Formulation, Characterisation and In vitro Cytotoxic Effect of Lens culinaris Medikus Seeds Extract Loaded Chitosan Microspheres

Author(s): Kripi Vohra, Meenu Mehta, Vandana Garg, Kamal Dua*, Harish Dureja*

Journal Name: Current Molecular Pharmacology

Volume 14 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: The aim of present study was to formulate chitosan microspheres loaded with ethanolic extract of Lens culinaris Medikus (L.culinaris) seeds (ME) and to explore its anticancer potential against lung cancer (A549) cell line.

Methods: Central composite design was applied to prepare and optimise the chitosan microspheres. The prepared microspheres were evaluated for its physicochemical characterisation, in vitro drug release and anti-cancer potential in vitro.

Results: L.culinaris loaded chitosan microspheres were prepared successfully with suitable particle size, entrapment efficiency and drug release. The developed ME were spherical shaped with the particle size of 2.08 μm. The drug entrapment efficiency and cumulative drug release was found 1.58±0.02% and 81.95±0.35%, respectively. Differential scanning calorimetry studies revealed no interaction between drugs and polymers used. The cytotoxic effect of the optimised formulation revealed a significant response as compared to the ethanolic extract of L.culinaris seeds (IC50: 22.56 μg/ml vs. 63.58 μg/ml), which was comparable to that of reference drug, doxorubicin (22 μg/ml). These observations demonstrate that the optimised microspheres are effective against lung cancer (A549) cells.

Conclusion: The significant cytotoxic response of the developed microspheres may be attributed due to its low particle size, high entrapment efficiency and prolonged drug release profile.

Keywords: Lens culinaris, microspheres, chitosan, cytotoxic, ethanol extract, central composite design.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 3
Year: 2021
Published on: 10 February, 2021
Page: [448 - 457]
Pages: 10
DOI: 10.2174/1874467214666210210124739
Price: $65

Article Metrics

PDF: 140