-73.
[http://dx.doi.org/10.1093/dnares/dss010] [PMID: 22449632]
[27]
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77(1): 112-43.
[http://dx.doi.org/10.1128/MMBR.00054-12] [PMID: 23471619]
[28]
Huang J, Shi J, Molle V, et al. Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 2005; 58(5): 1276-87.
[29]
Vicente CM, Payero TD, Santos-Aberturas J, Barreales EG, de Pedro A, Aparicio JF. Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators. Appl Microbiol Biotechnol 2015; 99(12): 5123-35.
[http://dx.doi.org/10.1007/s00253-015-6472-x] [PMID: 25715784]
[30]
McLean TC, Hoskisson PA, Seipke RF. Coordinate regulation of antimycin and candicidin biosynthesis. MSphere 2016; 1(6): e00305-16.
[http://dx.doi.org/10.1128/mSphere.00305-16] [PMID: 27981234]
[31]
Xu Y, You D, Yao LL, Chu X, Ye BC. Phosphate regulator PhoP directly and indirectly controls transcription of the erythromycin biosynthesis genes in Saccharopolyspora erythraea. Microb Cell Fact 2019; 18(1): 206.
[http://dx.doi.org/10.1186/s12934-019-1258-y] [PMID: 31775761]
[32]
Nuzzo D, Makitrynskyy R, Tsypik O, Bechthold A. Cyclic di-GMP cyclase SSFG_02181 from Streptomyces ghanaensis ATCC14672 regulates antibiotic biosynthesis and morphological differentiation in streptomycetes. Sci Rep 2020; 10(1): 12021.
[http://dx.doi.org/10.1038/s41598-020-68856-9] [PMID: 32694623]
[33]
Makitrynskyy R, Tsypik O, Nuzzo D, Paululat T, Zechel DL, Bechthold A. Secondary nucleotide messenger c-di-GMP exerts a global control on natural product biosynthesis in streptomycetes. Nucleic Acids Res 2020; 48(3): 1583-98.
[http://dx.doi.org/10.1093/nar/gkz1220] [PMID: 31956908]
[34]
Li J, Wang N, Tang Y, et al. Developmental regulator BldD directly regulates lincomycin biosynthesis in Streptomyces lincolnensis. Biochem Biophys Res Commun 2019; 518(3): 548-53.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.079] [PMID: 31447118]
[35]
Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 2009; 26(11): 1362-84.
[http://dx.doi.org/10.1039/b817069j] [PMID: 19844637]
[36]
Udwary DW, Gontang EA, Jones AC, et al. Significant natural product biosynthetic potential of actinorhizal symbionts of the genus frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 2011; 77(11): 3617-25.
[http://dx.doi.org/10.1128/AEM.00038-11] [PMID: 21498757]
[37]
Männle D, McKinnie SMK, Mantri SS, et al. Comparative genomics and metabolomics in the genus Nocardia. mSystems 2020; 5(3): e00125-20.
[http://dx.doi.org/10.1128/mSystems.00125-20] [PMID: 32487740]
[38]
Adamek M, Alanjary M, Sales-Ortells H, et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics 2018; 19(1): 426.
[http://dx.doi.org/10.1186/s12864-018-4809-4] [PMID: 29859036]
[39]
Sun YQ, Busche T, Rückert C, et al. Development of a biosensor concept to detect the production of cluster-specific secondary metabolites. ACS Synth Biol 2017; 6(6): 1026-33.
[http://dx.doi.org/10.1021/acssynbio.6b00353] [PMID: 28221784]
[40]
Hoshino S, Onaka H, Abe I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J Ind Microbiol Biotechnol 2019; 46(3-4): 363-74.
[http://dx.doi.org/10.1007/s10295-018-2100-y] [PMID: 30488365]
[41]
Ahmed Y, Rebets Y, Tokovenko B, Brötz E, Luzhetskyy A. Identification of butenolide regulatory system controlling secondary metabolism in Streptomyces albus J1074. Sci Rep 2017; 7(1): 9784.
[http://dx.doi.org/10.1038/s41598-017-10316-y] [PMID: 28852167]
[42]
Becerril A, Pérez-Victoria I, Ye S, et al. Discovery of cryptic largimycins in Streptomyces reveals novel biosynthetic avenues enriching the structural diversity of the leinamycin family. ACS Chem Biol 2020; 15(6): 1541-53.
[http://dx.doi.org/10.1021/acschembio.0c00160] [PMID: 32310633]
[43]
Kautsar SA, Blin K, Shaw S, Weber T, Medema MH. BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Res 2020.49(D1): D490-7..
[44]
Tang X, Li J, Millán-Aguiñaga N, et al. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem Biol 2015; 10(12): 2841-9.
[http://dx.doi.org/10.1021/acschembio.5b00658] [PMID: 26458099]
[45]
Chiang YM, Chang SL, Oakley BR, Wang CC. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 2011; 15(1): 137-43.
[http://dx.doi.org/10.1016/j.cbpa.2010.10.011] [PMID: 21111669]
[46]
Mochizuki S, Hiratsu K, Suwa M, et al. The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol Microbiol 2003; 48(6): 1501-10.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03523.x] [PMID: 12791134]
[47]
te Poele EM, Samborskyy M, Oliynyk M, Leadlay PF, Bolhuis H, Dijkhuizen L. Actinomycete integrative and conjugative pMEA- like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid 2008; 59(3): 202-16.
[http://dx.doi.org/10.1016/j.plasmid.2008.01.003] [PMID: 18295883]
[48]
Tidjani AR, Lorenzi JN, Toussaint M, et al. Massive gene flux drives genome diversity between sympatric Streptomyces conspecifics. MBio 2019; 10(5): e01533-19.
[http://dx.doi.org/10.1128/mBio.01533-19] [PMID: 31481382]
[49]
McDonald BR, Currie CR. Lateral gene transfer dynamics in the ancient bacterial genus Streptomyces. MBio 2017; 8(3): e00644-17.
[http://dx.doi.org/10.1128/mBio.00644-17] [PMID: 28588130]
[50]
Martinet L, Naômé A, Baiwir D, De Pauw E, Mazzucchelli G, Rigali S. On the risks of phylogeny-based strain prioritization for drug discovery: Streptomyces lunaelactis as a case study. Biomolecules 2020; 10(7): E1027.
[http://dx.doi.org/10.3390/biom10071027] [PMID: 32664387]
[51]
Kelsic ED, Zhao J, Vetsigian K, Kishony R. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 2015; 521(7553): 516-9.
[http://dx.doi.org/10.1038/nature14485] [PMID: 25992546]
[52]
Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U. Elicitation of secondary metabolism in actinomycetes. Biotechnol Adv 2015; 33(6 Pt 1): 798-811.
[http://dx.doi.org/10.1016/j.biotechadv.2015.06.003] [PMID: 26087412]
[53]
Rebets Y, Brötz E, Tokovenko B, Luzhetskyy A. Actinomycetes biosynthetic potential: how to bridge in silico and in vivo? J Ind Microbiol Biotechnol 2014; 41(2): 387-402.
[http://dx.doi.org/10.1007/s10295-013-1352-9] [PMID: 24127068]
[54]
Nguyen CT, Dhakal D, Pham VTT, Nguyen HT, Sohng JK. Recent advances in strategies for activation and discovery / characterization of cryptic biosynthetic gene clusters in Streptomyces. Microorganisms 2020; 8(4): 616.
[http://dx.doi.org/10.3390/microorganisms8040616] [PMID: 32344564]
[55]
Myronovskyi M, Luzhetskyy A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat Prod Rep 2019; 36(9): 1281-94.
[http://dx.doi.org/10.1039/C9NP00023B] [PMID: 31453623]
[56]
Ochi K. Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot 2017; 70(1): 25-40.
[http://dx.doi.org/10.1038/ja.2016.82] [PMID: 27381522]
[57]
Gehrke EJ, Zhang X, Pimentel-Elardo SM, et al. Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. eLife 2019; 8: e47691.
[http://dx.doi.org/10.7554/eLife.47691] [PMID: 31215866]
[58]
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2018; 35(6): 575-604.
[http://dx.doi.org/10.1039/C8NP00012C] [PMID: 29721572]
[59]
Urem M, Świątek-Połatyńska MA, Rigali S, van Wezel GP. Intertwining nutrient-sensory networks and the control of antibiotic production in Streptomyces. Mol Microbiol 2016; 102(2): 183-95.
[http://dx.doi.org/10.1111/mmi.13464] [PMID: 27425419]
[60]
Niu G, Chater KF, Tian Y, Zhang J, Tan H. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev 2016; 40(4): 554-73.
[http://dx.doi.org/10.1093/femsre/fuw012] [PMID: 27288284]
[61]
Mouri Y, Konishi K, Fujita A, Tezuka T, Ohnishi Y. Regulation of sporangium formation by BldD in the rare actinomycete Actinoplanes missouriensis. J Bacteriol 2017; 199(12): e00840-16.
[http://dx.doi.org/10.1128/JB.00840-16] [PMID: 28348024]
[62]
Al-Bassam MM, Haist J, Neumann SA, Lindenberg S, Tschowri N. Expression patterns, genomic conservation and input into developmental regulation of the GGDEF/EAL/HD-GYP domain proteins in Streptomyces. Front Microbiol 2018; 9: 2524.
[http://dx.doi.org/10.3389/fmicb.2018.02524] [PMID: 30405580]
[63]
Bush MJ, Tschowri N, Schlimpert S, Flärdh K, Buttner MJ. c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 2015; 13(12): 749-60.
[http://dx.doi.org/10.1038/nrmicro3546] [PMID: 26499894]
[64]
Yan H, Lu X, Sun D, et al. BldD, a master developmental repressor, activates antibiotic production in two Streptomyces species. Mol Microbiol 2020; 113(1): 123-42.
[http://dx.doi.org/10.1111/mmi.14405] [PMID: 31628680]
[65]
Rabyk M, Yushchuk O, Rokytskyy I, Anisimova M, Ostash B. Genomic insights into evolution of AdpA family master regulators of morphological differentiation and secondary metabolism in Streptomyces. J Mol Evol 2018; 86(3-4): 204-15.
[http://dx.doi.org/10.1007/s00239-018-9834-z] [PMID: 29536136]
[66]
Zhang S, Klementz D, Zhu J, et al. Genome mining reveals the origin of a bald phenotype and a cryptic nucleocidin gene cluster in Streptomyces asterosporus DSM 41452. J Biotechnol 2019; 292: 23-31.
[http://dx.doi.org/10.1016/j.jbiotec.2018.12.016] [PMID: 30641108]
[67]
Yushchuk O, Ostash I, Vlasiuk I, et al. Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions. Appl Microbiol Biotechnol 2018; 102(19): 8419-28.
[http://dx.doi.org/10.1007/s00253-018-9249-1] [PMID: 30056513]
[68]
Qi H, Ma Z, Xue ZL, et al. A new O-cinnamoyl threonine derivative from gene adpA overexpression strain Streptomyces sp. HS-NF-1222A. Nat Prod Res 2020; 34(14): 2080-5.
[http://dx.doi.org/10.1080/14786419.2019.1573234] [PMID: 30822138]
[69]
Xu J, Zhang J, Zhuo J, Li Y, Tian Y, Tan H. Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. J Biol Chem 2017; 292(48): 19708-20.
[http://dx.doi.org/10.1074/jbc.M117.809145] [PMID: 28972184]
[70]
Makitrynskyy R, Ostash B, Tsypik O, et al. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol 2013; 3(10): 130121.
[http://dx.doi.org/10.1098/rsob.130121] [PMID: 24153004]
[71]
Jones SE, Leong V, Ortega J, Elliot MA. Development, antibiotic production, and ribosome assembly in Streptomyces venezuelae are impacted by RNase J and RNase III deletion. J Bacteriol 2014; 196(24): 4253-67.
[http://dx.doi.org/10.1128/JB.02205-14] [PMID: 25266378]
[72]
Hindra PP, Pak P, Elliot MA. Regulation of a novel gene cluster involved in secondary metabolite production in Streptomyces coelicolor. J Bacteriol 2010; 192(19): 4973-82.
[http://dx.doi.org/10.1128/JB.00681-10] [PMID: 20675485]
[73]
Gessner A, Heitzler T, Zhang S, et al. Changing biosynthetic profiles by expressing bldA in Streptomyces strains. ChemBioChem 2015; 16(15): 2244-52.
[http://dx.doi.org/10.1002/cbic.201500297] [PMID: 26255983]
[74]
Hackl S, Bechthold A. The Gene bldA, a regulator of morphological differentiation and antibiotic production in streptomyces. Arch Pharm 2015; 348(7): 455-62.
[http://dx.doi.org/10.1002/ardp.201500073] [PMID: 25917027]
[75]
Okamoto S, Lezhava A, Hosaka T, Okamoto-Hosoya Y, Ochi K. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J Bacteriol 2003; 185(2): 601-9.
[http://dx.doi.org/10.1128/JB.185.2.601-609.2003] [PMID: 12511507]
[76]
Shin SK, Xu D, Kwon HJ, Suh JW. S-adenosylmethionine activates adpA transcription and promotes streptomycin biosynthesis in Streptomyces griseus. FEMS Microbiol Lett 2006; 259(1): 53-9.
[http://dx.doi.org/10.1111/j.1574-6968.2006.00246.x] [PMID: 16684102]
[77]
Takano H, Hagiwara K, Ueda K. Fundamental role of cobalamin biosynthesis in the developmental growth of Streptomyces coelicolor A3 (2). Appl Microbiol Biotechnol 2015; 99(5): 2329-37.
[http://dx.doi.org/10.1007/s00253-014-6325-z] [PMID: 25547841]
[78]
Koshla O, Yushchuk O, Ostash I, et al. Gene miaA for post-transcriptional modification of tRNAXXA is important for morphological and metabolic differentiation in Streptomyces. Mol Microbiol 2019; 112(1): 249-65.
[http://dx.doi.org/10.1111/mmi.14266] [PMID: 31017319]
[79]
Hodgson DA. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 2000; 42: 47-238.
[http://dx.doi.org/10.1016/S0065-2911(00)42003-5] [PMID: 10907551]
[80]
Gao C, Hindra , Mulder D, Yin C, Elliot MA. Crp is a global regulator of antibiotic production in streptomyces. MBio 2012; 3(6): e00407-12.
[http://dx.doi.org/10.1128/mBio.00407-12] [PMID: 23232715]
[81]
Sheeler NL, MacMillan SV, Nodwell JR. Biochemical activities of the absA two-component system of Streptomyces coelicolor. J Bacteriol 2005; 187(2): 687-96.
[http://dx.doi.org/10.1128/JB.187.2.687-696.2005] [PMID: 15629939]
[82]
McKenzie NL, Nodwell JR. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 2007; 189(14): 5284-92.
[http://dx.doi.org/10.1128/JB.00305-07] [PMID: 17513473]
[83]
Lewis RA, Wahab A, Bucca G, et al. Genome-wide analysis of the role of the antibiotic biosynthesis regulator AbsA2 in Streptomyces coelicolor A3(2). PLoS One 2019; 14(4): e0200673.
[http://dx.doi.org/10.1371/journal.pone.0200673] [PMID: 30969967]
[84]
McKenzie NL, Thaker M, Koteva K, Hughes DW, Wright GD, Nodwell JR. Induction of antimicrobial activities in heterologous streptomycetes using alleles of the Streptomyces coelicolor gene absA1. J Antibiot 2010; 63(4): 177-82.
[http://dx.doi.org/10.1038/ja.2010.13] [PMID: 20224601]
[85]
Daniel-Ivad M, Hameed N, Tan S, et al. An engineered allele of afsQ1 facilitates the discovery and investigation of cryptic natural products. ACS Chem Biol 2017; 12(3): 628-34.
[http://dx.doi.org/10.1021/acschembio.6b01002] [PMID: 28075554]
[86]
Liao CH, Xu Y, Rigali S, Ye BC. DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea. Appl Microbiol Biotechnol 2015; 99(23): 10215-24.
[http://dx.doi.org/10.1007/s00253-015-6892-7] [PMID: 26272095]
[87]
Tenconi E, Urem M, Świątek-Połatyńska MA, et al. Multiple allosteric effectors control the affinity of DasR for its target sites. Biochem Biophys Res Commun 2015; 464(1): 324-9.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.152] [PMID: 26123391]
[88]
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9(12): 190223.
[http://dx.doi.org/10.1098/rsob.190223] [PMID: 31795918]
[89]
Hołówka J, Zakrzewska-Czerwińska J. Nucleoid Associated Proteins: The small organizers that help to cope with stress. Front Microbiol 2020; 11: 590.
[http://dx.doi.org/10.3389/fmicb.2020.00590] [PMID: 32373086]
[90]
Li W, Ying X, Guo Y, et al. Identification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2). J Bacteriol 2006; 188(24): 8368-75.
[http://dx.doi.org/10.1128/JB.00933-06] [PMID: 17041057]
[91]
Zhang G, Yu D, Sang B, Feng J, Han L, Zhang X. Genome-wide analysis reveals the secon-dary metabolome in Streptomyces kanasensis ZX01 Genes. 2017; 8(12): 346.
[92]
Kang SH, Huang J, Lee HN, Hur YA, Cohen SN, Kim ES. Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J Bacteriol 2007; 189(11): 4315-9.
[http://dx.doi.org/10.1128/JB.01789-06] [PMID: 17416669]
[93]
Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology (Reading) 2011; 157(Pt 5): 1312-28.
[http://dx.doi.org/10.1099/mic.0.047555-0] [PMID: 21330440]
[94]
Lee HN, Kim JS, Kim P, Lee HS, Kim ES. Repression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor. Appl Environ Microbiol 2013; 79(13): 4159-63.
[http://dx.doi.org/10.1128/AEM.00546-13] [PMID: 23603676]
[95]
Lu C, Liao G, Zhang J, Tan H. Identification of novel tylosin analogues generated by a wblA disruption mutant of Streptomyces ansochromogenes. Microb Cell Fact 2015; 14: 173.
[http://dx.doi.org/10.1186/s12934-015-0359-5] [PMID: 26525981]
[96]
Huang H, Li H, Qiu Y, Hou L, Ju J, Li W. A new dioic acid from a wbl gene mutant of deepsea-derived Streptomyces somaliensis SCSIO ZH66. Mar Drugs 2016; 14(10): 184.
[http://dx.doi.org/10.3390/md14100184] [PMID: 27763499]
[97]
Bu XL, Weng JY, He-Lin Yu , Xu MJ, Xu J. Three transcriptional regulators positively regulate the biosynthesis of polycyclic tetramate macrolactams in Streptomyces xiamenensis 318. Appl Microbiol Biotechnol 2020; 104(2): 701-11.
[http://dx.doi.org/10.1007/s00253-019-10269-4] [PMID: 31820069]
[98]
Demir Z, Bayraktar A, Tunca S. One extra copy of lon gene causes a dramatic increase in actinorhodin production by Streptomyces coelicolor A3(2). Curr Microbiol 2019; 76(9): 1045-54.
[http://dx.doi.org/10.1007/s00284-019-01719-3] [PMID: 31214822]
[99]
Tanaka Y, Kasahara K, Hirose Y, Murakami K, Kugimiya R, Ochi K. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol 2013; 195(13): 2959-70.
[http://dx.doi.org/10.1128/JB.00147-13] [PMID: 23603745]
[100]
Hosaka T, Ohnishi-Kameyama M, Muramatsu H, et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 2009; 27(5): 462-4.
[http://dx.doi.org/10.1038/nbt.1538] [PMID: 19396160]
[101]
Li ZY, Bu QT, Wang J, et al. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J Zhejiang Univ Sci B 2019; 20(12): 983-94.
[http://dx.doi.org/10.1631/jzus.B1900344] [PMID: 31749345]
[102]
Lopatniuk M, Myronovskyi M, Nottebrock A, et al. Effect of “ribosome engineering” on the transcription level and production of S. albus indigenous secondary metabolites. Appl Microbiol Biotechnol 2019; 103(17): 7097-110.
[http://dx.doi.org/10.1007/s00253-019-10005-y] [PMID: 31324940]
[103]
Xu Z, Wang Y, Chater KF, et al. Large-scale transposition mutagenesis of Streptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis. Appl Environ Microbiol 2017; 83(6): e02889-16.
[http://dx.doi.org/10.1128/AEM.02889-16] [PMID: 28062460]
[104]
Paddon CJ, Keasling JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 2014; 12(5): 355-67.
[http://dx.doi.org/10.1038/nrmicro3240] [PMID: 24686413]
[105]
Yan F, Burgard C, Popoff A, et al. Synthetic biology approaches and combinatorial biosynthesis towards heterologous lipopeptide production. Chem Sci (Camb) 2018; 9(38): 7510-9.
[http://dx.doi.org/10.1039/C8SC02046A] [PMID: 30319751]
[106]
Yuet KP, Khosla C. Challenges and opportunities for engineering assembly-line polyketide biosynthesis in Escherichia coli. Metab Eng Commun 2019; 10: e00106.
[http://dx.doi.org/10.1016/j.mec.2019.e00106] [PMID: 32547924]
[107]
Casini A, Chang FY, Eluere R, et al. A pressure test to make 10 molecules in 90 days: external evaluation of methods to engineer biology. J Am Chem Soc 2018; 140(12): 4302-16.
[http://dx.doi.org/10.1021/jacs.7b13292] [PMID: 29480720]
[108]
Myronovskyi M, Brötz E, Rosenkränzer B, et al. Generation of new compounds through unbalanced transcription of landomycin A cluster. Appl Microbiol Biotechnol 2016; 100(21): 9175-86.
[http://dx.doi.org/10.1007/s00253-016-7721-3] [PMID: 27412461]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 1
Year: 2021
Published on: 16 February, 2021
Page: [18 - 31]
Pages: 14
DOI: 10.2174/2211550110666210217105112
Price: $65

Article Metrics

PDF: 266
HTML: 2