Phosphoserine Aminotransferase has Conserved Active Site from Microbes to Higher Eukaryotes with Minor Deviations

Author(s): Rohit Kumar Singh, Devbrat Kumar, Samudrala Gourinath*

Journal Name: Protein & Peptide Letters

Volume 28 , Issue 9 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Serine is ubiquitously synthesized in all living organisms from the glycolysis intermediate 3-phosphoglycerate (PGA) by phosphoserine biosynthetic pathway, consisting of three different enzymes, namely: 3-phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Any functional defect or mutation in these enzymes may cause deliberating conditions, such as colon cancer progression and chemoresistance in humans. Phosphoserine aminotransferase (PSAT) is the second enzyme in this pathway that converts phosphohydroxypyruvate (PHP) to O-phospho-L-serine (OPLS).

Humans encode two isoforms of this enzyme: PSAT1 and PSAT2. PSAT1 exists as a functional dimer, where each protomer has a large and a small domain; each large domain contains a Lys residue that covalently binds PLP. The PLP-binding site of human PSAT1 and most of its active site residues are highly conserved in all known PSAT structures except for Cys-80. Interestingly, Two PSAT structures from different organisms show halide binding near their active site. While the human PSAT1 shows a water molecule at this site with different interacting residues, suggesting the inability of halide binding in the human enzyme. Analysis of the human PSAT1 structure showed a big patch of positive charge around the active site, in contrast to the bacterial PSATs. Compared to human PSAT1, the PSAT2 isoform lacks 46 residues at its C-terminal tail. This tail region is present at the opening of the active site as observed in the other PSAT structures. Further structural work on human PSAT2 may reveal the functional importance of these 46 residues.

Keywords: Serine, serine disorders, enzymes, isoforms, structures, halide, PLP.

[1]
Greenberg, D.M.; Ichihara, A. Further studies on the pathway of serine formation from carbohydrate. J. Biol. Chem., 1957, 224(1), 331-340.[PMID: 13398409]
[2]
Walsh, D.A.; Sallach, H.J. Comparative studies on the pathways for serine biosynthesis in animal tissues. J. Biol. Chem., 1966, 241(17), 4068-4076.[PMID: 5920812]
[3]
Tabatabaie, L.; Klomp, L.W.; Berger, R.; de Koning, T.J. L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol. Genet. Metab., 2010, 99(3), 256-262.[http://dx.doi.org/10.1016/j.ymgme.2009.10.012] [PMID: 19963421]
[4]
Sallach, H.J. Formation of serine hydroxypryuvate and L-alanine. J. Biol. Chem., 1956, 223(2), 1101-1108.[PMID: 13385257]
[5]
Snell, K. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv. Enzyme Regul., 1984, 22, 325-400.[http://dx.doi.org/10.1016/0065-2571(84)90021-9] [PMID: 6089514]
[6]
Giafi, C.F.; Rumsby, G. Kinetic analysis and tissue distribution of human D-glycerate dehydrogenase/glyoxylate reductase and its relevance to the diagnosis of primary hyperoxaluria type 2. Ann. Clin. Biochem., 1998, 35(Pt 1), 104-109.[http://dx.doi.org/10.1177/000456329803500114] [PMID: 9463747]
[7]
Huang, T.; Yang, W.; Pereira, A.C.; Craigen, W.J.; Shih, V.E. Cloning and characterization of a putative human d-2-hydroxyacid dehydrogenase in chromosome 9q. Biochem. Biophys. Res. Commun., 2000, 268(2), 298-301.[http://dx.doi.org/10.1006/bbrc.2000.2122] [PMID: 10679197]
[8]
Pizer, L.I. The pathway and control of serine biosynthesis in Escherichia coli. J. Biol. Chem., 1963, 238(12), 3934-3944.[PMID: 14086727]
[9]
Umbarger, H.E.; Umbarger, M.A.; Siu, P.M. Biosynthesis of serine in Escherichia coli and Salmonella typhimurium. J. Bacteriol., 1963, 85(6), 1431-1439.[http://dx.doi.org/10.1128/JB.85.6.1431-1439.1963] [PMID: 14047241]
[10]
McKitrick, J.C.; Pizer, L.I. Regulation of phosphoglycerate dehydrogenase levels and effect on serine synthesis in Escherichia coli K-12. J. Bacteriol., 1980, 141(1), 235-245.[http://dx.doi.org/10.1128/JB.141.1.235-245.1980] [PMID: 6986358]
[11]
Reynolds, P.H.; Blevins, D.G. Phosphoserine aminotransferase in soybean root nodules: demonstration and localization. Plant Physiol., 1986, 81(1), 293-296.[http://dx.doi.org/10.1104/pp.81.1.293] [PMID: 16664792]
[12]
Stolz, M.; Dörnemann, D. Purification, characterization and N-terminal sequence of phosphoserine aminotransferase from the green alga Scenedesmus obliquus, mutant C-2 A′. Z. Natforsch. C J. Biosci., 1994, 49(1-2), 63-69.[http://dx.doi.org/10.1515/znc-1994-1-211] [PMID: 8148010]
[13]
Ho, C-L.; Noji, M.; Saito, M.; Saito, K. Regulation of serine biosynthesis in Arabidopsis. Crucial role of plastidic 3-phosphoglycerate dehydrogenase in non-photosynthetic tissues. J. Biol. Chem., 1999, 274(1), 397-402.[http://dx.doi.org/10.1074/jbc.274.1.397] [PMID: 9867856]
[14]
Pizer, L.I.; Potochny, M.L. Nutritional and regulatory aspects of serine metabolism in Escherichia coli. J. Bacteriol., 1964, 88(3), 611-619.[http://dx.doi.org/10.1128/JB.88.3.611-619.1964] [PMID: 14208496]
[15]
Ali, V.; Hashimoto, T.; Shigeta, Y.; Nozaki, T. Molecular and biochemical characterization of D-phosphoglycerate dehydrogenase from Entamoeba histolytica. A unique enteric protozoan parasite that possesses both phosphorylated and nonphosphorylated serine metabolic pathways. Eur. J. Biochem., 2004, 271(13), 2670-2681.[http://dx.doi.org/10.1111/j.1432-1033.2004.04195.x] [PMID: 15206932]
[16]
Singh, R.K.; Raj, I.; Pujari, R.; Gourinath, S. Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine. FEBS J., 2014, 281(24), 5498-5512.[http://dx.doi.org/10.1111/febs.13091] [PMID: 25294608]
[17]
Schuller, D.J.; Grant, G.A.; Banaszak, L.J. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat. Struct. Biol., 1995, 2(1), 69-76.[http://dx.doi.org/10.1038/nsb0195-69] [PMID: 7719856]
[18]
Sugimoto, E.; Pizer, L.I. The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. J. Biol. Chem., 1968, 243(9), 2081-2089.[PMID: 4384871]
[19]
Dey, S.; Hu, Z.; Xu, X.L.; Sacchettini, J.C.; Grant, G.A. D-3-phosphoglycerate dehydrogenase from Mycobacterium tuberculosis is a link between the E. coli and mammalian enzymes. J. Biol. Chem., 2005, 280(15), 14884-14891.[http://dx.doi.org/10.1074/jbc.M414488200]
[20]
Dey, S.; Burton, R.L.; Grant, G.A.; Sacchettini, J.C. Structural analysis of substrate and effector binding in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Biochemistry, 2008, 47(32), 8271-8282.[http://dx.doi.org/10.1021/bi800212b] [PMID: 18627175]
[21]
Achouri, Y.; Rider, M.H.; Schaftingen, E.V.; Robbi, M. Cloning, sequencing and expression of rat liver 3-phosphoglycerate dehydrogenase. Biochem. J., 1997, 323(Pt 2), 365-370.[http://dx.doi.org/10.1042/bj3230365] [PMID: 9163325]
[22]
Walsh, D.A.; Sallach, H.J. Purification and properties of chicken liver D-3-phosphoglycerate dehydrogenase. Biochemistry, 1965, 4(6), 1076-1085.[http://dx.doi.org/10.1021/bi00882a015] [PMID: 4378782]
[23]
Slaughter, J.C.; Davies, D.D. The isolation and characterization of 3-phosphoglycerate dehydrogenase from peas. Biochem. J., 1968, 109(5), 743-748.[http://dx.doi.org/10.1042/bj1090743] [PMID: 4386930]
[24]
Rosenblum, I.Y.; Sallach, H.J. Purification and properties of wheat germ D-3-phosphoglycerate dehydrogenase. Arch. Biochem. Biophys., 1970, 137(1), 91-101.[http://dx.doi.org/10.1016/0003-9861(70)90414-5] [PMID: 4392218]
[25]
Gardner, M.J.; Shallom, S.J.; Carlton, J.M.; Salzberg, S.L.; Nene, V.; Shoaibi, A.; Ciecko, A.; Lynn, J.; Rizzo, M.; Weaver, B.; Jarrahi, B.; Brenner, M.; Parvizi, B.; Tallon, L.; Moazzez, A.; Granger, D.; Fujii, C.; Hansen, C.; Pederson, J.; Feldblyum, T.; Peterson, J.; Suh, B.; Angiuoli, S.; Pertea, M.; Allen, J.; Selengut, J.; White, O.; Cummings, L.M.; Smith, H.O.; Adams, M.D.; Venter, J.C.; Carucci, D.J.; Hoffman, S.L.; Fraser, C.M. Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and 14. Nature, 2002, 419(6906), 531-534.[http://dx.doi.org/10.1038/nature01094] [PMID: 12368868]
[26]
Ersfeld, K. Genomes and genome projects of protozoan parasites. Curr. Issues Mol. Biol., 2003, 5(3), 61-74.[PMID: 12866830]
[27]
Müller, S.; Liebau, E.; Walter, R.D.; Krauth-Siegel, R.L. Thiol-based redox metabolism of protozoan parasites. Trends Parasitol., 2003, 19(7), 320-328.[http://dx.doi.org/10.1016/S1471-4922(03)00141-7] [PMID: 12855383]
[28]
Singh, R.K.; Tomar, P.; Dharavath, S.; Kumar, S.; Gourinath, S. N-terminal residues are crucial for quaternary structure and active site conformation for the phosphoserine aminotransferase from enteric human parasite E. histolytica. Int. J. Biol. Macromol., 2019, 132, 1012-1023.[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.027] [PMID: 30959130]
[29]
Kumari, P.; Babuta, M.; Bhattacharya, A.; Gourinath, S. Structural and functional characterisation of phosphoserine phosphatase, that plays critical role in the oxidative stress response in the parasite Entamoeba histolytica. J. Struct. Biol., 2019, 206(2), 254-266.[http://dx.doi.org/10.1016/j.jsb.2019.03.012] [PMID: 30935984]
[30]
Singh, R.K.; Mazumder, M.; Sharma, B.; Gourinath, S. Structural investigation and inhibitory response of halide on phosphoserine aminotransferase from Trichomonas vaginalis. Biochim. Biophys. Acta, 2016, 1860(7), 1508-1518.[http://dx.doi.org/10.1016/j.bbagen.2016.04.013] [PMID: 27102280]
[31]
Jaeken, J.; Detheux, M.; Van Maldergem, L.; Frijns, J.P.; Alliet, P.; Foulon, M.; Carchon, H.; Van Schaftingen, E. 3-Phosphoglycerate dehydrogenase deficiency and 3-phosphoserine phosphatase deficiency: inborn errors of serine biosynthesis. J. Inherit. Metab. Dis., 1996, 19(2), 223-226.[http://dx.doi.org/10.1007/BF01799435] [PMID: 8739971]
[32]
Moriyoshi, K.; Masu, M.; Ishii, T.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Molecular cloning and characterization of the rat NMDA receptor. Nature, 1991, 354(6348), 31-37.[http://dx.doi.org/10.1038/354031a0] [PMID: 1834949]
[33]
Mothet, J-P.; Parent, A.T.; Wolosker, H.; Brady, R.O., Jr; Linden, D.J.; Ferris, C.D.; Rogawski, M.A.; Snyder, S.H. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA, 2000, 97(9), 4926-4931.[http://dx.doi.org/10.1073/pnas.97.9.4926] [PMID: 10781100]
[34]
Li, F.; Tsien, J.Z. Memory and the NMDA receptors. N. Engl. J. Med., 2009, 361(3), 302-303.[http://dx.doi.org/10.1056/NEJMcibr0902052] [PMID: 19605837]
[35]
El-Hattab, A.W. Serine biosynthesis and transport defects. Mol. Genet. Metab., 2016, 118(3), 153-159.[http://dx.doi.org/10.1016/j.ymgme.2016.04.010] [PMID: 27161889]
[36]
Mattaini, K.R.; Sullivan, M.R.; Vander Heiden, M.G. The importance of serine metabolism in cancer. J. Cell Biol., 2016, 214(3), 249-257.[http://dx.doi.org/10.1083/jcb.201604085] [PMID: 27458133]
[37]
Baek, J.Y.; Jun, D.Y.; Taub, D.; Kim, Y.H. Characterization of human phosphoserine aminotransferase involved in the phosphorylated pathway of L-serine biosynthesis. Biochem. J., 2003, 373(Pt 1), 191-200.[http://dx.doi.org/10.1042/bj20030144] [PMID: 12633500]
[38]
Ojala, P.; Sundström, J.; Grönroos, J.M.; Virtanen, E.; Talvinen, K.; Nevalainen, T.J. mRNA differential display of gene expression in colonic carcinoma. Electrophoresis, 2002, 23(11), 1667-1676.[http://dx.doi.org/10.1002/1522-2683(200206)23:11<1667::AID-ELPS1667>3.0.CO;2-0] [PMID: 12179986]
[39]
Friederichs, J.; Rosenberg, R.; Mages, J.; Janssen, K-P.; Maeckl, C.; Nekarda, H.; Holzmann, B.; Siewert, J.R. Gene expression profiles of different clinical stages of colorectal carcinoma: toward a molecular genetic understanding of tumor progression. Int. J. Colorectal Dis., 2005, 20(5), 391-402.[http://dx.doi.org/10.1007/s00384-004-0722-1] [PMID: 15883783]
[40]
Martens, J.W.; Nimmrich, I.; Koenig, T.; Look, M.P.; Harbeck, N.; Model, F.; Kluth, A.; Bolt-de Vries, J.; Sieuwerts, A.M.; Portengen, H.; Meijer-Van Gelder, M.E.; Piepenbrock, C.; Olek, A.; Höfler, H.; Kiechle, M.; Klijn, J.G.; Schmitt, M.; Maier, S.; Foekens, J.A. Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Res., 2005, 65(10), 4101-4117.[http://dx.doi.org/10.1158/0008-5472.CAN-05-0064] [PMID: 15899800]
[41]
Hart, C.E.; Race, V.; Achouri, Y.; Wiame, E.; Sharrard, M.; Olpin, S.E.; Watkinson, J.; Bonham, J.R.; Jaeken, J.; Matthijs, G.; Van Schaftingen, E. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am. J. Hum. Genet., 2007, 80(5), 931-937.[http://dx.doi.org/10.1086/517888] [PMID: 17436247]
[42]
Ford, G.C.; Eichele, G.; Jansonius, J.N. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc. Natl. Acad. Sci. USA, 1980, 77(5), 2559-2563.[http://dx.doi.org/10.1073/pnas.77.5.2559] [PMID: 6930651]
[43]
Jäger, J.; Moser, M.; Sauder, U.; Jansonius, J.N. Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. J. Mol. Biol., 1994, 239(2), 285-305.[http://dx.doi.org/10.1006/jmbi.1994.1368] [PMID: 8196059]
[44]
John, R.A. Pyridoxal phosphate-dependent enzymes. Biochim. Biophys. Acta, 1995, 1248(2), 81-96.[http://dx.doi.org/10.1016/0167-4838(95)00025-P]
[45]
Bauwe, H.; Hagemann, M.; Fernie, A.R. Photorespiration: players, partners and origin. Trends Plant Sci., 2010, 15(6), 330-336.[http://dx.doi.org/10.1016/j.tplants.2010.03.006] [PMID: 20403720]
[46]
Douce, R.; Bourguignon, J.; Neuburger, M.; Rébeillé, F. The glycine decarboxylase system: a fascinating complex. Trends Plant Sci., 2001, 6(4), 167-176.[http://dx.doi.org/10.1016/S1360-1385(01)01892-1] [PMID: 11286922]
[47]
Maurino, V.G.; Peterhansel, C. Photorespiration: current status and approaches for metabolic engineering. Curr. Opin. Plant Biol., 2010, 13(3), 249-256.[http://dx.doi.org/10.1016/j.pbi.2010.01.006] [PMID: 20185358]
[48]
Tolbert, N.E. The C2 oxidative photosynthetic carbon cycle. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, 48(1), 1-25.[http://dx.doi.org/10.1146/annurev.arplant.48.1.1] [PMID: 15012254]
[49]
Kleczkowski, L.A.; Givan, C.V. Serine formation in leaves by mechanisms other than the glycolate pathway. J. Plant Physiol., 1988, 132(6), 641-652.[http://dx.doi.org/10.1016/S0176-1617(88)80223-2]
[50]
Cascales-Miñana, B.; Muñoz-Bertomeu, J.; Flores-Tornero, M.; Anoman, A.D.; Pertusa, J.; Alaiz, M. The phosphorylated pathway of serine biosynthesis is essential both for male gametophyte and embryo development and for root growth in Arabidopsis. Plant Physiol., 2013, 163(3), 1164-1178.[http://dx.doi.org/10.1104/pp.113.226720]
[51]
Toujani, W.; Muñoz-Bertomeu, J.; Flores-Tornero, M.; Rosa-Téllez, S.; Anoman, A.D.; Alseekh, S. Functional characterization of the plastidial 3-phosphoglycerate dehydrogenase family in Arabidopsis. Plant Physiol., 2013, 163(3), 1164-1178.[http://dx.doi.org/10.1104/pp.113.226720]
[52]
Ros, R.; Muñoz-Bertomeu, J.; Krueger, S. Serine in plants: biosynthesis, metabolism, and functions. Trends Plant Sci., 2014, 19(9), 564-569.[http://dx.doi.org/10.1016/j.tplants.2014.06.003] [PMID: 24999240]
[53]
Schmidt, L.S.; Sojka, G.A. Enzymes of serine biosynthesis in Rhodopseudomonas capsulata. Arch. Biochem. Biophys., 1973, 159(1), 475-482.[http://dx.doi.org/10.1016/0003-9861(73)90477-3] [PMID: 4361552]
[54]
Duncan, K.; Coggins, J.R. The serC-aro A operon of Escherichia coli. A mixed function operon encoding enzymes from two different amino acid biosynthetic pathways. Biochem. J., 1986, 234(1), 49-57.[http://dx.doi.org/10.1042/bj2340049] [PMID: 3518706]
[55]
Battchikova, N.; Himanen, J-P.; Ahjolahti, M.; Korpela, T. Phosphoserine aminotransferase from Bacillus circulans subsp. alkalophilus: purification, gene cloning and sequencing. Biochim. Biophys. Acta, 1996, 1295(2), 187-194.[http://dx.doi.org/10.1016/0167-4838(96)00039-8] [PMID: 8695645]
[56]
Lewendon, A. Studies on the 5-enolpyruvylshikimate 3-phosphate synthase of Escherichia coli., PhD Thesis, University of Glasgow: Scotland, November 1984.
[57]
O’Gaora, P.; Maskel, D.; Coleman, D.; Cafferkey, M.; Dougan, G. Cloning and characterisation of the serC and aroA genes of Yersinia enterocolitica, and construction of an aroA mutant. Gene, 1989, 84(1), 23-30.[http://dx.doi.org/10.1016/0378-1119(89)90135-2] [PMID: 2691337]
[58]
Ali, V.; Nozaki, T. Biochemical and functional characterization of phosphoserine aminotransferase from Entamoeba histolytica, which possesses both phosphorylated and non-phosphorylated serine metabolic pathways. Mol. Biochem. Parasitol., 2006, 145(1), 71-83.[http://dx.doi.org/10.1016/j.molbiopara.2005.09.008] [PMID: 16289358]
[59]
O’Leary, S.E.; Jurgenson, C.T.; Ealick, S.E.; Begley, T.P. O-phospho-L-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis. Biochemistry, 2008, 47(44), 11606-11615.[http://dx.doi.org/10.1021/bi8013664] [PMID: 18842002]
[60]
Westrop, G.D.; Goodall, G.; Mottram, J.C.; Coombs, G.H. Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine. J. Biol. Chem., 2006, 281(35), 25062-25075.[http://dx.doi.org/10.1074/jbc.M600688200] [PMID: 16735516]
[61]
Chinthalapudi, K.; Kumar, M.; Kumar, S.; Jain, S.; Alam, N.; Gourinath, S. Crystal structure of native O-acetyl-serine sulfhydrylase from Entamoeba histolytica and its complex with cysteine: structural evidence for cysteine binding and lack of interactions with serine acetyl transferase. Proteins, 2008, 72(4), 1222-1232.[http://dx.doi.org/10.1002/prot.22013] [PMID: 18350570]
[62]
Raj, I.; Mazumder, M.; Gourinath, S. Molecular basis of ligand recognition by OASS from E. histolytica: insights from structural and molecular dynamics simulation studies. Biochim. Biophys. Acta, 2013, 1830(10), 4573-4583.[http://dx.doi.org/10.1016/j.bbagen.2013.05.041] [PMID: 23747298]
[63]
Kumar, S.; Raj, I.; Nagpal, I.; Subbarao, N.; Gourinath, S. Structural and biochemical studies of serine acetyltransferase reveal why the parasite Entamoeba histolytica cannot form a cysteine synthase complex. J. Biol. Chem., 2011, 286(14), 12533-12541.[http://dx.doi.org/10.1074/jbc.M110.197376] [PMID: 21297164]
[64]
Nagpal, I.; Raj, I.; Subbarao, N.; Gourinath, S. Virtual screening, identification and in vitro testing of novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica. PLoS One, 2012, 7(2), e30305.[http://dx.doi.org/10.1371/journal.pone.0030305] [PMID: 22355310]
[65]
Hirsch, H.; Greenberg, D.M. Studies on phosphoserine aminotransferase of sheep brain. J. Biol. Chem., 1967, 242(9), 2283-2287.[PMID: 6022873]
[66]
Lund, K.; Merrill, D.K.; Guynn, R.W. Purification and properties of phosphoserine aminotransferase from bovine liver. Arch. Biochem. Biophys., 1987, 254(1), 319-328.[http://dx.doi.org/10.1016/0003-9861(87)90108-1] [PMID: 3579302]
[67]
Belhumeur, P.; Fortin, N.; Clark, M.W. A gene from Saccharomyces cerevisiae which codes for a protein with significant homology to the bacterial 3-phosphoserine aminotransferase. Yeast, 1994, 10(3), 385-389.[http://dx.doi.org/10.1002/yea.320100311] [PMID: 8017107]
[68]
Cheung, G.P.; Rosenblum, I.Y.; Sallach, H.J. Comparative studies of enzymes related to serine metabolism in higher plants. Plant Physiol., 1968, 43(11), 1813-1820.[http://dx.doi.org/10.1104/pp.43.11.1813] [PMID: 5699148]
[69]
Walton, N.J.; Woolhouse, H.W. Enzymes of serine and glycine metabolism in leaves and non-photosynthetic tissues of Pisum sativum L. Planta, 1986, 167(1), 119-128.[http://dx.doi.org/10.1007/BF00446378] [PMID: 24241741]
[70]
Saito, K.; Takagi, Y.; Ling, H.C.; Takahashi, H.; Noji, M. Molecular cloning, characterization and expression of cDNA encoding phosphoserine aminotransferase involved in phosphorylated pathway of serine biosynthesis from spinach. Plant Mol. Biol., 1997, 33(2), 359-366.[http://dx.doi.org/10.1023/A:1005730725764] [PMID: 9037153]
[71]
Hester, G.; Stark, W.; Moser, M.; Kallen, J.; Marković-Housley, Z.; Jansonius, J.N. Crystal structure of phosphoserine aminotransferase from Escherichia coli at 2.3 A resolution: comparison of the unligated enzyme and a complex with α-methyl-l-glutamate. J. Mol. Biol., 1999, 286(3), 829-850.[http://dx.doi.org/10.1006/jmbi.1998.2506] [PMID: 10024454]
[72]
Moser, M.; Müller, R.; Battchikova, N.; Koivulehto, M.; Korpela, T.; Jansonius, J.N. Crystallization and preliminary X-ray analysis of phosphoserine aminotransferase from Bacillus circulans subsp. alkalophilus. Protein Sci., 1996, 5(7), 1426-1428.[http://dx.doi.org/10.1002/pro.5560050721] [PMID: 8819175]
[73]
Dubnovitsky, A.P.; Kapetaniou, E.G.; Papageorgiou, A.C. Enzyme adaptation to alkaline pH: atomic resolution (1.08 A) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci., 2005, 14(1), 97-110.[http://dx.doi.org/10.1110/ps.041029805] [PMID: 15608117]
[74]
Battula, P.; Dubnovitsky, A.P.; Papageorgiou, A.C. Structural basis of L-phosphoserine binding to Bacillus alcalophilus phosphoserine aminotransferase. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(Pt 5), 804-811.[http://dx.doi.org/10.1107/S0907444913002096] [PMID: 23633589]
[75]
Coulibaly, F.; Lassalle, E.; Baker, H.M.; Baker, E.N. Structure of phosphoserine aminotransferase from Mycobacterium tuberculosis. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(Pt 5), 553-563.[http://dx.doi.org/10.1107/S0907444912004829] [PMID: 22525753]
[76]
Sekula, B.; Ruszkowski, M.; Dauter, Z. Structural analysis of phosphoserine aminotransferase (isoform 1) from Arabidopsis thaliana–the enzyme involved in the phosphorylated pathway of serine biosynthesis. Front. Plant Sci., 2018, 9, 876.[http://dx.doi.org/10.3389/fpls.2018.00876] [PMID: 30034403]
[77]
Human phosphoserine aminotransferase in complex with PLP. Available from: http://www.rcsb.org/structure/3E77
[78]
Mosca, R.; Schneider, T.R. RAPIDO: a web server for the alignment of protein structures in the presence of conformational changes. Nucleic Acids Res., 2008, 36(suppl_2), W42-W46..[http://dx.doi.org/10.1093/nar/gkn197]
[79]
Crystal Structure of a Phosphoserine/phosphohydroxythreonine Aminotransferase (PSAT) from Pseudomonas aeruginosa with cofactor Pyridoxal Phosphate and bound Glutamate. Available from: http://www.rcsb.org/structure/4XK1
[80]
Basurko, M.J.; Marche, M.; Darriet, M.; Cassaigne, A. Phosphoserine aminotransferase, the second step-catalyzing enzyme for serine biosynthesis. IUBMB Life, 1999, 48(5), 525-529.[http://dx.doi.org/10.1080/713803557] [PMID: 10637769]
[81]
Kapetaniou, E.G.; Thanassoulas, A.; Dubnovitsky, A.P.; Nounesis, G.; Papageorgiou, A.C. Effect of pH on the structure and stability of Bacillus circulans ssp. alkalophilus phosphoserine aminotransferase: thermodynamic and crystallographic studies. Proteins, 2006, 63(4), 742-753.[http://dx.doi.org/10.1002/prot.20935] [PMID: 16532449]
[82]
Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA, 2001, 98(18), 10037-10041.[http://dx.doi.org/10.1073/pnas.181342398] [PMID: 11517324]
[83]
Mishra, V.; Ali, V.; Nozaki, T.; Bhakuni, V. Entamoeba histolytica Phosphoserine aminotransferase (EhPSAT): insights into the structure-function relationship. BMC Res. Notes, 2010, 3(1), 52.[http://dx.doi.org/10.1186/1756-0500-3-52] [PMID: 20199659]
[84]
van der Crabben, S.N.; Verhoeven-Duif, N.M.; Brilstra, E.H.; Van Maldergem, L.; Coskun, T.; Rubio-Gozalbo, E.; Berger, R.; de Koning, T.J. An update on serine deficiency disorders. J. Inherit. Metab. Dis., 2013, 36(4), 613-619.[http://dx.doi.org/10.1007/s10545-013-9592-4] [PMID: 23463425]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 28
ISSUE: 9
Year: 2021
Published on: 15 February, 2021
Page: [996 - 1008]
Pages: 13
DOI: 10.2174/0929866528666210215140231
Price: $65

Article Metrics

PDF: 378
HTML: 2