Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Syntheses and Antitumor Properties of Furoxan Derivatives

Author(s): Ali Ramazani*, Masoud Karimi, Zahra Hosseinzadeh, Sobhan Rezayati, Younes Hanifehpour* and Sang Woo Joo*

Volume 25, Issue 7, 2021

Published on: 08 February, 2021

Page: [757 - 778] Pages: 22

DOI: 10.2174/1385272825666210208183751

Price: $65

Abstract

Cancer is the second leading cause of death in Iran, next to heart disease. Current therapy suffers from the major limitations of side effects and drug resistance, so the characterization of new structures that can be power-selective and less-toxic anticancer agents is the main challenge to medicinal chemistry research. Furoxan (1,2,5-oxadiazole-2-oxide) is a crucial compound with many medicinal and pharmaceutical properties. The most important aspect of furoxan is the nitric oxide (NO) molecule. One of the most essential furoxan derivatives, which could be utilized in medicinal goals and pharmaceutical affairs, is benzofuroxan. Furoxan could be described as a NO-donating compound in a variety of reactions, which could also appear as hybridised with different medicinal compounds. This review article presents a summary of syntheses and antitumor properties of furoxan derivatives as possible chemotherapy agents for cancer. Furoxan can inhibit tumor growth in vivo without any side effects in normal cells. Furthermore, due to NO-releasing in high levels in vivo and a wide range of anticancer compounds, furoxan derivatives and especially its hybridised compounds could be considered as antitumor, cytotoxic and apoptosis compounds to be applied in the human body.

Keywords: Furoxan, synthesis, heterocyclic, antitumor, nitric oxid, oxadiazole.

Next »
Graphical Abstract
[1]
Pervin, S.; Singh, R.; Chaudhuri, G. Nitric oxide, N omega-hydroxy-L-arginine and breast cancer. Nitric Oxide, 2008, 19(2), 103-106.
[http://dx.doi.org/10.1016/j.niox.2008.04.016] [PMID: 18474257]
[2]
Sattler, R.; Xiong, Z.; Lu, W-Y.; Hafner, M.; MacDonald, J.F.; Tymianski, M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science, 1999, 284(5421), 1845-1848.
[http://dx.doi.org/10.1126/science.284.5421.1845] [PMID: 10364559]
[3]
Cho, D-H.; Nakamura, T.; Fang, J.; Cieplak, P.; Godzik, A.; Gu, Z.; Lipton, S.A. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science, 2009, 324(5923), 102-105.
[http://dx.doi.org/10.1126/science.1171091] [PMID: 19342591]
[4]
Wei, X-Q.; Charles, I.G.; Smith, A.; Ure, J.; Feng, G-J.; Huang, F-P.; Xu, D.; Muller, W.; Moncada, S.; Liew, F.Y. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature, 1995, 375(6530), 408-411.
[http://dx.doi.org/10.1038/375408a0] [PMID: 7539113]
[5]
Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA, 1987, 84(24), 9265-9269.
[http://dx.doi.org/10.1073/pnas.84.24.9265] [PMID: 2827174]
[6]
Ignarro, L.J.; Napoli, C.; Loscalzo, J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview. Circ. Res., 2002, 90(1), 21-28.
[http://dx.doi.org/10.1161/hh0102.102330] [PMID: 11786514]
[7]
Moncada, S. Nitric oxide: discovery and impact on clinical medicine. J. R. Soc. Med., 1999, 92(4), 164-169.
[http://dx.doi.org/10.1177/014107689909200402] [PMID: 10450191]
[8]
Andrew, P.J.; Mayer, B. Enzymatic function of nitric oxide synthases. Cardiovasc. Res., 1999, 43(3), 521-531.
[http://dx.doi.org/10.1016/S0008-6363(99)00115-7] [PMID: 10690324]
[9]
Lundberg, J.O.; Weitzberg, E. NO generation from nitrite and its role in vascular control. Arterioscler. Thromb. Vasc. Biol., 2005, 25(5), 915-922.
[http://dx.doi.org/10.1161/01.ATV.0000161048.72004.c2] [PMID: 15746440]
[10]
Albina, J.E.; Reichner, J.S. Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev., 1998, 17(1), 39-53.
[http://dx.doi.org/10.1023/A:1005904704618] [PMID: 9544422]
[11]
Dodd, F.; Limoges, M.; Boudreau, R.T.; Rowden, G.; Murphy, P.R.; Too, C.K. L-arginine inhibits apoptosis via a NO-dependent mechanism in Nb2 lymphoma cells. J. Cell. Biochem., 2000, 77(4), 624-634.
[http://dx.doi.org/10.1002/(SICI)1097-4644(20000615)77:4<624:AID-JCB10>3.0.CO;2-M] [PMID: 10771518]
[12]
Ridnour, L.A.; Barasch, K.M.; Windhausen, A.N.; Dorsey, T.H.; Lizardo, M.M.; Yfantis, H.G.; Lee, D.H.; Switzer, C.H.; Cheng, R.Y.; Heinecke, J.L.; Brueggemann, E.; Hines, H.B.; Khanna, C.; Glynn, S.A.; Ambs, S.; Wink, D.A. Nitric oxide synthase and breast cancer: role of TIMP-1 in NO-mediated Akt activation. PLoS One, 2012, 7(9), e44081.
[http://dx.doi.org/10.1371/journal.pone.0044081] [PMID: 22957045]
[13]
Umansky, V.; Schirrmacher, V. Nitric oxide-induced apoptosis in tumor cells. Adv. Cancer Res., 2001, 82, 107-131.
[http://dx.doi.org/10.1016/S0065-230X(01)82004-2] [PMID: 11447761]
[14]
Kerwin, J.F., Jr; Heller, M. The arginine-nitric oxide pathway: a target for new drugs. Med. Res. Rev., 1994, 14(1), 23-74.
[http://dx.doi.org/10.1002/med.2610140103] [PMID: 7508539]
[15]
Janczuk, A.J.; Jia, Q.; Xian, M.; Wen, Z.; Wang, P.G.; Cai, T. NO donors with anticancer activity. Expert Opin. Ther. Pat., 2002, 12, 819-826.
[http://dx.doi.org/10.1517/13543776.12.6.819]
[16]
Messmer, U.K.; Brüne, B. Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem. J., 1996, 319(Pt 1), 299-305.
[http://dx.doi.org/10.1042/bj3190299] [PMID: 8870682]
[17]
Aguirre, G.; Boiani, M.; Cerecetto, H.; Fernández, M.; González, M.; León, E.; Pintos, C.; Raymondo, S.; Arredondo, C.; Pacheco, J.P.; Basombrío, M.A. Furoxan derivatives as cytotoxic agents: preliminary in vivo antitumoral activity studies. Pharmazie, 2006, 61(1), 54-59.
[PMID: 16454207]
[18]
Chen, L.; Zhang, Y.; Kong, X.; Lan, E.; Huang, Z.; Peng, S.; Kaufman, D.L.; Tian, J. Design, synthesis, and antihepatocellular carcinoma activity of nitric oxide releasing derivatives of oleanolic acid. J. Med. Chem., 2008, 51(15), 4834-4838.
[http://dx.doi.org/10.1021/jm800167u] [PMID: 18598019]
[19]
Maksimovic-Ivanic, D.; Mijatovic, S.; Harhaji, L.; Miljkovic, D.; Dabideen, D.; Cheng, K.F.; Mangano, K.; Malaponte, G.; Al-Abed, Y.; Libra, M. Nitric oxide (NO) and cancer. Mol. Cancer Ther., 2008, 7, 510-520.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2037] [PMID: 18347138]
[20]
Moharram, S.; Zhou, A.; Wiebe, L.I.; Knaus, E.E. Design and synthesis of 3′- and 5′-O-(3-benzenesulfonylfuroxan-4-yl)-2′-deoxyuridines: biological eval-uation as hybrid nitric oxide donor-nucleoside anticancer agents. J. Med. Chem., 2004, 47(7), 1840-1846.
[http://dx.doi.org/10.1021/jm030544m] [PMID: 15027876]
[21]
Yusupova, L.; Garmonov, S.Y.; Zakharov, I.; Bykov, A.; Falyakhov, I.; Garipov, T. Fungicidal and toxicological properties of functionally substituted nitrobenzofuroxanes. Pharm. Chem. J., 2008, 42, 183-185.
[http://dx.doi.org/10.1007/s11094-008-0097-7]
[22]
Sartini, S.; Cosconati, S.; Marinelli, L.; Barresi, E.; Di Maro, S.; Simorini, F.; Taliani, S.; Salerno, S.; Marini, A.M.; Da Settimo, F.; Novellino, E.; La Motta, C. Benzofuroxane derivatives as multi-effective agents for the treatment of cardiovascular diabetic complications. Synthesis, functional evaluation, and molecular modeling studies. J. Med. Chem., 2012, 55(23), 10523-10531.
[http://dx.doi.org/10.1021/jm301124s] [PMID: 23134227]
[23]
Jorge, S.D.; Palace-Berl, F.; Masunari, A.; Cechinel, C.A.; Ishii, M.; Pasqualoto, K.F.M.; Tavares, L.C. Novel benzofuroxan derivatives against multidrug-resistant Staphylococcus aureus strains: design using Topliss’ decision tree, synthesis and biological assay. Bioorg. Med. Chem., 2011, 19(16), 5031-5038.
[http://dx.doi.org/10.1016/j.bmc.2011.06.034] [PMID: 21757359]
[24]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[25]
Bos, J.L. ras Oncogenes in human cancer: a review. Cancer Res., 1989, 49(17), 4682-4689.https://cancerres.aacrjournals.org/content/49/17/4682
[PMID: 2547513]
[26]
Medana, C.; Di Stilo, A.; Visentin, S.; Fruttero, R.; Gasco, A.; Ghigo, D.; Bosia, A. NO donor and biological properties of different benzofuroxans. Pharm. Res., 1999, 16(6), 956-960.
[http://dx.doi.org/10.1023/A:1018974409622] [PMID: 10397620]
[27]
Lu, M-D.; Zhou, X.; Yu, Y-J.; Li, P-H.; Sun, W-J.; Zhao, C-G.; Zheng, Z-Q.; You, T.; Wang, F-H. Synthesis and in vitro biological evaluation of nitric oxide-releasing derivatives of hydroxylcinnamic acids as anti-tumor agents. Chin. Chem. Lett., 2013, 24, 415-418.
[http://dx.doi.org/10.1016/j.cclet.2013.03.006]
[28]
Srinivasan, M.; Sudheer, A.R.; Pillai, K.R.; Kumar, P.R.; Sudhakaran, P.R.; Menon, V.P. Influence of ferulic acid on γ-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes. Toxicology, 2006, 228(2-3), 249-258.
[http://dx.doi.org/10.1016/j.tox.2006.09.004] [PMID: 17049709]
[29]
Kim, H-Y.; Park, J.; Lee, K-H.; Lee, D-U.; Kwak, J-H.; Kim, Y.S.; Lee, S-M. Ferulic acid protects against carbon tetrachloride-induced liver injury in mice. Toxicology, 2011, 282(3), 104-111.
[http://dx.doi.org/10.1016/j.tox.2011.01.017] [PMID: 21291945]
[30]
Fresco, P.; Borges, F.; Marques, M.P.; Diniz, C. The anticancer properties of dietary polyphenols and its relation with apoptosis. Curr. Pharm. Des., 2010, 16(1), 114-134.
[http://dx.doi.org/10.2174/138161210789941856] [PMID: 20214622]
[31]
Huang, W-Y.; Cai, Y-Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer, 2010, 62(1), 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[32]
Zou, Z.H.; Lan, X.B.; Qian, H.; Huang, W.L.; Li, Y-M. Synthesis and evaluation of furoxan-based nitric oxide-releasing derivatives of tetrahydroisoquinoline as anticancer and multidrug resistance reversal agents. Bioorg. Med. Chem. Lett., 2011, 21(19), 5934-5938.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.077] [PMID: 21843940]
[33]
Wang, T.; Zhang, Y.H.; Kong, X.W.; Lai, Y.S.; Ji, H.; Chen, Y.P.; Peng, S.X. Synthesis and biological evaluation of nitric oxide-donating thalidomide analogues as anticancer agents. Chem. Biodivers., 2009, 6(4), 466-474.
[http://dx.doi.org/10.1002/cbdv.200800014] [PMID: 19353543]
[34]
Marriott, J.B.; Muller, G.; Dalgleish, A.G. Thalidomide as an emerging immunotherapeutic agent. Immunol. Today, 1999, 20(12), 538-540.
[http://dx.doi.org/10.1016/S0167-5699(99)01531-5] [PMID: 10562702]
[35]
Miller, M.R.; Megson, I.L. Recent developments in nitric oxide donor drugs. Br. J. Pharmacol., 2007, 151(3), 305-321.
[http://dx.doi.org/10.1038/sj.bjp.0707224] [PMID: 17401442]
[36]
Chattopadhyay, M.; Goswami, S.; Rodes, D.B.; Kodela, R.; Velazquez, C.A.; Boring, D.; Crowell, J.A.; Kashfi, K. NO-releasing NSAIDs suppress NF-κB signaling in vitro and in vivo through S-nitrosylation. Cancer Lett., 2010, 298(2), 204-211.
[http://dx.doi.org/10.1016/j.canlet.2010.07.006] [PMID: 20674154]
[37]
Williams, J.L.; Borgo, S.; Hasan, I.; Castillo, E.; Traganos, F.; Rigas, B. Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: implications for colon cancer chemoprevention. Cancer Res., 2001, 61(8), 3285-3289.https://cancerres.aacrjournals.org/content/61/8/3285.short
[PMID: 11309281]
[38]
López, G.V.; Batthyány, C.; Blanco, F.; Botti, H.; Trostchansky, A.; Migliaro, E.; Radi, R.; González, M.; Cerecetto, H.; Rubbo, H. Design, synthesis, and biological characterization of potential antiatherogenic nitric oxide releasing tocopherol analogs. Bioorg. Med. Chem., 2005, 13(20), 5787-5796.
[http://dx.doi.org/10.1016/j.bmc.2005.05.060] [PMID: 15993614]
[39]
Ling, Y.; Ye, X.; Ji, H.; Zhang, Y.; Lai, Y.; Peng, S.; Tian, J. Synthesis and evaluation of nitric oxide-releasing derivatives of farnesylthiosalicylic acid as anti-tumor agents. Bioorg. Med. Chem., 2010, 18(10), 3448-3456.
[http://dx.doi.org/10.1016/j.bmc.2010.03.077] [PMID: 20435479]
[40]
Elad-Sfadia, G.; Haklai, R.; Ballan, E.; Gabius, H-J.; Kloog, Y. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J. Biol. Chem., 2002, 277(40), 37169-37175.
[http://dx.doi.org/10.1074/jbc.M205698200] [PMID: 12149263]
[41]
Rotblat, B.; Niv, H.; André, S.; Kaltner, H.; Gabius, H-J.; Kloog, Y. Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res., 2004, 64(9), 3112-3118.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0026] [PMID: 15126348]
[42]
Haklai, R.; Elad-Sfadia, G.; Egozi, Y.; Kloog, Y. Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice. Cancer Chemother. Pharmacol., 2008, 61(1), 89-96.
[http://dx.doi.org/10.1007/s00280-007-0451-6] [PMID: 17909812]
[43]
Tsimberidou, A.M.; Rudek, M.A.; Hong, D.; Ng, C.S.; Blair, J.; Goldsweig, H.; Kurzrock, R. Phase 1 first-in-human clinical study of S-trans,trans-farnesylthiosalicylic acid (salirasib) in patients with solid tumors. Cancer Chemother. Pharmacol., 2010, 65(2), 235-241.
[http://dx.doi.org/10.1007/s00280-009-1027-4] [PMID: 19484470]
[44]
Zundelevich, A.; Elad-Sfadia, G.; Haklai, R.; Kloog, Y. Suppression of lung cancer tumor growth in a nude mouse model by the Ras inhibitor salirasib (farnesylthiosalicylic acid). Mol. Cancer Ther., 2007, 6(6), 1765-1773.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0706] [PMID: 17541036]
[45]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[46]
Ning, S.; Bednarski, M.; Oronsky, B.; Scicinski, J.; Knox, S.J. Novel nitric oxide generating compound glycidyl nitrate enhances the therapeutic efficacy of chemotherapy and radiotherapy. Biochem. Biophys. Res. Commun., 2014, 447(3), 537-542.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.032] [PMID: 24735538]
[47]
Hutchens, S.; Manevich, Y.; He, L.; Tew, K.D.; Townsend, D.M. Cellular resistance to a nitric oxide releasing glutathione S-transferase P-activated prodrug, PABA/NO. Invest. New Drugs, 2011, 29(5), 719-729.
[http://dx.doi.org/10.1007/s10637-010-9407-5] [PMID: 20232108]
[48]
Liu, M-M.; Chen, X-Y.; Huang, Y-Q.; Feng, P.; Guo, Y-L.; Yang, G.; Chen, Y. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents. J. Med. Chem., 2014, 57(22), 9343-9356.
[http://dx.doi.org/10.1021/jm500613m] [PMID: 25350923]
[49]
Chegaev, K.; Riganti, C.; Lazzarato, L.; Rolando, B.; Guglielmo, S.; Campia, I.; Fruttero, R.; Bosia, A.; Gasco, A. Nitric oxide donor doxorubicins accumulate into Doxorubicin-resistant human colon cancer cells inducing cytotoxicity. ACS Med. Chem. Lett., 2011, 2(7), 494-497.
[http://dx.doi.org/10.1021/ml100302t] [PMID: 24900337]
[50]
Bian, H.; Feng, J.; Li, M.; Xu, W. Novel antileukemic agents derived from tamibarotene and nitric oxide donors. Bioorg. Med. Chem. Lett., 2011, 21(23), 7025-7029.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.103] [PMID: 22014829]
[51]
Feelisch, M.; Schönafinger, K.; Noack, E. Thiol-mediated generation of nitric oxide accounts for the vasodilator action of furoxans. Biochem. Pharmacol., 1992, 44(6), 1149-1157.
[http://dx.doi.org/10.1016/0006-2952(92)90379-W] [PMID: 1358072]
[52]
Turnbull, C.M.; Cena, C.; Fruttero, R.; Gasco, A.; Rossi, A.G.; Megson, I.L. Mechanism of action of novel NO-releasing furoxan derivatives of aspirin in human platelets. Br. J. Pharmacol., 2006, 148(4), 517-526.
[http://dx.doi.org/10.1038/sj.bjp.0706743] [PMID: 16702997]
[53]
Schulz, R.; Rassaf, T.; Massion, P.B.; Kelm, M.; Balligand, J-L. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol. Ther., 2005, 108(3), 225-256.
[http://dx.doi.org/10.1016/j.pharmthera.2005.04.005] [PMID: 15949847]
[54]
Han, C.; Huang, Z.; Zheng, C.; Wan, L.; Zhang, L.; Peng, S.; Ding, K.; Ji, H.; Tian, J.; Zhang, Y. Novel hybrids of (phenylsulfonyl)furoxan and anilinopyrimidine as potent and selective epidermal growth factor receptor inhibitors for intervention of non-small-cell lung cancer. J. Med. Chem., 2013, 56(11), 4738-4748.
[http://dx.doi.org/10.1021/jm400463q] [PMID: 23668441]
[55]
William, W.N., Jr; Heymach, J.V.; Kim, E.S.; Lippman, S.M. Molecular targets for cancer chemoprevention. Nat. Rev. Drug Discov., 2009, 8(3), 213-225.
[http://dx.doi.org/10.1038/nrd2663] [PMID: 19247304]
[56]
Pao, W.; Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol., 2011, 12(2), 175-180.
[http://dx.doi.org/10.1016/S1470-2045(10)70087-5] [PMID: 21277552]
[57]
Suda, K.; Tomizawa, K.; Mitsudomi, T. Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev., 2010, 29(1), 49-60.
[http://dx.doi.org/10.1007/s10555-010-9209-4] [PMID: 20108024]
[58]
Gately, K.; O’Flaherty, J.; Cappuzzo, F.; Pirker, R.; Kerr, K.; O’Byrne, K. The role of the molecular footprint of EGFR in tailoring treatment decisions in NSCLC. J. Clin. Pathol., 2012, 65(1), 1-7.
[http://dx.doi.org/10.1136/jclinpath-2011-200275] [PMID: 22039281]
[59]
Barker, A.J.; Gibson, K.H.; Grundy, W.; Godfrey, A.A.; Barlow, J.J.; Healy, M.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Scarlett, L.; Henthorn, L.; Richards, L. Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett., 2001, 11(14), 1911-1914.
[http://dx.doi.org/10.1016/S0960-894X(01)00344-4] [PMID: 11459659]
[60]
Moyer, J.D.; Barbacci, E.G.; Iwata, K.K.; Arnold, L.; Boman, B.; Cunningham, A.; DiOrio, C.; Doty, J.; Morin, M.J.; Moyer, M.P.; Neveu, M.; Pollack, V.A.; Pustilnik, L.R.; Reynolds, M.M.; Sloan, D.; Theleman, A.; Miller, P. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res., 1997, 57(21), 4838-4848.
[PMID: 9354447]
[61]
Liu, J. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol., 1995, 49(2), 57-68.
[http://dx.doi.org/10.1016/0378-8741(95)90032-2] [PMID: 8847885]
[62]
Chen, Y.; Liu, J.; Yang, X.; Zhao, X.; Xu, H. Oleanolic acid nanosuspensions: preparation, in-vitro characterization and enhanced hepatoprotective effect. J. Pharm. Pharmacol., 2005, 57(2), 259-264.
[http://dx.doi.org/10.1211/0022357055407] [PMID: 15720792]
[63]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer, 2001, 94(2), 153-156.
[http://dx.doi.org/10.1002/ijc.1440] [PMID: 11668491]
[64]
He, L.Q.; Liu, J.; Yin, D.K.; Zhang, Y.H.; Wang, X.S. Synthesis and biological evaluation of nitric oxide-releasing matrine derivatives as anticancer agents. Chin. Chem. Lett., 2010, 21, 381-384.
[http://dx.doi.org/10.1016/j.cclet.2009.11.033]
[65]
Cho, C.H.; Chuang, C.Y.; Chen, C.F. Study of the antipyretic activity of matrine. A lupin alkaloid isolated from Sophora subprostrata. Planta Med., 1986, 52(5), 343-345.
[http://dx.doi.org/10.1055/s-2007-969179] [PMID: 3797498]
[66]
Mitra, R.; Singh, S.; Khar, A. Antitumour immune responses. Expert Rev. Mol. Med., 2003, 5(3), 1-19.
[http://dx.doi.org/10.1017/S1462399403005623] [PMID: 14987405]
[67]
Wan, X-Y.; Luo, M.; Li, X-D.; He, P. Hepatoprotective and anti-hepatocarcinogenic effects of glycyrrhizin and matrine. Chem. Biol. Interact., 2009, 181(1), 15-19.
[http://dx.doi.org/10.1016/j.cbi.2009.04.013] [PMID: 19426721]
[68]
Zhang, J.P.; Zhang, M.; Zhou, J.P.; Liu, F.T.; Zhou, B.; Xie, W.F.; Guo, C.; Zhang, C.; Qian, D. Antifibrotic effects of matrine on in vitro and in vivo models of liver fibrosis in rats. Acta Pharmacol. Sin., 2001, 22(2), 183-186.
[PMID: 11741525]
[69]
Liu, X-S.; Jiang, J. Molecular mechanism of matrine-induced apoptosis in leukemia K562 cells. Am. J. Chin. Med., 2006, 34(6), 1095-1103.
[http://dx.doi.org/10.1142/S0192415X06004557] [PMID: 17163597]
[70]
Chui, C.H.; Lau, F.Y.; Tang, J.C.O.; Kan, K.L.; Cheng, G.Y.M.; Wong, R.S.M.; Kok, S.H.L.; Lai, P.B.S.; Ho, R.; Gambari, R.; Chan, A.S. Activities of fresh juice of Scutellaria barbata and warmed water extract of Radix Sophorae Tonkinensis on anti-proliferation and apoptosis of human cancer cell lines. Int. J. Mol. Med., 2005, 16(2), 337-341.
[http://dx.doi.org/10.3892/ijmm.16.2.337] [PMID: 16012772]
[71]
Hu, M.J.; Zeng, H.; Wu, Y.L.; Zhang, Y.P.; Zhang, S.; Qiao, M.M.; Fu, H. Synergistic effects of matrine and 5-fluorouracil on tumor growth of the implanted gastric cancer in nude mice. Chin. J. Dig. Dis., 2005, 6(2), 68-71.
[http://dx.doi.org/10.1111/j.1443-9573.2005.00201.x] [PMID: 15904424]
[72]
Cheng, X.; Du, Y.; Huang, L.; Jing, Z.; Zheng, Z. Effect of matrine on HepG2 cells: role of glutathione and cytochrome c. Chinese-German J. Clin. Oncol., 2008, 7, 213-216.
[http://dx.doi.org/10.1007/s10330-007-0190-5]
[73]
Huang, Y.; Liu, M.; Meng, L.; Feng, P.; Guo, Y.; Ying, M.; Zhu, X.; Chen, Y. Synthesis and antitumor evaluation of novel hybrids of phenylsulfonylfuroxan and epiandrosterone/dehydroepiandrosterone derivatives. Steroids, 2015, 101, 7-14.
[http://dx.doi.org/10.1016/j.steroids.2015.05.003] [PMID: 26004429]
[74]
Ishak, R.S.; Aad, S.A.; Kyei, A.; Farhat, F.S. Cutaneous manifestations of anti-angiogenic therapy in oncology: review with focus on VEGF inhibitors. Crit. Rev. Oncol. Hematol., 2014, 90(2), 152-164.
[http://dx.doi.org/10.1016/j.critrevonc.2013.11.007] [PMID: 24355408]
[75]
Kong, X.W.; Zhang, Y.H.; Dai, L.; Ji, H.; Lai, Y.S.; Peng, S.X. Synthesis and biological evaluation of nitric oxide-releasing sixalkoxyl biphenyl derivatives as anticancer agents. Chin. Chem. Lett., 2008, 19, 149-152.
[http://dx.doi.org/10.1016/j.cclet.2007.11.025]
[76]
Xie, J. Synthesis of schizandrin C analogs II. Synthesis of dimethy-4,4′-dimethoxy-5,6,5′,6′-dimethylendioxylate-2,2′-dicarboxylate and its isomers. Yao Xue Xue Bao, 1982, 17, 23-27.https://ci.nii.ac.jp/naid/10007377211/
[PMID: 7090822]
[77]
Wu, W.; Chen, S.; Chang, W.; Chen, C.; Lee, A. Synthesis and antihepatotoxicity of some Wuweizisu analogues. Eur. J. Med. Chem., 1992, 27, 353-358.
[http://dx.doi.org/10.1016/0223-5234(92)90148-T]
[78]
Chen, D-F.; Zhang, S-X.; Xie, L.; Xie, J-X.; Chen, K.; Kashiwada, Y.; Zhou, B-N.; Wang, P.; Cosentino, L.M.; Lee, K-H. Anti-AIDS agents--XXVI. Structure-activity correlations of gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorg. Med. Chem., 1997, 5(8), 1715-1723.
[http://dx.doi.org/10.1016/S0968-0896(97)00118-1] [PMID: 9313872]
[79]
Chang, J.; Chen, R.; Guo, R.; Dong, C.; Zhao, K. Synthesis, separation, and theoretical studies of chiral biphenyl lignans (α‐ and β‐DDB). Helv. Chim. Acta, 2003, 86, 2239-2246.
[http://dx.doi.org/10.1002/hlca.200390180]
[80]
Alam, A.; Takaguchi, Y.; Ito, H.; Yoshida, T.; Tsuboi, S. Multi-functionalization of gallic acid towards improved synthesis of α- and β-DDB. Tetrahedron, 2005, 61, 1909-1918.
[http://dx.doi.org/10.1016/j.tet.2004.11.083]
[81]
Horton, A.; Nash, K.; Tackie-Yarboi, E.; Kostrevski, A.; Novak, A.; Raghavan, A.; Tulsulkar, J.; Alhadidi, Q.; Wamer, N.; Langenderfer, B.; Royster, K.; Ducharme, M.; Hagood, K.; Post, M.; Shah, Z.A.; Schiefer, I.T. Furoxans (oxadiazole-4 N-oxides) with attenuated reactivity are neuroprotective, cross the blood brain barrier, and improve passive avoidance memory. J. Med. Chem., 2018, 61(10), 4593-4607.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00389] [PMID: 29683322]
[82]
Pauwels, E.K.; Erba, P.; Mariani, G.; Gomes, C.M. Multidrug resistance in cancer: its mechanism and its modulation. Drug News Perspect., 2007, 20(6), 371-377.
[http://dx.doi.org/10.1358/dnp.2007.20.6.1141496] [PMID: 17925891]
[83]
Bonavida, B.; Baritaki, S.; Huerta-Yepez, S.; Vega, M.I.; Chatterjee, D.; Yeung, K. Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide, 2008, 19(2), 152-157.
[http://dx.doi.org/10.1016/j.niox.2008.04.018] [PMID: 18477483]
[84]
Sullivan, R.; Graham, C.H. Chemosensitization of cancer by nitric oxide. Curr. Pharm. Des., 2008, 14(11), 1113-1123.
[http://dx.doi.org/10.2174/138161208784246225] [PMID: 18473858]
[85]
Wang, C.; Xu, F.; Niu, Y.; Wu, Y.; Sun, J.; Peng, Y.; Liang, L.; Xu, P. Synthesis and biological Evaluations of 3-benzothiazol-2-yl coumarin derivatives as MEK1 inhibitors. Lett. Drug Des. Discov., 2013, 10, 727-732.
[http://dx.doi.org/10.2174/15701808113109990012]
[86]
Chen, Y.; Liu, H-R.; Liu, H-S.; Cheng, M.; Xia, P.; Qian, K.; Wu, P-C.; Lai, C-Y.; Xia, Y.; Yang, Z-Y.; Morris-Natschke, S.L.; Lee, K.H. Antitumor agents 292. Design, synthesis and pharmacological study of S- and O-substituted 7-mercapto- or hydroxy-coumarins and chromones as potent cytotoxic agents. Eur. J. Med. Chem., 2012, 49, 74-85.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.025] [PMID: 22265685]
[87]
Zhuo, Z.; Zhi-Wei, B.; Yong, L.; Li-Qin, H.; Peng, H.; Hong-Xia, G.; Rong-Feng, H. Novel NO-releasing derivatives of betulinic acid with antitumor activity. Med. Chem. Res., 2018, 27, 1198-1205.
[http://dx.doi.org/10.1016/j.cclet.2015.04.002]
[88]
Liu, J-H.; Zhu, Z-F.; Tang, J.; Jiang, A-Q.; Hu, L-F.; Chen, L. Novel NO-releasing derivatives of betulinic acid with antitumor activity. Chin. Chem. Lett., 2015, 26, 759-762.
[http://dx.doi.org/10.1016/j.cclet.2015.04.002]
[89]
Ryu, S.Y.; Choi, S.U.; Lee, S.H.; Lee, C.O.; No, Z.; Ahn, J.W. Antitumor triterpenes from medicinal plants. Arch. Pharm. Res., 1994, 17, 375.
[http://dx.doi.org/10.1007/BF02974180]
[90]
Kashiwada, Y.; Hashimoto, F.; Cosentino, L.M.; Chen, C-H.; Garrett, P.E.; Lee, K-H. Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents. J. Med. Chem., 1996, 39(5), 1016-1017.
[http://dx.doi.org/10.1021/jm950922q] [PMID: 8676334]
[91]
Li, F.; Goila-Gaur, R.; Salzwedel, K.; Kilgore, N.R.; Reddick, M.; Matallana, C.; Castillo, A.; Zoumplis, D.; Martin, D.E.; Orenstein, J.M.; Allaway, G.P.; Freed, E.O.; Wild, C.T. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13555-13560.
[http://dx.doi.org/10.1073/pnas.2234683100] [PMID: 14573704]
[92]
Selzer, E.; Pimentel, E.; Wacheck, V.; Schlegel, W.; Pehamberger, H.; Jansen, B.; Kodym, R. Effects of betulinic acid alone and in combination with irradiation in human melanoma cells. J. Invest. Dermatol., 2000, 114(5), 935-940.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00972.x] [PMID: 10771474]
[93]
Hertel, L.; Kroin, J.; Misner, J.; Tustin, J. Synthesis of 2-deoxy-2,2-difluoro-D-ribose and 2-deoxy-2,2′-difluoro-D-ribofuranosyl nucleosides. J. Org. Chem., 1988, 53, 2406-2409.
[http://dx.doi.org/10.1021/jo00246a002]
[94]
Manegold, C.; Zatloukal, P.; Krejcy, K.; Blatter, J. Gemcitabine in non-small cell lung cancer (NSCLC). Invest. New Drugs, 2000, 18(1), 29-42.
[http://dx.doi.org/10.1023/A:1006327729228] [PMID: 10830139]
[95]
Moysan, E.; Bastiat, G.; Benoit, J-P. Gemcitabine versus Modified Gemcitabine: a review of several promising chemical modifications. Mol. Pharm., 2013, 10(2), 430-444.
[http://dx.doi.org/10.1021/mp300370t] [PMID: 22978251]
[96]
Li, D.; Wang, L.; Cai, H.; Zhang, Y.; Xu, J. Synthesis and biological evaluation of novel furozan-based nitric oxide-releasing derivatives of oridonin as potential anti-tumor agents. Molecules, 2012, 17(6), 7556-7568.
[http://dx.doi.org/10.3390/molecules17067556] [PMID: 22710829]
[97]
Kang, N.; Zhang, J-H.; Qiu, F.; Chen, S.; Tashiro, S.; Onodera, S.; Ikejima, T. Induction of G(2)/M phase arrest and apoptosis by oridonin in human laryngeal carcinoma cells. J. Nat. Prod., 2010, 73(6), 1058-1063.
[http://dx.doi.org/10.1021/np9008199] [PMID: 20496901]
[98]
Wang, L.; Li, D.; Wang, C.; Zhang, Y.; Xu, J. Recent progress in the development of natural ent-kaurane diterpenoids with anti-tumor activity. Mini Rev. Med. Chem., 2011, 11(10), 910-919.
[http://dx.doi.org/10.2174/138955711796575416] [PMID: 21781025]
[99]
Tang, Z.; Zhou, Y.; Song, Q. Synthesis of furoxans and isoxazoles via divergent [2 + 1 + 1 + 1] annulations of sulfoxonium ylides and tBuONO. Org. Lett., 2019, 21(13), 5273-5276.
[http://dx.doi.org/10.1021/acs.orglett.9b01876] [PMID: 31240937]
[100]
Gu, Z.Z.; Guo, F.C.; Zhang, P.; Qin, Y.J.; Guo, Z.X. Solvent-free mechanochemical synthesis of diacylfuroxans. Tetrahedron Lett., 2019, 60, 1687-1690.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.024]
[101]
Matsubara, R.; Katsuragi, Y.; Sakaguchi, T.; Eguchi, S.; Hayashi, M.; Ando, A. Synthesis of sulfonyloxy furoxans via hydroxyfuroxan ammonium salts. Tetrahedron, 2018, 74, 3642-3651.
[http://dx.doi.org/10.1016/j.tet.2018.05.029]
[102]
Matsubara, R.; Ando, A.; Hasebe, H.; Kim, H.; Tsuneda, T.; Hayashi, M. Synthesis and synthetic application of chloro- and bromofuroxans. J. Org. Chem., 2020, 85(9), 5959-5972.
[http://dx.doi.org/10.1021/acs.joc.0c00326] [PMID: 32242666]
[103]
Pasinszki, T.; Vass, G.; Klapstein, D.; Westwood, N.P.C. Generation, spectroscopy, and structure of cyanoformyl chloride and cyanoformyl bromide, XC(O)CN. J. Phys. Chem. A, 2012, 116(13), 3396-3403.
[http://dx.doi.org/10.1021/jp301528q] [PMID: 22409314]
[104]
Kekulé, A. Ueber die Constitution des Knallquecksilbers. Justus Liebigs Ann. Chem., 1858, 105, 279-286.
[http://dx.doi.org/10.1002/jlac.18581050304]
[105]
Ungnade, H.E.; Kissinger, L.W. Nitration of chloroglyoximes: chlorofuroxans and other nitration products 1. Tetrahedron, 1963, 19, 143-154.
[http://dx.doi.org/10.1016/S0040-4020(63)80051-4]
[106]
Finogenov, A.O.; Kulikov, A.S.; Epishina, M.A.; Ovchinnikov, I.V.; Nelyubina, Yu.V.; Makhova, N.N. The first synthesis of furoxan and 1,3,4‐oxadiazole ring ensembles. J. Heterocycl. Chem., 2013, 50(1), 135-140.
[http://dx.doi.org/10.1002/jhet.1048]
[107]
Fershtat, L.L.; Kulikov, A.S.; Ananyev, I.V.; Struchkova, M.I.; Makhova, N.N. New method for the synthesis and reactivity of (5‐R‐1,3, 4‐Oxadiazol‐2‐yl)furoxans. J. Heterocycl. Chem., 2016, 53, 102-108.
[http://dx.doi.org/10.1002/jhet.1940]
[108]
Bystrov, D.M.; Fershtat, L.L.; Makhova, N.N. Synthesis and reactivity of aminofuroxans. Chem. Heterocycl. Compd., 2019, 55, 1143-1164.
[http://dx.doi.org/10.1007/s10593-019-02593-4]
[109]
Makhova, N.N.; Fershtat, L.L. Recent advances in the synthesis and functionalization of 1,2,5-oxadiazole 2-oxides. Tetrahedron Lett., 2018, 59, 2317-2326.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.070]
[110]
Makhova, N.N.; Rakitin, O.A. Furoxans fused with heterocycles as promising donors and precursors for nitric oxide donors (microreview). Chem. Heterocycl. Compd., 2017, 53, 849-851.
[http://dx.doi.org/10.1007/s10593-017-2135-4]
[111]
Fershtat, L.L.; Makhova, N.N. Molecular hybridization tools in the development of furoxan-based NO-donor prodrugs. ChemMedChem, 2017, 12(9), 622-638.
[http://dx.doi.org/10.1002/cmdc.201700113] [PMID: 28371340]
[112]
Horton, A.; Schiefer, I.T. Pharmacokinetics and pharmacodynamics of nitric oxide mimetic agents. Nitric Oxide, 2019, 84, 69-78.
[http://dx.doi.org/10.1016/j.niox.2019.01.001] [PMID: 30641123]
[113]
Cheng, J.; He, K.; Shen, Z.; Zhang, G.; Yu, Y.; Hu, J. Nitric Oxide (NO)-releasing macromolecules: rational design and biomedical applications. Front Chem., 2019, 7, 530.
[http://dx.doi.org/10.3389/fchem.2019.00530] [PMID: 31403044]
[114]
Chiesa, J.J.; Baidanoff, F.M.; Golombek, D.A. Don’t just say no: Differential pathways and pharmacological responses to diverse nitric oxide donors. Biochem. Pharmacol., 2018, 156, 1-9.
[http://dx.doi.org/10.1016/j.bcp.2018.08.002] [PMID: 30080991]
[115]
Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA, 2018, 115(23), 5839-5848.
[http://dx.doi.org/10.1073/pnas.1804932115] [PMID: 29802228]
[116]
Xu, W.; Liu, L.Z.; Loizidou, M.; Ahmed, M.; Charles, I.G. The role of nitric oxide in cancer. Cell Res., 2002, 12(5-6), 311-320.
[http://dx.doi.org/10.1038/sj.cr.7290133] [PMID: 12528889]
[117]
Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci., 2020, 21(7), 2605.
[http://dx.doi.org/10.3390/ijms21072605] [PMID: 32283655]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy