Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis, Antileishmanial Activity and in silico Studies of Aminoguanidine Hydrazones (AGH) and Thiosemicarbazones (TSC) Against Leishmania chagasi Amastigotes

Author(s): Thiago M. de Aquino*, Paulo H. B. França, Érica E. E. S. Rodrigues, Igor. J.S. Nascimento, Paulo F. S. Santos-Júnior, Pedro G. V. Aquino, Mariana S. Santos, Aline C. Queiroz, Morgana V. Araújo, Magna S. Alexandre-Moreira, Raiza R. L. Rodrigues, Klinger A. F. Rodrigues, Johnnatan D. Freitas, Jacques Bricard, Mario R. Meneghetti, Jean-Jacques Bourguignon, Martine Schmitt, Edeildo F. da Silva-Júnior* and João X. de Araújo-Júnior

Volume 18, Issue 2, 2022

Published on: 16 February, 2021

Page: [151 - 169] Pages: 19

DOI: 10.2174/1573406417666210216154428

Price: $65

Abstract

Background: Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Among the four main clinical forms of the disease, visceral leishmaniasis is the most severe, fatal in 95% of cases. The undesired side-effects from first-line chemotherapy and the reported drug resistance search for effective drugs that can replace or supplement those currently used in an urgent need. Aminoguanidine hydrazones (AGH's) have been explored for exhibiting a diverse spectrum of biological activities, in particular the antileishmanial activity of MGBG. The bioisosteres thiosemicarbazones (TSC's) offer a similar biological activity diversity, including antiprotozoal effects against Leishmania species and Trypanosoma cruzi.

Objectives: Considering the impact of leishmaniasis worldwide, this work aimed to design, synthesize, and perform a screening upon L. chagasi amastigotes and for the cytotoxicity of the small "inhouse" library of both AGH and TSC derivatives and their structurally-related compounds.

Methods: A set of AGH's (3-7), TSC's (9, 10), and semicarbazones (11) were initially synthesized. Subsequently, different semi-constrained analogs were designed and also prepared, including thiazolidines (12), dihydrothiazines (13), imidazolines (15), pyrimidines (16, 18) azines (19, 20), and benzotriazepinones (23-25). All intermediates and target compounds were obtained with satisfactory yields and exhibited spectral data consistent with their structures. All final compounds were evaluated against L. chagasi amastigotes and J774.A1 cell line. Molecular docking was performed towards trypanothione reductase using GOLD® software.

Results: The AGH's 3i, 4a, and 5d, and the TSC's 9i, 9k, and 9o were selected as valuable hits. These compounds presented antileishmanial activity compared with pentamidine, showing IC50 values ranged from 0.6 to 7.27 μM, maximal effects up to 55.3%, and satisfactory SI values (ranged from 11 to 87). On the other hand, most of the resulting semi-constrained analogs were found cytotoxic or presented reduced antileishmanial activity. In general, TSC class is more promising than its isosteric AGH analogs, and the beneficial aromatic substituent effects are not similar in both series. In silico studies have suggested that these hits are capable of inhibiting the trypanothione reductase from the amastigote forms.

Conclusion: The promising antileishmanial activity of three AGH’s and three TSC’s was characterized. These compounds presented antileishmanial activity compared with PTD, showing IC50 values ranged from 0.6 to 7.27 μM, and satisfactory SI values. Further pharmacological assays involving other Leishmania strains are in progress, which will help choose the best hits for in vivo experiments.

Keywords: Aminoguanidine hydrazone, thiosemicarbazone, antileishmanial activity, Leishmania chagasi, molecular docking, structure-activity relationship.

Next »
Graphical Abstract
[1]
Yaluff, G.; Vega, C.; Alvarenga, N. In vitro antiprotozoal activity of (S)-cis-Verbenol against Leishmania spp. and Trypanosoma cruzi. Acta Trop., 2017, 168, 41-44.
[http://dx.doi.org/10.1016/j.actatropica.2016.12.013] [PMID: 28062234]
[2]
Foroutan, M.; Khademvatan, S.; Majidiani, H.; Khalkhali, H.; Hedayati-Rad, F.; Khashaveh, S.; Mohammadzadeh, H. Prevalence of Leishmania species in rodents: A systematic review and meta-analysis in Iran. Acta Trop., 2017, 172, 164-172.
[http://dx.doi.org/10.1016/j.actatropica.2017.04.022] [PMID: 28454881]
[3]
Kryshchyshyn, A.; Kaminskyy, D.; Grellier, P.; Lesyk, R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur. J. Med. Chem., 2014, 85, 51-64.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.092] [PMID: 25072876]
[4]
Silva-Júnior, E.F.; Silva, E.P.S.; França, P.H.B.; Silva, J.P.N.; Barreto, E.O.; Silva, E.B.; Ferreira, R.S.; Gatto, C.C.; Moreira, D.R.M.; Siqueira-Neto, J.L.; Mendonça-Júnior, F.J.B.; Lima, M.C.A.; Bortoluzzi, J.H.; Scotti, M.T.; Scotti, L.; Meneghetti, M.R.; Aquino, T.M.; Araújo-Júnior, J.X. Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi. Bioorg. Med. Chem., 2016, 24(18), 4228-4240.
[http://dx.doi.org/10.1016/j.bmc.2016.07.013] [PMID: 27475533]
[5]
WHO. Leishmaniasis. Available from:. https://www.who.int/health-topics/leishmaniasis#tab=tab_1
[6]
Manzano, J.I.; Cochet, F.; Boucherle, B.; Gómez-Pérez, V.; Boumendjel, A.; Gamarro, F.; Peuchmaur, M. Arylthiosemicarbazones as antileishmanial agents. Eur. J. Med. Chem., 2016, 123, 161-170.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.014] [PMID: 27475107]
[7]
Metzdorf, I.P.; da Costa Lima, M.S.; de Fatima Cepa Matos, M.; de Souza Filho, A.F.; de Souza Tsujisaki, R.A.; Franco, K.G.; Shapiro, J.T.; de Almeida Borges, F. Molecular characterization of Leishmania infantum in domestic cats in a region of Brazil endemic for human and canine visceral leishmaniasis. Acta Trop., 2017, 166, 121-125.
[http://dx.doi.org/10.1016/j.actatropica.2016.11.013] [PMID: 27851895]
[8]
Veiga, A.; Albuquerque, K.; Corrêa, M.E.; Brigido, H.; Silva, E. Silva, J.; Campos, M.; Silveira, F.; Santos, L.; Dolabela, M. Leishmania amazonensis and Leishmania chagasi: In vitro leishmanicide activity of Virola surinamensis (rol.) warb. Exp. Parasitol., 2017, 175, 68-73.
[http://dx.doi.org/10.1016/j.exppara.2017.02.005] [PMID: 28174103]
[9]
Shirian, S.; Oryan, A.; Hatam, G-R.; Panahi, S.; Daneshbod, Y. Comparison of conventional, molecular, and immunohistochemical methods in diagnosis of typical and atypical cutaneous leishmaniasis. Arch. Pathol. Lab. Med., 2014, 138(2), 235-240.
[http://dx.doi.org/10.5858/arpa.2013-0098-OA] [PMID: 24476521]
[10]
Shafiei, R.; Mohebali, M.; Akhoundi, B.; Galian, M.S.; Kalantar, F.; Ashkan, S.; Fata, A.; Farash, B.R.; Ghasemian, M. Emergence of co-infection of visceral leishmaniasis in HIV-positive patients in northeast Iran: a preliminary study. Travel Med. Infect. Dis., 2014, 12(2), 173-178.
[http://dx.doi.org/10.1016/j.tmaid.2013.09.001] [PMID: 24100200]
[11]
Hefnawy, A.; Berg, M.; Dujardin, J-C.; De Muylder, G. Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends Parasitol., 2017, 33(3), 162-174.
[http://dx.doi.org/10.1016/j.pt.2016.11.003] [PMID: 27993477]
[12]
Abamor, E.S.; Allahverdiyev, A.M.; Bagirova, M.; Rafailovich, M. Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect. Acta Trop., 2017, 169, 30-42.
[http://dx.doi.org/10.1016/j.actatropica.2017.01.005] [PMID: 28111133]
[13]
de Melos, J.L.R.; Torres-Santos, E.C.; Faiões, V. dos S. Del Cistia, Cde.N.; Sant’Anna, C.M.; Rodrigues-Santos, C.E.; Echevarria, A. Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis. Eur. J. Med. Chem., 2015, 103, 409-417.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.009] [PMID: 26375353]
[14]
WHO. Accelerated Plan for Kala-Azar Elimination - Directorate National Vector Borne Disease Control Programme. 2017. Available from:. https://www.who.int/leishmaniasis/resources/Accelerated_plan_for_Kala-azar_Elimination_2017/en/
[15]
Akbari, M.; Oryan, A.; Hatam, G. Application of nanotechnology in treatment of leishmaniasis: A Review. Acta Trop., 2017, 172, 86-90.
[http://dx.doi.org/10.1016/j.actatropica.2017.04.029] [PMID: 28460833]
[16]
Rochette, A.; Raymond, F.; Corbeil, J.; Ouellette, M.; Papadopoulou, B. Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol. Biochem. Parasitol., 2009, 165(1), 32-47.
[http://dx.doi.org/10.1016/j.molbiopara.2008.12.012] [PMID: 19393160]
[17]
Shokri, A.; Fakhar, M.; Teshnizi, S.H. Canine visceral leishmaniasis in Iran: A systematic review and meta-analysis. Acta Trop., 2017, 165, 76-89.
[http://dx.doi.org/10.1016/j.actatropica.2016.08.020] [PMID: 27570207]
[18]
Sundar, S.; Chatterjee, M. Visceral Leishmaniasis - current therapeutic modalities. Indian J. Med. Res., 2006, 123(3), 345-352.
[PMID: 16778315]
[19]
Shakya, N.; Sane, S.A.; Gupta, S. Antileishmanial efficacy of fluconazole and miltefosine in combination with an immunomodulator--picroliv. Parasitol. Res., 2011, 108(4), 793-800.
[http://dx.doi.org/10.1007/s00436-010-2230-2] [PMID: 21212980]
[20]
Peña, I.; Pilar Manzano, M.; Cantizani, J.; Kessler, A.; Alonso-Padilla, J.; Bardera, A.I.; Alvarez, E.; Colmenarejo, G.; Cotillo, I.; Roquero, I.; de Dios-Anton, F.; Barroso, V.; Rodriguez, A.; Gray, D.W.; Navarro, M.; Kumar, V.; Sherstnev, A.; Drewry, D.H.; Brown, J.R.; Fiandor, J.M.; Julio Martin, J. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci. Rep., 2015, 5, 8771.
[http://dx.doi.org/10.1038/srep08771] [PMID: 25740547]
[21]
Khare, S.; Nagle, A.S.; Biggart, A.; Lai, Y.H.; Liang, F.; Davis, L.C.; Barnes, S.W.; Mathison, C.J.N.; Myburgh, E.; Gao, M-Y.; Gillespie, J.R.; Liu, X.; Tan, J.L.; Stinson, M.; Rivera, I.C.; Ballard, J.; Yeh, V.; Groessl, T.; Federe, G.; Koh, H.X.Y.; Venable, J.D.; Bursulaya, B.; Shapiro, M.; Mishra, P.K.; Spraggon, G.; Brock, A.; Mottram, J.C.; Buckner, F.S.; Rao, S.P.S.; Wen, B.G.; Walker, J.R.; Tuntland, T.; Molteni, V.; Glynne, R.J.; Supek, F. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature, 2016, 537(7619), 229-233.
[http://dx.doi.org/10.1038/nature19339] [PMID: 27501246]
[22]
da Silva, A.C.; Dos Santos, T.A.R.; da Silva, I.V.B.; de Oliveira, M.V.G.; Moreira, D.R.M.; Leite, A.C.L.; Pereira, V.R.A. Aryl thiosemicarbazones: In vitro and immunomodulatory activities against L. amazonensis. Exp. Parasitol., 2017, 177, 57-65.
[http://dx.doi.org/10.1016/j.exppara.2017.04.003] [PMID: 28433563]
[23]
Chávez-Fumagalli, M.A.; Schneider, M.S.; Lage, D.P.; Tavares, G.S.V.; Mendonça, D.V.C.; Santos, T.T.O.; Pádua, R.M.; Machado-de-Ávila, R.A.; Leite, J.P.V.; Coelho, E.A.F. A computational approach using bioinformatics to screening drug targets for Leishmania infantum species. Evid. Based Complement. Alternat. Med., 2018, 20186813467
[http://dx.doi.org/10.1155/2018/6813467] [PMID: 29785196]
[24]
França, P.H.B.; Da Silva-Júnior, E.F.; Aquino, P.G.V.; Santana, A.E.G.; Ferro, J.N.S.; De Oliveira Barreto, E.; Do Ó Pessoa, C.; Meira, A.S.; De Aquino, T.M.; Alexandre-Moreira, M.S.; Schmitt, M.; De Araújo-Júnior, J.X. Preliminary in vitro evaluation of the anti-proliferative activity of guanylhydrazone derivatives. Acta Pharm., 2016, 66(1), 129-137.
[http://dx.doi.org/10.1515/acph-2016-0015] [PMID: 26959549]
[25]
Schmidtchen, F.P.; Berger, M. Artificial organic host molecules for anions. Chem. Rev., 1997, 97(5), 1609-1646.
[http://dx.doi.org/10.1021/cr9603845] [PMID: 11851460]
[26]
Lange, U.E.; Baucke, D.; Hornberger, W.; Mack, H.; Seitz, W.; Höffken, H.W. D-Phe-Pro-Arg type thrombin inhibitors: unexpected selectivity by modification of the P1 moiety. Bioorg. Med. Chem. Lett., 2003, 13(12), 2029-2033.
[http://dx.doi.org/10.1016/S0960-894X(03)00347-0] [PMID: 12781189]
[27]
Sundberg, R.J.; Dahlhausen, D.J.; Manikumar, G.; Mavunkel, B.; Biswas, A.; Srinivasan, V.; Musallam, H.A.; Reid, W.A., Jr; Ager, A.L. Cationic antiprotozoal drugs. Trypanocidal activity of 2-(4′-formylphenyl)imidazo[1,2-a]pyridinium guanylhydrazones and related derivatives of quaternary heteroaromatic compounds. J. Med. Chem., 1990, 33(1), 298-307.
[http://dx.doi.org/10.1021/jm00163a049] [PMID: 2296025]
[28]
Bachrach, U.; Brem, S.; Wertman, S.B.; Schnur, L.F.; Greenblatt, C.L. Leishmania spp.: effect of inhibitors on growth and on polyamine and macromolecular syntheses. Exp. Parasitol., 1979, 48(3), 464-470.
[http://dx.doi.org/10.1016/0014-4894(79)90131-0] [PMID: 510448]
[29]
Roberts, S.C.; Scott, J.; Gasteier, J.E.; Jiang, Y.; Brooks, B.; Jardim, A.; Carter, N.S.; Heby, O.; Ullman, B. S-adenosylmethionine decarboxylase from Leishmania donovani. Molecular, genetic, and biochemical characterization of null mutants and overproducers. J. Biol. Chem., 2002, 277(8), 5902-5909.
[http://dx.doi.org/10.1074/jbc.M110118200] [PMID: 11734561]
[30]
Mukhopadhyay, R.; Madhubala, R. Antileishmanial activity of berenil and methylglyoxal bis (guanylhydrazone) and its correlation with S-adenosylmethionine decarboxylase and polyamines. Int. J. Biochem. Cell Biol., 1995, 27(1), 55-59.
[http://dx.doi.org/10.1016/1357-2725(95)93432-P] [PMID: 7757882]
[31]
Siles, R.; Chen, S.E.; Zhou, M.; Pinney, K.G.; Trawick, M.L. Design, synthesis, and biochemical evaluation of novel cruzain inhibitors with potential application in the treatment of Chagas’ disease. Bioorg. Med. Chem. Lett., 2006, 16(16), 4405-4409.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.041] [PMID: 16781147]
[32]
Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem., 2002, 45(13), 2695-2707.
[http://dx.doi.org/10.1021/jm010459j] [PMID: 12061873]
[33]
Fred, C.E.; Xiaohui, D.; Chun, G.; James, M.H. hio semicarbazone and semicarbozone inhibitors of cysteine proteases and methods of their use. US7495023,, 2005.
[34]
Caputto, M.E.; Ciccarelli, A.; Frank, F.; Moglioni, A.G.; Moltrasio, G.Y.; Vega, D.; Lombardo, E.; Finkielsztein, L.M. Synthesis and biological evaluation of some novel 1-indanone thiazolylhydrazone derivatives as anti-Trypanosoma cruzi agents. Eur. J. Med. Chem., 2012, 55, 155-163.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.013] [PMID: 22840495]
[35]
Schröder, J.; Noack, S.; Marhöfer, R.J.; Mottram, J.C.; Coombs, G.H.; Selzer, P.M. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB. PLoS One, 2013, 8(10)e77460
[http://dx.doi.org/10.1371/journal.pone.0077460] [PMID: 24146999]
[36]
Britta, E.A.; Scariot, D.B.; Falzirolli, H.; Ueda-Nakamura, T.; Silva, C.C.; Filho, B.P.D.; Borsali, R.; Nakamura, C.V. Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol., 2014, 14, 236.
[http://dx.doi.org/10.1186/s12866-014-0236-0] [PMID: 25253283]
[37]
Britta, E.A.; Scariot, D.B.; Falzirolli, H.; da Silva, C.C.; Ueda-Nakamura, T.; Dias Filho, B.P.; Borsali, R.; Nakamura, C.V. 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi. Parasitology, 2015, 142(7), 978-988.
[http://dx.doi.org/10.1017/S0031182015000141] [PMID: 25711881]
[38]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[39]
Hussain, R.F.; Nouri, A.M.E.; Oliver, R.T.D. A new approach for measurement of cytotoxicity using colorimetric assay. J. Immunol. Methods, 1993, 160(1), 89-96.
[http://dx.doi.org/10.1016/0022-1759(93)90012-V] [PMID: 8450240]
[40]
Nunes, M.P.; Cysne-Finkelstein, L.; Monteiro, B.C.; de Souza, D.M.; Gomes, N.A.; DosReis, G.A. CD40 signaling induces reciprocal outcomes in Leishmania-infected macrophages; roles of host genotype and cytokine milieu. Microbes Infect., 2005, 7(1), 78-85.
[http://dx.doi.org/10.1016/j.micinf.2004.08.022] [PMID: 15716074]
[41]
Thompson, M. ArgusLab. 2004. Available from:, http://www.arguslab.com
[42]
Cambridge Crystallographic Data Centre.. GOLD User Guide A Component of the GOLD Suite., 2015, 1-235.
[43]
Lozano Untiveros, K.; da Silva, E.G.; de Abreu, F.C.; da Silva-Júnior, E.F.; de Araújo-Junior, J.X.; Mendoça de Aquino, T.; Armas, S.M.; de Moura, R.O.; Mendonça-Junior, F.J.B.; Serafim, V.L.; Chumbimuni-Torres, K. An electrochemical biosensor based on Hairpin-DNA modified gold electrode for detection of DNA damage by a hybrid cancer drug intercalation. Biosens. Bioelectron., 2019, 133, 160-168.
[http://dx.doi.org/10.1016/j.bios.2019.02.071] [PMID: 30933710]
[44]
Santana, C.C.; Silva-Júnior, E.F.; Santos, J.C.N.; Rodrigues, É.E.D.S.; da Silva, I.M.; Araújo-Júnior, J.X.; do Nascimento, T.G.; Oliveira Barbosa, L.A.; Dornelas, C.B.; Figueiredo, I.M.; Santos, J.C.C.; Grillo, L.A.M. Evaluation of guanylhydrazone derivatives as inhibitors of Candida rugosa digestive lipase: Biological, biophysical, theoretical studies and biotechnological application. Bioorg. Chem., 2019, 87, 169-180.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.030] [PMID: 30889500]
[45]
Roque Marques, K.M.; do Desterro, M.R.; de Arruda, S.M.; de Araújo Neto, L.N.; do Carmo Alves de Lima, M.; de Almeida, S.M.V.; da Silva, E.C.D.; de Aquino, T.M.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X. de M Silva, M.; de A Dantas, M.D.; Santos, J.C.C.; Figueiredo, I.M.; Bazin, M.A.; Marchand, P.; da Silva, T.G.; Mendonça Junior, F.J.B. 5-Nitro-thiophene-thiosemicarbazone derivatives present antitumor activity mediated by apoptosis and DNA intercalation. Curr. Top. Med. Chem., 2019, 19(13), 1075-1091.
[http://dx.doi.org/10.2174/1568026619666190621120304] [PMID: 31223089]
[46]
Marques, R.A.; Gomes, A.O.C.V.; de Brito, M.V.; dos Santos, A.L.P.; da Silva, G.S.; de Lima, L.B.; Nunes, F.M.; de Mattos, M.C.; de Oliveira, F.C.E.; do Ó Pessoa, C.; de Moraes, M.O.; de Fátima, Â.; Franco, L.L.; Silva, M.D.M.; Dantas, M.D.D.A.; Santos, J.C.C.; Figueiredo, I.M.; da Silva-Júnior, E.F.; de Aquino, T.M.; de Araújo-Júnior, J.X.; de Oliveira, M.C.F.; Leslie Gunatilaka, A.A. Annonalide and derivatives: semisynthesis, cytotoxic activities and studies on interaction of annonalide with DNA. J. Photochem. Photobiol. B Biol., 2018, 179.,
[47]
de M. Silva, M.; Macedo, T.S.; Teixeira, H.M.P.; Moreira, D.R.M.; Soares, M.B.P.; da C. Pereira, A.L.; de L. Serafim, V.; Mendonça-Júnior, F.J.B.; do Carmo A. de Lima, M.; de Moura, R.O.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X.; de A. Dantas, M.D.; de O. O. Nascimento, E.; Maciel, T.M.S.; de Aquino, T.M.; Figueiredo, I.M.; Santos, J.C.C. Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: proposing a possible mechanism of action. J. Photochem. Photobiol.. B. Biol., 2018, 189, 165-175.
[48]
da Silva-Junior, E.F.; Barcellos Franca, P.H.; Ribeiro, F.F.; Bezerra Mendonca-Junior, F.J.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Molecular Docking Studies Applied to a Dataset of Cruzain Inhibitors. Curr. Comput. Aided. Drug Des., 2017, 14, 68-78.
[49]
Silva-Junior, E.F.; Barcellos Franca, P.H.; Quintans-Junior, L.J.; Mendonca-Junior, F.J.B.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Dynamic simulation, docking and DFT studies applied to a set of anti-acetylcholinesterase inhibitors in the enzyme β-secretase (BACE-1): An important therapeutic target in Alzheimer’s disease. Curr Comput Aided Drug Des, 2017, 13(4), 266-274.
[http://dx.doi.org/10.2174/1573409913666170406150905] [PMID: 28382866]
[50]
Dantas, N.; de Aquino, T.M.; de Araújo-Júnior, J.X.; da Silva-Júnior, E.; Gomes, E.A.; Gomes, A.A.S.; Siqueira-Júnior, J.P.; Mendonça, Junior F.J.B. Aminoguanidine hydrazones (AGH’s) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump. Chem. Biol. Interact., 2018, 280, 8-14.
[http://dx.doi.org/10.1016/j.cbi.2017.12.009] [PMID: 29208359]
[51]
Hammoud, H.; Elhabazi, K.; Quillet, R.; Bertin, I.; Utard, V.; Laboureyras, E.; Bourguignon, J-J.; Bihel, F.; Simonnet, G.; Simonin, F.; Schmitt, M. Aminoguanidine hydrazone derivatives as nonpeptide NPFF1 receptor antagonists reverse opioid induced hyperalgesia. ACS Chem. Neurosci., 2018, 9(11), 2599-2609.
[http://dx.doi.org/10.1021/acschemneuro.8b00099] [PMID: 29727163]
[52]
Pape, V.F.S.; Tóth, S.; Füredi, A.; Szebényi, K.; Lovrics, A.; Szabó, P.; Wiese, M.; Szakács, G. Design, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. Eur. J. Med. Chem., 2016, 117, 335-354.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.078] [PMID: 27161177]
[53]
Patel, H.D.; Divatia, S.M.; Clercq, E. Synthesis of some novel thiosemicarbazone derivatives having anti-cancer, Anti-HIV as well as anti-bacterial activity. Indian J. Chem., 2013, 52B, 535-545.
[54]
Alves, M.A.; de Queiroz, A.C.; Alexandre-Moreira, M.S.; Varela, J.; Cerecetto, H.; González, M.; Doriguetto, A.C.; Landre, I.M.; Barreiro, E.J.; Lima, L.M. Design, synthesis and in vitro trypanocidal and leishmanicidal activities of novel semicarbazone derivatives. Eur. J. Med. Chem., 2015, 100, 24-33.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.046] [PMID: 26069927]
[55]
Divar, M.; Zomorodian, K.; Sabet, R.; Moeini, M.; Khabnadideh, S. An efficient method for synthesis of some novel spirooxindole-4H-pyran derivatives. Polycycl. Aromat. Compd., 2019, 1-14.
[http://dx.doi.org/10.1080/10406638.2019.1686405]
[56]
Turcano, L.; Torrente, E.; Missineo, A.; Andreini, M.; Gramiccia, M.; Di Muccio, T.; Genovese, I.; Fiorillo, A.; Harper, S.; Bresciani, A.; Colotti, G.; Ilari, A. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. PLoS Negl. Trop. Dis., 2018, 12(11)e0006969
[http://dx.doi.org/10.1371/journal.pntd.0006969] [PMID: 30475811]
[57]
Chibale, K.; Musonda, C.C. The synthesis of parasitic cysteine protease and trypanothione reductase inhibitors. Curr. Med. Chem., 2003, 10(18), 1863-1889.
[http://dx.doi.org/10.2174/0929867033456963] [PMID: 12871109]
[58]
Romero, A.H.; Medina, R.; Alcala, A.; García-Marchan, Y.; Núñez-Duran, J.; Leañez, J.; Mijoba, A.; Ciangherotti, C.; Serrano-Martín, X.; López, S.E. Design, synthesis, structure-activity relationship and mechanism of action studies of a series of 4-chloro-1-phthalazinyl hydrazones as a potent agent against Leishmania braziliensis. Eur. J. Med. Chem., 2017, 127, 606-620.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.022] [PMID: 28119201]
[59]
Romero, A.H.; Rodríguez, J.; García-Marchan, Y.; Leañez, J.; Serrano-Martín, X.; López, S.E. Aryl- or heteroaryl-based hydrazinylphthalazine derivatives as new potential antitrypanosomal agents. Bioorg. Chem., 2017, 72, 51-56.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.008] [PMID: 28359970]
[60]
Verma, R.K.; Prajapati, V.K.; Verma, G.K.; Chakraborty, D.; Sundar, S.; Rai, M.; Dubey, V.K.; Singh, M.S. Molecular docking and in vitro antileishmanial evaluation of chromene-2-thione Analogues. ACS Med. Chem. Lett., 2012, 3(3), 243-247.
[http://dx.doi.org/10.1021/ml200280r] [PMID: 24936236]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy