Evaluating the Risk of Covid-19 Transmission from Conjunctival and Lacrimal Discharge: A Review

Author(s): Shalini Sanyal, Sujata Law*

Journal Name: Current Biotechnology

Volume 10 , Issue 1 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


The ocular surface, which is constantly exposed to the external environment, is one of the most sensitive zones and any complications which have a detrimental impact on it leading to reduced vision and/or blindness, severely impact the quality of life. The most commonly afflicted parts of the eye are the conjunctiva, eyelid, and cornea due to their position. Since the eye is moderately susceptible to microbial infection from bacteria, fungi or even viruses; there has been much speculation about whether or not the novel coronavirus-2 (SARS-CoV-2) can lead to ocular disorders. Given the high rate of transmission for this disease, it is of great importance to evaluate the risk of disease communication from the eye, such as by conjunctival and/ lacrimal discharge.

While there are many articles on the topic exploring the ocular aspect of COVID-19/ SARS-CoV-2 infection; there is a significant volume of data that may or may-not seem contradictory at first glance. This is primarily due to the still-emerging nature of this disease and new data that is being unearthed every day. The problem is compounded by the fact that despite the over-all concordance, the different clinical teams have varying diagnostic criteria. This review attempts to consolidate the data available thus far regarding the risk of COVID-19 transmission from conjunctival/lacrimal discharge apart from the known modes of transmission, thereby allowing us to speculate whether additional protective measures are required to combat the zoonotic coronavirus pandemic currently ravaging the world.

Keywords: Eye, COVID-19, conjunctivitis, SARS-CoV-2, ocular discharge, lacrimal discharge.

Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med 2020; 288(2): 192-206.
[http://dx.doi.org/10.1111/joim.13091] [PMID: 32348588]
Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
World Health Organization; Infection prevention and control during health care when COVID-19 is suspected. 2020.Available from:. https://www. who.int/publications-detail-redirect/10665-331495
Ramesh S, Ramakrishnan R, Bharathi MJ, Amuthan M, Viswanathan S. Prevalence of bacterial pathogens causing ocular infections in South India. Indian J Pathol Microbiol 2010; 53(2): 281-6.
[http://dx.doi.org/10.4103/0377-4929.64336] [PMID: 20551533]
Diriba K, Kassa T, Alemu Y, Bekele S. In Vitro Biofilm Formation and Antibiotic Susceptibility Patterns of Bacteria from Suspected External Eye Infected Patients Attending Ophthalmology Clinic, Southwest Ethiopia. Int J of Microbiol 2020.
Ciaccia L. Fundamentals of inflammation. Yale J Biol Med 2011; 84(1): 64.
Mariotti SP, Pascolini D, Rose-Nussbaumer J. Trachoma: global magnitude of a preventable cause of blindness. Br J Ophthalmol 2009; 93(5): 563-8.
[http://dx.doi.org/10.1136/bjo.2008.148494] [PMID: 19098034]
Bertino JS Jr. Impact of antibiotic resistance in the management of ocular infections: the role of current and future antibiotics. Clin Ophthalmol 2009; 3: 507-21.
[http://dx.doi.org/10.2147/OPTH.S5778] [PMID: 19789660]
Watson S, Cabrera-Aguas M, Khoo P. Common eye infections. Aust Prescr 2018; 41(3): 67-72.
[http://dx.doi.org/10.18773/austprescr.2018.016] [PMID: 29922000]
Sheikh A, Hurwitz B, van Schayck CP, McLean S, Nurmatov U. Antibiotics versus placebo for acute bacterial conjunctivitis. Cochrane Database Syst Rev 2012; (9): CD001211.
[http://dx.doi.org/10.1002/14651858.CD001211.pub3] [PMID: 22972049]
Sharma A, Taniguchi J. Review: Emerging strategies for antimicrobial drug delivery to the ocular surface: Implications for infectious keratitis. Ocul Surf 2017; 15(4): 670-9.
[http://dx.doi.org/10.1016/j.jtos.2017.06.001] [PMID: 28602948]
Green M, Apel A, Stapleton F. Risk factors and causative organisms in microbial keratitis. Cornea 2008; 27(1): 22-7.
[http://dx.doi.org/10.1097/ICO.0b013e318156caf2] [PMID: 18245962]
Thomas PA. Fungal infections of the cornea. Eye 2003; 17(8): 852-62.
[http://dx.doi.org/10.1038/sj.eye.6700557] [PMID: 14631389]
Mader TH, Stulting RD. Viral keratitis. Infect Dis Clin North Am 1992; 6(4): 831-49.
[PMID: 1334105]
Ritterband DC, Friedberg DN. Virus infections of the eye. Rev Med Virol 1998; 8(4): 187-201.
[http://dx.doi.org/10.1002/(SICI)1099-1654(1998100)8:4<187::AID-RMV221>3.0.CO;2-S] [PMID: 10398508]
Nora RL, Putera I, Khalisha DF, Septiana I, Ridwan AS, Sitompul R. Are eyes the windows to COVID-19? Systematic review and meta-analysis. BMJ Open Ophthalmol 2020; 5(1): e000563.
Rouse BT. Virus-induced immunopathology. Adv Virus Res 1996; 47: 353-76.
[http://dx.doi.org/10.1016/S0065-3527(08)60739-3] [PMID: 8895836]
Kuo I C. A Rashomon Moment? Ocular Involvement and COVID-19. Ophthalmology 2020.
Bitko V, Musiyenko A, Barik S. Viral infection of the lungs through the eye. J Virol 2007; 81(2): 783-90.
[http://dx.doi.org/10.1128/JVI.01437-06] [PMID: 17050596]
Olofsson S, Kumlin U, Dimock K, Arnberg N. Avian influenza and sialic acid receptors: more than meets the eye? Lancet Infect Dis 2005; 5(3): 184-8.
[http://dx.doi.org/10.1016/S1473-3099(05)70026-8] [PMID: 15766653]
Lu CW, Liu XF, Jia ZF. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet 2020; 395(10224): e39.
[http://dx.doi.org/10.1016/S0140-6736(20)30313-5] [PMID: 32035510]
Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. The severe acute respiratory syndrome. N Engl J Med 2003; 349(25): 2431-41.
[http://dx.doi.org/10.1056/NEJMra032498] [PMID: 14681510]
Loon SC, Teoh SC, Oon LL, et al. The severe acute respiratory syndrome coronavirus in tears. Br J Ophthalmol 2004; 88(7): 861-3.
[http://dx.doi.org/10.1136/bjo.2003.035931] [PMID: 15205225]
Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm 2020; 28(3): 391-5.
[http://dx.doi.org/10.1080/09273948.2020.1738501] [PMID: 32175797]
Seetharam S. Conjunctivitis May Be The Earliest Presenting Feature Of COVID-19. BMJ Report Available from:. https://medicaldialogues.in/ophthalmology/news/conjunctivitis-may-be-the-earliest-presenting-feature-of-covid-19-says-bmj-report-70072
Xia J, Tong J, Liu M, Shen Y, Guo D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol 2020; 92(6): 589-94.
[http://dx.doi.org/10.1002/jmv.25725] [PMID: 32100876]
Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol 2020; 138(5): 575-8.
[http://dx.doi.org/10.1001/jamaophthalmol.2020.1291] [PMID: 32232433]
Zhou Y, Duan C, Zeng Y, et al. Ocular findings and proportion with conjunctival SARS-COV-2 in COVID-19 patients. Ophthalmology 2020; 127(7): 982-3.
[http://dx.doi.org/10.1016/j.ophtha.2020.04.028] [PMID: 32359840]
Zhang X, Chen X, Chen L, et al. The evidence of SARS-CoV-2 infection on ocular surface.Ocul Surf 2020; 18(3): 360-2.
Daruich A, Martin D, Bremond-Gignac D. Unilateral conjunctivitis as first presentation of Coronavirus Disease 2019 (COVID-19): A telemedicine diagnosis. J Fr Ophtalmol 2020; 43(5): e167-8.
[http://dx.doi.org/10.1016/j.jfo.2020.04.001] [PMID: 32327279]
Jun I S Y, Anderson D E, Kang A E Z, et al. Clinical characteristics of coronavirus disease 2019 in China. N Eng J MED 2020; 382(18): 1708-20.
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
Hui KPY, Cheung MC, Perera RAPM, et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: An analysis in ex-vivo and in-vitro cultures. Lancet Respir Med 2020; 8(7): 687-95.
[http://dx.doi.org/10.1016/S2213-2600(20)30193-4] [PMID: 32386571]
Colavita F, Lapa D, Carletti F, et al. SARS-CoV-2 isolation from ocular secretions of a patient with COVID-19 in Italy with prolonged viral RNA detection. Ann Intern Med 2020; 173(3): 242-3.
[http://dx.doi.org/10.7326/M20-1176] [PMID: 32302380]
Belser JA, Rota PA, Tumpey TM. Ocular tropism of respiratory viruses. Microbiol Mol Biol Rev 2013; 77(1): 144-56.
[http://dx.doi.org/10.1128/MMBR.00058-12] [PMID: 23471620]
Aiello F, Gallo Afflitto G, Mancino R, et al. Coronavirus disease 2019 (SARS-CoV-2) and colonization of ocular tissues and secretions: a systematic review. Eye (Lond) 2020; 34(7): 1206-11.
[http://dx.doi.org/10.1038/s41433-020-0926-9] [PMID: 32424327]
Ferner RE, Murray P, Aronson JK. Spreading SARS-CoV-2 through ocular fluids. Centre for Evidence-Based Medicine 2020.Available from: . https://www.cebm.net/wp-content/uploads/2020/03/Spreading-SARS.pdf
Perlman S. Another decade, another coronavirus. N Engl J Med 2020; 382(8): 760-2.
[http://dx.doi.org/10.1056/NEJMe2001126] [PMID: 31978944]
Coroneo MT. The eye as the discrete but defensible portal of coronavirus infection. Ocul Surf 2020.19: 176-82..
[http://dx.doi.org/10.1016/j.jtos.2020.05.011] [PMID: 32446866]
Zhou L, Xu Z, Castiglione GM, Soiberman US, Eberhart CG, Duh EJ. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. Ocul Surf 2020; 18(4): 537-44.
[http://dx.doi.org/10.1016/j.jtos.2020.06.007] [PMID: 32544566]
Collin J, Queen R, Zerti D, et al. Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. Ocul Surf 2020.19: 190-200..
[PMID: 32502616]
Deng C, Yang Y, Chen H, et al. Low risk of SARS-CoV-2 transmission through the ocular surface. Acta Ophthalmol 2020; 98(7): e926-7.
[http://dx.doi.org/10.1111/aos.14471] [PMID: 32436625]
Bischoff WE, Reid T, Russell GB, Peters TR. Transocular entry of seasonal influenza-attenuated virus aerosols and the efficacy of n95 respirators, surgical masks, and eye protection in humans. J Infect Dis 2011; 204(2): 193-9.
[http://dx.doi.org/10.1093/infdis/jir238] [PMID: 21673029]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 16 February, 2021
Page: [32 - 39]
Pages: 8
DOI: 10.2174/2211550110666210217104806
Price: $65

Article Metrics

PDF: 162