Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

COVID-19 Pandemic: An Overview of its Origin, Current Status, and Ongoing Clinical Trials

Author(s): Kartik Majila, Seema Lal and Mohammad Faiz Ahmad*

Volume 3, Issue 3, 2022

Published on: 08 February, 2021

Article ID: e130921191206 Pages: 12

DOI: 10.2174/2666796702666210208143656

Abstract

The COVID-19 pandemic is raging across the globe, with the total active cases increasing each day. Globally over 63 million COVID-19cases and more than 1.4 million deaths have been reported to WHO. Throughout the world, academicians, clinicians and scientists are working tirelessly on developing a treatment to combat this pandemic. The origin of novel SARS-CoV-2 virus still remains foggy but is believed to have originated from a bat coronavirus RaTG13 with which it shares approximately 96% sequence similarity. In the present review, the authors have provided an overview of the COVID-19 pandemic, epidemiology, transmission, developments related to diagnosis, drugs and vaccines, along with the genetic diversity and lifecycle of the SARS-CoV-2 based on the current studies and information available.

Keywords: COVID-19, SARS-CoV-2, ACE2, spike, diagnosis, vaccine.

Graphical Abstract
[1]
Abduljalil JM, Abduljalil BM. Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: A recent view. New Microbes New Infect 2020; 35: 100672.
[http://dx.doi.org/10.1016/j.nmni.2020.100672] [PMID: 32322400]
[2]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[3]
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181(4): 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[4]
Sun J, He W-T, Wang L, et al. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol Med 2020; 26(5): 483-95.
[http://dx.doi.org/10.1016/j.molmed.2020.02.008] [PMID: 32359479]
[5]
Fung TS, Liu DX. Human coronavirus: Host-pathogen interaction. Annu Rev Microbiol 2019; 73(1): 529-57.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759] [PMID: 31226023]
[6]
Zheng J. SARS-CoV-2: An emerging coronavirus that causes a global threat. Int J Biol Sci 2020; 16(10): 1678-85.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[7]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-92.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[8]
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450-2.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[9]
Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int J Antimicrob Agents 2020; 55(5): 105951.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951] [PMID: 32234466]
[10]
Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA 2020; 117(17): 9241-3.
[http://dx.doi.org/10.1073/pnas.2004999117] [PMID: 32269081]
[11]
Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020; 7(6): 1012-3.
[http://dx.doi.org/10.1093%2Fnsr%2Fnwaa036]
[13]
Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020; 583(7816): 459-68.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[14]
Burkard C, Verheije MH, Wicht O, et al. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 2014; 10(11): e1004502.
[http://dx.doi.org/10.1371/journal.ppat.1004502] [PMID: 25375324]
[15]
Khan SA, Zia K, Ashraf S, Uddin R, Ul-Haq Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J Biomol Struct Dyn 2020; 39(7): 2607-16.
[http://dx.doi.org/10.1080/07391102.2020.1751298] [PMID: 32238094]
[16]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015; 282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[17]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[18]
Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30(4): 343-55.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[19]
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581(7807): 215-20.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[20]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-80.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[21]
Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology 2018; 517: 3-8.
[http://dx.doi.org/10.1016/j.virol.2017.12.015] [PMID: 29275820]
[22]
Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: A review of virus-host interactions. Diseases 2016; 4(3): 26.
[http://dx.doi.org/10.3390/diseases4030026] [PMID: 28933406]
[23]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[24]
Kuo L, Hurst-Hess KR, Koetzner CA, Masters PS. Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras. J Virol 2016; 90(9): 4357-68.
[http://dx.doi.org/10.1128/JVI.03212-15] [PMID: 26889024]
[25]
Spiteri G, Fielding J, Diercke M, Campese C, Enouf V, Gaymard A, et al. First cases of coronavirus disease 2019 (COVID-19) in the WHO European region, 24 January to 21 February 2020. Euro surveillance: Bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 25(9): 2000178.
[http://dx.doi.org/10.2807/1560-7917.es.2020.25.9.2000178] [PMID: 32156327]
[26]
Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ Int 2020; 139: 105730.
[http://dx.doi.org/10.1016/j.envint.2020.105730] [PMID: 32294574]
[27]
Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol 2020; 5(5): 434-5.
[http://dx.doi.org/10.1016/S2468-1253(20)30083-2] [PMID: 32199469]
[28]
Binnicker MJ. Emergence of a novel Coronavirus disease (COVID-19) and the importance of diagnostic testing: Why partnership between clinical laboratories, public health agencies, and industry is essential to control the outbreak. Clin Chem 2020; 66(5): 664-6.
[http://dx.doi.org/10.1093/clinchem/hvaa071] [PMID: 32077933]
[29]
WHO. Coronavirus disease (COVID-19) technical guidance: Laboratory testing for 2019-nCoV in humans. 2019. Available from:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance
[30]
Li T. Diagnosis and clinical management of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: An operational recommendation of Peking Union Medical College Hospital (V2.0). Emerg Microbes Infect 2020; 9(1): 582-5.
[http://dx.doi.org/10.1080/22221751.2020.1735265] [PMID: 32172669]
[31]
Azzi L, Carcano G, Gianfagna F, et al. Saliva is a reliable tool to detect SARS-CoV-2. J Infect 2020; 81(1): e45-50.
[http://dx.doi.org/10.1016/j.jinf.2020.04.005] [PMID: 32298676]
[32]
Hardydiagnostics. Anti-SARS-CoV-2 rapid test. Available from: https://www.fda.gov/media/137367/download
[33]
Carter LJ, Garner LV, Smoot JW. Li Y, Zhou Q, Saveson C J, et al. Assay techniques and test development for COVID-19 diagnosis. ACS Central Science 2020; 6(5): 591-605.
[34]
Scaria V. Diagnostics and screening. 2020. Available from:https://sites.google.com/a/rnabiology.org/vinodscaria/covid-19/diagnostics-and-screening
[35]
Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci 2020; 21(7): 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[36]
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109: 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[37]
WHO. R&D blueprint and COVID-19. Available from: https://www.who.int/teams/blueprint/covid-19
[38]
El-Aziz Abd, M. T, J.D. Stockand. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect Genet Evol 2020; 83: 104327.[http://dx.doi.org/10.1016/j.meegid.2020.104327] [PMID: 32320825]
[39]
Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006; 6(2): 67-9.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[40]
Wang M, Cao R, Zhang L. Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30: 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0]
[41]
Amirian ES, Levy JK. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 2020; 9: 100128.
[http://dx.doi.org/10.1016/j.onehlt.2020.100128] [PMID: 32258351]
[42]
Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis 2020; 35: 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[43]
Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 2019; 11(4): 326.
[http://dx.doi.org/10.3390/v11040326] [PMID: 30987343]
[44]
Yin W, Mao C, Luan X, Shen D-D, Shen Q, Su H, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020; 368(6498): 1499-504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[45]
Lei C, Qian K, Li T, et al. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun 2020; 11(1): 2070.
[http://dx.doi.org/10.1038/s41467-020-16048-4] [PMID: 32332765]
[46]
Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181(4): 905-13.e7.
http://dx.doi.org/10.1016/j.cell.2020.04.004 PMID: 32333836
[47]
Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020; 20(4): 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[48]
Cao H, Shi Y. Convalescent plasma: Possible therapy for novel coronavirus disease 2019. Transfusion 2020; 60(5): 1078-83.
[http://dx.doi.org/10.1111/trf.15797] [PMID: 32359090]
[49]
Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[50]
Zhang B, Liu S, Tan T. Huang W, Dong Y, Chen L, et al. Treatment with convalescent plasma for critically ill patients with SARS-CoV-2 infection. Chest 2020; 158(1): e9-e13.
[http://dx.doi.org/10.1016/j.chest.2020.03.039] [PMID: 32243945]
[51]
Rajendran K, Krishnasamy N, Rangarajan J, Rathinam J, Natarajan M, Ramachandran A. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J Med Virol 2020; 92(9): 1475-83.
[http://dx.doi.org/10.1002/jmv.25961] [PMID: 32356910]
[52]
Cheng Y, Wong R, Soo YOY, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24(1): 44-6.
[http://dx.doi.org/10.1007/s10096-004-1271-9] [PMID: 15616839]
[53]
Zhang N, Li C, Hu, Y, Li K, Liang J, Wang L, et al. Current development of COVID-19 diagnostics, vaccines and therapeutics. Microbes and Infection 2020; 22(6-7): 231-5.
[http://dx.doi.org/10.1016/j.micinf.2020.05.001] [PMID: 32387332]
[54]
Amanat F, Krammer F. SARS-CoV-2 vaccines: Status Report. Immunity 2020; 52(4): 583-9.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007] [PMID: 32259480]
[55]
Chen WH, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: An overview. Curr Trop Med Rep 2020; 1-4 (ahead of print).
[http://dx.doi.org/10.1007/s40475-020-00201-6] [PMID: 32219057]
[56]
Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol 2015; 13: 123-9.
[http://dx.doi.org/10.1016/j.coviro.2015.06.009] [PMID: 26184451]
[57]
Rockx B, Kuiken T, Herfst S, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 2020; 368(6494): 1012-5.
[http://dx.doi.org/10.1126/science.abb7314] [PMID: 32303590]
[58]
Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020; 583(7818): 830-3.
[http://dx.doi.org/10.1038/s41586-020-2312-y] [PMID: 32380511]

© 2024 Bentham Science Publishers | Privacy Policy