Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

General Research Article

A Flounder Fish Peptide Shows Anti-Hypertensive Effects by Suppressing the Renin-Angiotensin-Aldosterone System and Endothelin-1

Author(s): Mohamad Rahmdel, Sang Min Cho, You-Jin Jeon* and Dae Ho Lee*

Volume 28, Issue 7, 2021

Published on: 11 February, 2021

Page: [831 - 840] Pages: 10

DOI: 10.2174/0929866528666210211142105

Price: $65

Abstract

Background: Many fishes have been known for their good nutritional effects especially in the cardiovascular aspect. Some specific fish peptides have anti-hypertensive effects.

Objective: In the present study, we hypothesized that the hexapeptide (MEVFVP) from flounder fish muscle can be a potent antihypertensive peptide, therefore, decided to perform this experiment.

Methods: The peptide MEVFVP from flounder fish muscle (40 mg/kg) and vehicle were administered per os to spontaneously hypertensive rats (SHRs) (SHR-M and SHR-C, respectively). Additionally, plasma MEVFVP was measured serially before and after its oral administration to Sprague Dawley rats.

Results: Blood pressures (BPs), especially systolic BP, in SHR rats were decreased around 3-6 hours after MEVFVP administration. Compared with SHR-C rats, endothelin-1 (ET-1) mRNA expression in multiple tissues, and plasma levels of ET-1, angiotensin II, and aldosterone were lower in SHR-M rats, whereas the phosphorylation of AMP-activated protein kinase (AMPK) was increased in the kidney of SHR-M rats. The administered peptide was not detected in rat plasma, while ex vivo incubation of the peptide in rat plasma caused its rapid degradation within minutes.

Conclusion: Our results show that the MEVFVP has an antihypertensive effect by regulating renin- angiotensin-aldosterone system, ET-1 and AMPK despite its limited bioavailability.

Keywords: Spontaneously hypertensive rat, antihypertensive agent, endothelin-1, renin-angiotensin system, aldosterone, angiotensin II, SHR.

« Previous
Graphical Abstract
[1]
Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients, 2018, 10(11), E1738.
[http://dx.doi.org/10.3390/nu10111738] [PMID: 30424533]
[2]
Maes, W.; Van Camp, J.; Vermeirssen, V.; Hemeryck, M.; Ketelslegers, J.M.; Schrezenmeir, J.; Van Oostveldt, P.; Huyghebaert, A. Influence of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR) on the release of endothelin-1 by endothelial cells. Regul. Pept., 2004, 118(1-2), 105-109.
[http://dx.doi.org/10.1016/j.regpep.2003.11.005] [PMID: 14759563]
[3]
Ziv, E.; Bendayan, M. Intestinal absorption of peptides through the enterocytes. Microsc. Res. Tech., 2000, 49(4), 346-352.
[http://dx.doi.org/10.1002/(SICI)1097-0029(20000515)49:4<346::AID-JEMT3>3.0.CO;2-B] [PMID: 10820518]
[4]
Manikkam, V.; Vasiljevic, T.; Donkor, O.N.; Mathai, M.L. A review of potential marine-derived hypotensive and anti-obesity peptides. Crit. Rev. Food Sci. Nutr., 2016, 56(1), 92-112.
[http://dx.doi.org/10.1080/10408398.2012.753866] [PMID: 25569557]
[5]
Hartmann, R.; Meisel, H. Food-derived peptides with biological activity: from research to food applications. Curr. Opin. Biotechnol., 2007, 18(2), 163-169.
[http://dx.doi.org/10.1016/j.copbio.2007.01.013] [PMID: 17292602]
[6]
Möller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: indication for health effects. Eur. J. Nutr., 2008, 47(4), 171-182.
[http://dx.doi.org/10.1007/s00394-008-0710-2] [PMID: 18506385]
[7]
Ko, J.Y.; Lee, J.H.; Samarakoon, K.; Kim, J.S.; Jeon, Y.J. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food Chem. Toxicol., 2013, 52, 113-20.
[8]
Kim, S.K.; Ngo, D.H.; Vo, T.S. Marine fish-derived bioactive peptides as potential antihypertensive agents. Adv. Food Nutr. Res., 2012, 65, 249-260.
[http://dx.doi.org/10.1016/B978-0-12-416003-3.00016-0] [PMID: 22361192]
[9]
Takemori, K.; Yamamoto, E.; Ito, H.; Kometani, T. Prophylactic effects of elastin peptide derived from the bulbus arteriosus of fish on vascular dysfunction in spontaneously hypertensive rats. Life Sci., 2015, 120, 48-53.
[http://dx.doi.org/10.1016/j.lfs.2014.10.011] [PMID: 25445217]
[10]
Otani, L.; Ninomiya, T.; Murakami, M.; Osajima, K.; Kato, H.; Murakami, T. Sardine peptide with angiotensin I-converting enzyme inhibitory activity improves glucose tolerance in stroke-prone spontaneously hypertensive rats. Biosci. Biotechnol. Biochem., 2009, 73(10), 2203-2209.
[http://dx.doi.org/10.1271/bbb.90311] [PMID: 19809178]
[11]
Kumar, R.; Chaudhary, K.; Sharma, M.; Nagpal, G.; Chauhan, J.S.; Singh, S.; Gautam, A.; Raghava, G.P. AHTPDB: a comprehensive platform for analysis and presentation of antihypertensive peptides. Nucleic Acids Res., 2015, 43(Database issue), D956-D962.
[http://dx.doi.org/10.1093/nar/gku1141] [PMID: 25392419]
[12]
Manoharan, S.; Shuib, A.S.; Abdullah, N. Structural characteristics and antihypertensive effects of Angiotensin-I-Converting Enzyme inhibitory peptides in the renin-angiotensin and Kallikrein Kinin systems. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(2), 383-406.
[http://dx.doi.org/10.21010/ajtcam.v14i2.39] [PMID: 28573254]
[13]
Maeno, M.; Yamamoto, N.; Takano, T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci., 1996, 79(8), 1316-1321.
[http://dx.doi.org/10.3168/jds.S0022-0302(96)76487-1] [PMID: 8880454]
[14]
Nakamura, Y.; Yamamoto, N.; Sakai, K.; Okubo, A.; Yamazaki, S.; Takano, T. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci., 1995, 78(4), 777-783.
[http://dx.doi.org/10.3168/jds.S0022-0302(95)76689-9] [PMID: 7790570]
[15]
Ondetti, M.A.; Williams, N.J.; Sabo, E.F.; Pluscec, J.; Weaver, E.R.; Kocy, O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry, 1971, 10(22), 4033-4039.
[http://dx.doi.org/10.1021/bi00798a004] [PMID: 4334402]
[16]
Korhonen, H.; Pihlanto, A. Bioactive peptides: production and functionality. Int. Dairy J., 2006, 16(9), 945-960.
[http://dx.doi.org/10.1016/j.idairyj.2005.10.012]
[17]
Pan, D.; Luo, Y.; Tanokura, M. Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. Food Chem., 2005, 91(1), 123-129.
[http://dx.doi.org/10.1016/j.foodchem.2004.05.055]
[18]
Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of Angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di- and tripeptides. J. Agric. Food Chem., 2006, 54(3), 732-738.
[http://dx.doi.org/10.1021/jf051263l] [PMID: 16448176]
[19]
Ko, J-Y.; Kang, N.; Lee, J-H.; Kim, J-S.; Kim, W-S.; Park, S-J. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent. Process Biochem., 2016, 51(4), 535-541.
[http://dx.doi.org/10.1016/j.procbio.2016.01.009]
[20]
Bougatef, A.; Nedjar-Arroume, N.; Ravallec-Plé, R.; Leroy, Y.; Guillochon, D.; Barkia, A.; Nasri, M. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem., 2008, 111(2), 350-356.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.074] [PMID: 26047434]
[21]
Je, J.Y.; Park, P.J.; Kwon, J.Y.; Kim, S.K. A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. J. Agric. Food Chem., 2004, 52(26), 7842-7845.
[http://dx.doi.org/10.1021/jf0494027] [PMID: 15612765]
[22]
Ngo, D.H.; Ryu, B.; Vo, T.S.; Himaya, S.W.; Wijesekara, I.; Kim, S.K. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int. J. Biol. Macromol., 2011, 49(5), 1110-1116.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.09.009] [PMID: 21945677]
[23]
Lee, D.S.; Lee, E.S.; Alam, M.M.; Jang, J.H.; Lee, H.S.; Oh, H.; Kim, Y.C.; Manzoor, Z.; Koh, Y.S.; Kang, D.G.; Lee, D.H. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate. Metabolism, 2016, 65(2), 89-101.
[http://dx.doi.org/10.1016/j.metabol.2015.10.002] [PMID: 26773932]
[24]
Okitsu, M.; Morita, A.; Kakitani, M.; Okada, M.; Yokogoshi, H. Inhibition of the endothelin-converting enzyme by pepsin digests of food proteins. Biosci. Biotechnol. Biochem., 1995, 59(2), 325-326.
[http://dx.doi.org/10.1271/bbb.59.325] [PMID: 7766033]
[25]
Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature, 1988, 332(6163), 411-415.
[http://dx.doi.org/10.1038/332411a0] [PMID: 2451132]
[26]
Fernández-Musoles, R.; López-Díez, J.J.; Torregrosa, G.; Vallés, S.; Alborch, E.; Manzanares, P.; Salom, J.B. Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction. Peptides, 2010, 31(10), 1926-1933.
[http://dx.doi.org/10.1016/j.peptides.2010.06.024] [PMID: 20600419]
[27]
Tran, L.T.; MacLeod, K.M.; McNeill, J.H. Endothelin-1 modulates angiotensin II in the development of hypertension in fructose-fed rats. Mol. Cell. Biochem., 2009, 325(1-2), 89-97.
[http://dx.doi.org/10.1007/s11010-008-0023-z] [PMID: 19139972]
[28]
Barton, M.; Carmona, R.; Ortmann, J.; Krieger, J.E.; Traupe, T. Obesity-associated activation of angiotensin and endothelin in the cardiovascular system. Int. J. Biochem. Cell Biol., 2003, 35(6), 826-837.
[http://dx.doi.org/10.1016/S1357-2725(02)00307-2] [PMID: 12676169]
[29]
Barton, M.; Carmona, R.; Krieger, J.E.; Göettsch, W.; Morawietz, H.; d’Uscio, L.V.; Lattmann, T.; Lüscher, T.F.; Shaw, S. Endothelin regulates angiotensin-converting enzyme in the mouse kidney. J. Cardiovasc. Pharmacol., 2000, 36(5)(Suppl. 1), S244-S247.
[http://dx.doi.org/10.1097/00005344-200036001-00072] [PMID: 11078388]
[30]
Nussdorfer, G.G.; Rossi, G.P.; Belloni, A.S. The role of endothelins in the paracrine control of the secretion and growth of the adrenal cortex. Int. Rev. Cytol., 1997, 171, 267-308.
[http://dx.doi.org/10.1016/S0074-7696(08)62590-5] [PMID: 9066130]
[31]
Rossi, G.P.; Sacchetto, A.; Cesari, M.; Pessina, A.C. Interactions between endothelin-1 and the renin-angiotensin-aldosterone system. Cardiovasc. Res., 1999, 43(2), 300-307.
[http://dx.doi.org/10.1016/S0008-6363(99)00110-8] [PMID: 10536660]
[32]
Sung, C.P.; Arleth, A.J.; Storer, B.L.; Ohlstein, E.H. Angiotensin type 1 receptors mediate smooth muscle proliferation and endothelin biosynthesis in rat vascular smooth muscle. J. Pharmacol. Exp. Ther., 1994, 271(1), 429-437.
[PMID: 7965744]
[33]
Emori, T.; Hirata, Y.; Ohta, K.; Shichiri, M.; Marumo, F. Secretory mechanism of immunoreactive endothelin in cultured bovine endothelial cells. Biochem. Biophys. Res. Commun., 1989, 160(1), 93-100.
[http://dx.doi.org/10.1016/0006-291X(89)91625-2] [PMID: 2653322]
[34]
Wang, J.; Hu, H.; Song, J.; Yan, F.; Qin, J.; Guo, X.; Cui, C.; He, Q.; Hou, X.; Liu, F.; Chen, L. Aldosterone induced up-expression of ICAM-1 and ET-1 in pancreatic islet endothelium may associate with progression of T2D. Biochem. Biophys. Res. Commun., 2019, 512(4), 750-757.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.149] [PMID: 30926169]
[35]
Dohi, Y.; Hahn, A.W.; Boulanger, C.M.; Buhler, F.R.; Luscher, T.F. Endothelin stimulated by angiotensin II augments contractility of spontaneously hypertensive rat resistance arteries. Hypertension (Dallas, Tex : 1979), 1992, 19(2), 131-7.
[http://dx.doi.org/10.1161/01.HYP.19.2.131]
[36]
Tain, Y.L.; Hsu, C.N. AMP-activated protein kinase as a reprogramming strategy for hypertension and kidney disease of developmental origin. Int. J. Mol. Sci., 2018, 19(6), E1744.
[http://dx.doi.org/10.3390/ijms19061744] [PMID: 29895790]
[37]
Xu, Q.; Si, L.Y. Protective effects of AMP-activated protein kinase in the cardiovascular system. J. Cell. Mol. Med., 2010, 14(11), 2604-2613.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01179.x] [PMID: 20874722]
[38]
Deji, N.; Kume, S.; Araki, S.; Isshiki, K.; Araki, H.; Chin-Kanasaki, M.; Tanaka, Y.; Nishiyama, A.; Koya, D.; Haneda, M.; Kashiwagi, A.; Maegawa, H.; Uzu, T. Role of angiotensin II-mediated AMPK inactivation on obesity-related salt-sensitive hypertension. Biochem. Biophys. Res. Commun., 2012, 418(3), 559-564.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.070] [PMID: 22293193]
[39]
Chen, S.Y.; Bhargava, A.; Mastroberardino, L.; Meijer, O.C.; Wang, J.; Buse, P.; Firestone, G.L.; Verrey, F.; Pearce, D. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2514-2519.
[http://dx.doi.org/10.1073/pnas.96.5.2514] [PMID: 10051674]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy