The Potential for Phospholipids in the Treatment of Airway Inflammation: An Unexplored Solution

Author(s): Varsha Komalla, Meenu Mehta, Fatima Achi, Kamal Dua, Mehra Haghi*

Journal Name: Current Molecular Pharmacology

Volume 14 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) are major inflammatory respiratory diseases. Current mainstay therapy for asthma, and chronic obstructive pulmonary disease are corticosteroids, which have well-established side effect profiles. Phospholipids (PLs) are ubiquitous, diverse compounds with varying functions such as their structural role in the cell membrane, energy storage, and cell signaling. Recent advances in understanding PLs role as inflammatory mediators in the body as well as their widespread long-standing use as carrier molecules in drug delivery demonstrate the potential application of PLs in modulating inflammatory conditions.

This review briefly explains the main mechanisms of inflammation in chronic respiratory diseases, current anti-inflammatory treatments and areas of unmet need. The structural features, roles of endogenous and exogenous phospholipids, including their use as pharmaceutical excipients, are reviewed. Current research on the immunomodulatory properties of PLs and their potential application in inflammatory diseases is the major section of this review.

Considering the roles of PLs as inflammatory mediators and their safety profile established in pharmaceutical formulations, these small molecules demonstrate great potential as candidates in respiratory inflammation. Future studies need to focus on the immunomodulatory properties and the underlying mechanisms of PLs in respiratory inflammatory diseases.

Keywords: Airway inflammation, Phospholipids (PLs), respiratory diseases, inflammation, immunomodulatory properties, immune cell infiltration.

[1]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[2]
Larsen, G.L.; Holt, P.G. The concept of airway inflammation. Am J Respir Crit Care Med., 2000, 162(2 Pt. 2), S2-S6.
[3]
Plopper, C.G. Structure and Function of the Lung.Respiratory System; Jones, T.C.; Dungworth, D.L.; Mohr, U., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1996, pp. 135-150.
[http://dx.doi.org/10.1007/978-3-642-61042-4_13]
[4]
Parker, D.; Prince, A. Innate immunity in the respiratory epithelium. Am. J. Respir. Cell Mol. Biol., 2011, 45(2), 189-201.
[http://dx.doi.org/10.1165/rcmb.2011-0011RT] [PMID: 21330463]
[5]
Sharma, L.; Feng, J.; Britto, C.J.; Dela Cruz, C.S. Mechanisms of Epithelial Immunity Evasion by Respiratory Bacterial Pathogens. Front. Immunol., 2020, 11(91), 91.
[http://dx.doi.org/10.3389/fimmu.2020.00091] [PMID: 32117248]
[6]
Vareille, M.; Kieninger, E.; Edwards, M.R.; Regamey, N. The airway epithelium: soldier in the fight against respiratory viruses. Clin. Microbiol. Rev., 2011, 24(1), 210-229.
[http://dx.doi.org/10.1128/CMR.00014-10] [PMID: 21233513]
[7]
Han, S.; Mallampalli, R.K. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections. Ann. Am. Thorac. Soc., 2015, 12(5), 765-774.
[http://dx.doi.org/10.1513/AnnalsATS.201411-507FR] [PMID: 25742123]
[8]
Cook, P.C.; MacDonald, A.S. Dendritic cells in lung immunopathology. Semin. Immunopathol., 2016, 38(4), 449-460.
[http://dx.doi.org/10.1007/s00281-016-0571-3] [PMID: 27256370]
[9]
Guilliams, M.; Lambrecht, B.N.; Hammad, H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol., 2013, 6(3), 464-473.
[http://dx.doi.org/10.1038/mi.2013.14] [PMID: 23549447]
[10]
Lambrecht, B.N.; Prins, J.B.; Hoogsteden, H.C. Lung dendritic cells and host immunity to infection. Eur. Respir. J., 2001, 18(4), 692-704.
[PMID: 11716176]
[11]
Byrne, A.J.; Mathie, S.A.; Gregory, L.G.; Lloyd, C.M. Pulmonary macrophages: key players in the innate defence of the airways. Thorax, 2015, 70(12), 1189-1196.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207020] [PMID: 26286722]
[12]
Moldoveanu, B.; Otmishi, P.; Jani, P.; Walker, J.; Sarmiento, X.; Guardiola, J.; Saad, M.; Yu, J. Inflammatory mechanisms in the lung. J. Inflamm. Res., 2009, 2, 1-11.
[PMID: 22096348]
[13]
Garth, J.; Barnes, J.W.; Krick, S. Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int. J. Mol. Sci., 2018, 19(11), 3402.
[http://dx.doi.org/10.3390/ijms19113402] [PMID: 30380761]
[14]
Barnes, P.J. Th2 cytokines and asthma: an introduction. Respir. Res., 2001, 2(2), 64-65.
[http://dx.doi.org/10.1186/rr39] [PMID: 11686866]
[15]
Cruvinel, W.M.; Mesquita Júnior, D.; Araújo, J.A.P.; Catelan, T.T.T.; Souza, A.W.S.d.; Silva, N.P.d.; Andrade, L.E.C. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev. Bras. Reumatol., 2010, 50, 434-447.
[http://dx.doi.org/10.1590/S0482-50042010000400008]
[16]
Mehta, M.; Chellappan, D.K.; Wich, P.R.; Hansbro, N.G.; Hansbro, P.M.; Dua, K. miRNA nanotherapeutics: potential and challenges in respiratory disorders. Future Med. Chem., 2020, 12(11), 987-990.
[http://dx.doi.org/10.4155/fmc-2020-0066] [PMID: 32270706]
[17]
Kudo, M.; Ishigatsubo, Y.; Aoki, I. Pathology of asthma. Front. Microbiol., 2013, 4(263), 263.
[PMID: 24032029]
[18]
Mehta, M.; Deeksha, ; Tewari, D.; Gupta, G.; Awasthi, R.; Singh, H.; Pandey, P.; Chellappan, D.K.; Wadhwa, R.; Collet, T.; Hansbro, P.M.; Kumar, S.R.; Thangavelu, L.; Negi, P.; Dua, K.; Satija, S. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem. Biol. Interact., 2019, 308, 206-215.
[http://dx.doi.org/10.1016/j.cbi.2019.05.028] [PMID: 31136735]
[19]
Chellappan, D.K.; Yee, L.W.; Xuan, K.Y.; Kunalan, K.; Rou, L.C.; Jean, L.S.; Ying, L.Y.; Wie, L.X.; Chellian, J.; Mehta, M.; Satija, S.; Singh, S.K.; Gulati, M.; Dureja, H.; Da Silva, M.W.; Tambuwala, M.M.; Gupta, G.; Paudel, K.R.; Wadhwa, R.; Hansbro, P.M.; Dua, K. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev. Res., 2020, 81(4), 419-436.
[http://dx.doi.org/10.1002/ddr.21648] [PMID: 32048757]
[20]
Ishmael, F. T. The inflammatory response in the pathogenesis of asthma. J. Am. Osteopath. Assoc., 2011, 111(11_suppl_7), S11-S17.
[21]
Murdoch, J.R.; Lloyd, C.M. Chronic inflammation and asthma. Mutat. Res., 2010, 690(1-2), 24-39.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.09.005] [PMID: 19769993]
[22]
Pelaia, G.; Vatrella, A.; Busceti, M.T.; Gallelli, L.; Calabrese, C.; Terracciano, R.; Maselli, R. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediators Inflamm., 2015, 2015, 879783.
[http://dx.doi.org/10.1155/2015/879783] [PMID: 25878402]
[23]
Brooks, C.R.; Van Dalen, C.J.; Harding, E.; Hermans, I.F.; Douwes, J. Effects of treatment changes on asthma phenotype prevalence and airway neutrophil function. BMC Pulm. Med., 2017, 17(1), 169.
[http://dx.doi.org/10.1186/s12890-017-0511-6] [PMID: 29202821]
[24]
Gao, H.; Ying, S.; Dai, Y. Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J. Immunol. Res., 2017, 2017, 3743048-3743048.
[http://dx.doi.org/10.1155/2017/3743048] [PMID: 29359169]
[25]
Zhang, J.; Bai, C. Elevated serum interleukin-8 level as a preferable biomarker for identifying uncontrolled asthma and glucocorticosteroid responsiveness. Tanaffos, 2017, 16(4), 260-269.
[PMID: 29849682]
[26]
Wang, Y-H.; Wills-Karp, M. The potential role of interleukin-17 in severe asthma. Curr. Allergy Asthma Rep., 2011, 11(5), 388-394.
[http://dx.doi.org/10.1007/s11882-011-0210-y] [PMID: 21773747]
[27]
Barnes, P.J.; Shapiro, S.D.; Pauwels, R.A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur. Respir. J., 2003, 22(4), 672-688.
[http://dx.doi.org/10.1183/09031936.03.00040703] [PMID: 14582923]
[28]
Wadhwa, R.; Aggarwal, T.; Malyla, V.; Kumar, N.; Gupta, G.; Chellappan, D.K.; Dureja, H.; Mehta, M.; Satija, S.; Gulati, M.; Maurya, P.K.; Collet, T.; Hansbro, P.M.; Dua, K. Identification of biomarkers and genetic approaches toward chronic obstructive pulmonary disease. J. Cell. Physiol., 2019, 234(10), 16703-16723.
[http://dx.doi.org/10.1002/jcp.28482] [PMID: 30912142]
[29]
Lugade, A.A.; Bogner, P.N.; Thatcher, T.H.; Sime, P.J.; Phipps, R.P.; Thanavala, Y. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection. J. Immunol., 2014, 192(11), 5226-5235.
[http://dx.doi.org/10.4049/jimmunol.1302584] [PMID: 24752444]
[30]
Mehta, M.; Satija, S.; Paudel, K.R.; Liu, G.; Chellappan, D.K.; Hansbro, P.M.; Dua, K. Incipient need of targeting airway remodeling using advanced drug delivery in chronic respiratory diseases. Future Med. Chem., 2020, 12(10), 873-875.
[http://dx.doi.org/10.4155/fmc-2020-0091] [PMID: 32352313]
[31]
Mehta, M.; Dhanjal, D.S.; Paudel, K.R.; Singh, B.; Gupta, G.; Rajeshkumar, S.; Thangavelu, L.; Tambuwala, M.M.; Bakshi, H.A.; Chellappan, D.K.; Pandey, P.; Dureja, H.; Charbe, N.B.; Singh, S.K.; Shukla, S.D.; Nammi, S.; Aljabali, A.A.; Wich, P.R.; Hansbro, P.M.; Satija, S.; Dua, K. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology, 2020, 28(4), 795-817.
[http://dx.doi.org/10.1007/s10787-020-00698-3] [PMID: 32189104]
[32]
Barnes, P.J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol., 2016, 138(1), 16-27.
[http://dx.doi.org/10.1016/j.jaci.2016.05.011] [PMID: 27373322]
[33]
Rovina, N.; Koutsoukou, A.; Koulouris, N.G. Inflammation and immune response in COPD: where do we stand? Mediators Inflamm., 2013, 2013, 413735.
[http://dx.doi.org/10.1155/2013/413735] [PMID: 23956502]
[34]
Nie, L.; Xiang, R.; Zhou, W.; Lu, B.; Cheng, D.; Gao, J. Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice. Respir. Res., 2008, 9(1), 82.
[http://dx.doi.org/10.1186/1465-9921-9-82] [PMID: 19087279]
[35]
Roesch, E.A.; Nichols, D.P.; Chmiel, J.F. Inflammation in cystic fibrosis: An update. Pediatr. Pulmonol., 2018, 53(S3), S30-S50.
[http://dx.doi.org/10.1002/ppul.24129] [PMID: 29999593]
[36]
Elizur, A.; Cannon, C.L.; Ferkol, T.W. Airway inflammation in cystic fibrosis. Chest, 2008, 133(2), 489-495.
[http://dx.doi.org/10.1378/chest.07-1631] [PMID: 18252915]
[37]
Puljak, L.; Kilic, G. Emerging roles of chloride channels in human diseases. Biochimica et Biophysica Acta (BBA) -. Molecular Basis of Disease, 2006, 1762(4), 404-413.
[http://dx.doi.org/10.1016/j.bbadis.2005.12.008]
[38]
Dunican, E.M.; Fahy, J.V. Asthma and corticosteroids: time for a more precise approach to treatment. Eur. Respir. J., 2017, 49(6), 1701167.
[http://dx.doi.org/10.1183/13993003.01167-2017] [PMID: 28663322]
[39]
Ross, K.R.; Chmiel, J.F.; Konstan, M.W. The role of inhaled corticosteroids in the management of cystic fibrosis. Paediatr. Drugs, 2009, 11(2), 101-113.
[http://dx.doi.org/10.2165/00148581-200911020-00002] [PMID: 19301932]
[40]
Wadhwa, R.; Dua, K.; Adcock, I.M.; Horvat, J.C.; Kim, R.Y.; Hansbro, P.M. Cellular mechanisms underlying steroid-resistant asthma. Eur. Respir. Rev., 2019, 28(153), 190096.
[http://dx.doi.org/10.1183/16000617.0096-2019] [PMID: 31636089]
[41]
Williams, D.M. Clinical Pharmacology of Corticosteroids. Respir. Care, 2018, 63(6), 655-670.
[http://dx.doi.org/10.4187/respcare.06314] [PMID: 29794202]
[42]
Barnes, P.J. Inhaled Corticosteroids. Pharmaceuticals (Basel), 2010, 3(3), 514-540.
[http://dx.doi.org/10.3390/ph3030514] [PMID: 27713266]
[43]
De Boeck, K.; De Baets, F.; Malfroot, A.; Desager, K.; Mouchet, F.; Proesmans, M. Do inhaled corticosteroids impair long-term growth in prepubertal cystic fibrosis patients? Eur. J. Pediatr., 2007, 166(1), 23-28.
[http://dx.doi.org/10.1007/s00431-006-0198-9] [PMID: 16799799]
[44]
Uyan, Z.S. ÜNlÜGÜZel ÜStÜN, G.; Haklar, G.; ÇAkir, E.; Oktem, S.; Ersu, R.; KaradaĞ, B. T.; KarakoÇ, F.; DaĞLi, E., Effect of inhaled steroids on clinical and inflammatory parameters in children with cystic fibrosis. Turk. J. Med. Sci., 2017, 47(5), 1432-1440.
[http://dx.doi.org/10.3906/sag-1509-101] [PMID: 29151314]
[45]
West, N.E.; Flume, P.A. Unmet needs in cystic fibrosis: the next steps in improving outcomes. Expert Rev. Respir. Med., 2018, 12(7), 585-593.
[http://dx.doi.org/10.1080/17476348.2018.1483723] [PMID: 29855230]
[46]
Balfour-Lynn, I.M. Anti-inflammatory approaches to cystic fibrosis airways disease. Curr. Opin. Pulm. Med., 2007, 13(6), 522-528.
[http://dx.doi.org/10.1097/MCP.0b013e3282ef9806] [PMID: 17901759]
[47]
Ramsahai, J.M.; Wark, P.A. Appropriate use of oral corticosteroids for severe asthma. Med. J. Aust., 2018, 209(S2), S18-S21.
[http://dx.doi.org/10.5694/mja18.00134] [PMID: 30453868]
[48]
Walters, J. A. E.; Tan, D. J.; White, C. J.; Wood‐Baker, R. Different durations of corticosteroid therapy for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev., 2018, 3(3), CD006897.
[http://dx.doi.org/10.1002/14651858.CD006897.pub4]
[49]
Kuroki, M.; Miyamoto, S.; Morisaki, T.; Yotsumoto, F.; Shirasu, N.; Taniguchi, Y.; Soma, G. Biological response modifiers used in cancer biotherapy. Anticancer Res., 2012, 32(6), 2229-2233.
[PMID: 22641656]
[50]
Chan, J.C.N.; Chan, A.T.C. Biologics and biosimilars: What, why and how? ESMO Open, 2017, 2(1), e000180.
[http://dx.doi.org/10.1136/esmoopen-2017-000180]
[51]
Strand, V.; Kimberly, R.; Isaacs, J.D. Biologic therapies in rheumatology: lessons learned, future directions. Nat. Rev. Drug Discov., 2007, 6(1), 75-92.
[http://dx.doi.org/10.1038/nrd2196] [PMID: 17195034]
[52]
Pelaia, C.; Calabrese, C.; Vatrella, A.; Busceti, M.T.; Garofalo, E.; Lombardo, N.; Terracciano, R.; Pelaia, G. Benralizumab: From the basic mechanism of action to the potential use in the biological therapy of severe eosinophilic asthma. BioMed Res. Int., 2018, 2018, 4839230-4839230.
[http://dx.doi.org/10.1155/2018/4839230] [PMID: 29862274]
[53]
Sécher, T.; Guilleminault, L.; Reckamp, K.; Amanam, I.; Plantier, L.; Heuzé-Vourc’h, N. Therapeutic antibodies: A new era in the treatment of respiratory diseases? Pharmacol. Ther., 2018, 189, 149-172.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.003] [PMID: 29730443]
[54]
Nixon, J.; Newbold, P.; Mustelin, T.; Anderson, G.P.; Kolbeck, R. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation. Pharmacol. Ther., 2017, 169, 57-77.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.016] [PMID: 27773786]
[55]
Pelaia, C.; Calabrese, C.; Terracciano, R.; de Blasio, F.; Vatrella, A.; Pelaia, G. Omalizumab, the first available antibody for biological treatment of severe asthma: more than a decade of real-life effectiveness. Ther. Adv. Respir. Dis., 2018, 12, 1753466618810192.
[http://dx.doi.org/10.1177/1753466618810192] [PMID: 30400762]
[56]
Pelaia, G.; Gallelli, L.; Renda, T.; Romeo, P.; Busceti, M.T.; Grembiale, R.D.; Maselli, R.; Marsico, S.A.; Vatrella, A. Update on optimal use of omalizumab in management of asthma. J. Asthma Allergy, 2011, 4, 49-59.
[http://dx.doi.org/10.2147/JAA.S14520] [PMID: 21792319]
[57]
McGhee, S.A. Biologics in pediatric lung disease. Curr. Opin. Pediatr., 2018, 30(3), 366-371.
[http://dx.doi.org/10.1097/MOP.0000000000000614] [PMID: 29538045]
[58]
McGregor, M.C.; Krings, J.G.; Nair, P.; Castro, M. Role of biologics in asthma. Am. J. Respir. Crit. Care Med., 2019, 199(4), 433-445.
[http://dx.doi.org/10.1164/rccm.201810-1944CI] [PMID: 30525902]
[59]
McCracken, J.L.; Tripple, J.W.; Calhoun, W.J. Biologic therapy in the management of asthma. Curr. Opin. Allergy Clin. Immunol., 2016, 16(4), 375-382.
[http://dx.doi.org/10.1097/ACI.0000000000000284] [PMID: 27362324]
[60]
Dinos, G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol., 2017, 174(18), 2967-2983.
[http://dx.doi.org/10.1111/bph.13936] [PMID: 28664582]
[61]
David S., E. C. Forced expiratory volume; StatPearls Publishing: Treasure Island, FL, 2020.
[62]
Szczesniak, R.; Heltshe, S.L.; Stanojevic, S.; Mayer-Hamblett, N. Use of FEV1 in cystic fibrosis epidemiologic studies and clinical trials: A statistical perspective for the clinical researcher. J. Cyst. Fibros., 2017, 16(3), 318-326.
[http://dx.doi.org/10.1016/j.jcf.2017.01.002] [PMID: 28117136]
[63]
Whittaker, H.R.; Bloom, C.; Morgan, A.; Jarvis, D.; Kiddle, S.J.; Quint, J.K. Accelerated FEV1 decline and risk of cardiovascular disease and mortality in a primary care population of COPD patients. Eur. Respir. J., 2020, 57(3), 2000918.
[http://dx.doi.org/10.1183/13993003.00918-2020] [PMID: 32972984]
[64]
Hoffman, L.R.; Ramsey, B.W. Cystic fibrosis therapeutics: the road ahead. Chest, 2013, 143(1), 207-213.
[http://dx.doi.org/10.1378/chest.12-1639] [PMID: 23276843]
[65]
Chmiel, J.F.; Konstan, M.W.; Elborn, J.S. Antibiotic and anti-inflammatory therapies for cystic fibrosis. Cold Spring Harb. Perspect. Med., 2013, 3(10), a009779-a009779.
[http://dx.doi.org/10.1101/cshperspect.a009779] [PMID: 23880054]
[66]
Rennard, S.I.; Dale, D.C.; Donohue, J.F.; Kanniess, F.; Magnussen, H.; Sutherland, E.R.; Watz, H.; Lu, S.; Stryszak, P.; Rosenberg, E.; Staudinger, H. CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2015, 191(9), 1001-1011.
[http://dx.doi.org/10.1164/rccm.201405-0992OC] [PMID: 25695403]
[67]
Chung, K.F. p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest, 2011, 139(6), 1470-1479.
[http://dx.doi.org/10.1378/chest.10-1914] [PMID: 21652557]
[68]
Watz, H. Next generation of anti-inflammatory therapy for COPD? Eur. Respir. J., 2017, 50(4), 1702084.
[http://dx.doi.org/10.1183/13993003.02084-2017] [PMID: 29074550]
[69]
Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta, 2011, 1811(11), 637-647.
[http://dx.doi.org/10.1016/j.bbalip.2011.06.009] [PMID: 21704189]
[70]
Mauerhofer, C.; Philippova, M.; Oskolkova, O.V.; Bochkov, V.N. Hormetic and anti-inflammatory properties of oxidized phospholipids. Mol. Aspects Med., 2016, 49, 78-90.
[http://dx.doi.org/10.1016/j.mam.2016.02.003] [PMID: 26948981]
[71]
Feige, E.; Mendel, I.; George, J.; Yacov, N.; Harats, D. Modified phospholipids as anti-inflammatory compounds. Curr. Opin. Lipidol., 2010, 21(6), 525-529.
[http://dx.doi.org/10.1097/MOL.0b013e32833f2fcb] [PMID: 20827191]
[72]
Bretscher, P.; Egger, J.; Shamshiev, A.; Trötzmüller, M.; Köfeler, H.; Carreira, E.M.; Kopf, M.; Freigang, S. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol. Med., 2015, 7(5), 593-607.
[http://dx.doi.org/10.15252/emmm.201404702] [PMID: 25770125]
[73]
Lordan, R.; Tsoupras, A.; Zabetakis, I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules, 2017, 22(11), 1964.
[http://dx.doi.org/10.3390/molecules22111964] [PMID: 29135918]
[74]
Zhang, T-T.; Xu, J.; Wang, Y-M.; Xue, C-H. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog. Lipid Res., 2019, 75, 100997.
[http://dx.doi.org/10.1016/j.plipres.2019.100997] [PMID: 31442526]
[75]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. There Are Three Common Types of Membrane Lipids.Biochemistry, 5th ed; W. H. Freeman: New York, 2002.
[76]
Blanco, A.; Blanco, G. Lipids. Medical Biochemistry; Blanco, A.; Blanco, G., Eds.; Academic Press, 2017, pp. 99-119.
[http://dx.doi.org/10.1016/B978-0-12-803550-4.00005-7]
[77]
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci., 2015, 10(2), 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[78]
O’Leary, E.I.; Jiang, Z.; Strub, M-P.; Lee, J.C. Effects of phosphatidylcholine membrane fluidity on the conformation and aggregation of N-terminally acetylated α-synuclein. J. Biol. Chem., 2018, 293(28), 11195-11205.
[http://dx.doi.org/10.1074/jbc.RA118.002780] [PMID: 29853639]
[79]
Weinberger, B.; Hirsch, D.; Yin, K.; Spur, B.W. Lipid mediators and lung function. Comparative Biology of the Normal Lung, 2nd ed; Parent, R.A., Ed.; Academic Press: San Diego, 2015, pp. 403-421.
[http://dx.doi.org/10.1016/B978-0-12-404577-4.00021-7]
[80]
Dean, J.M.; Lodhi, I.J. Structural and functional roles of ether lipids. Protein Cell, 2018, 9(2), 196-206.
[http://dx.doi.org/10.1007/s13238-017-0423-5] [PMID: 28523433]
[81]
Moser, A.B.; Steinberg, S.J.; Watkins, P.A.; Moser, H.W.; Ramaswamy, K.; Siegmund, K.D.; Lee, D.R.; Ely, J.J.; Ryder, O.A.; Hacia, J.G. Human and great ape red blood cells differ in plasmalogen levels and composition. Lipids Health Dis., 2011, 10, 101.
[http://dx.doi.org/10.1186/1476-511X-10-101] [PMID: 21679470]
[82]
Vance, J.E. Phospholipid synthesis and transport in mammalian cells. Traffic, 2015, 16(1), 1-18.
[http://dx.doi.org/10.1111/tra.12230] [PMID: 25243850]
[83]
Zemski Berry, K.A.; Murphy, R.C.; Kosmider, B.; Mason, R.J. Lipidomic characterization and localization of phospholipids in the human lung. J. Lipid Res., 2017, 58(5), 926-933.
[http://dx.doi.org/10.1194/jlr.M074955] [PMID: 28280112]
[84]
Whitsett, J.A.; Wert, S.E.; Weaver, T.E. Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu. Rev. Med., 2010, 61, 105-119.
[http://dx.doi.org/10.1146/annurev.med.60.041807.123500] [PMID: 19824815]
[85]
Kuronuma, K.; Mitsuzawa, H.; Takeda, K.; Nishitani, C.; Chan, E.D.; Kuroki, Y.; Nakamura, M.; Voelker, D.R. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J. Biol. Chem., 2009, 284(38), 25488-25500.
[http://dx.doi.org/10.1074/jbc.M109.040832] [PMID: 19584052]
[86]
Postle, A.D. LIPIDS | Composition and Role of Phospholipids.Encyclopedia of Human Nutrition, 2nd ed; Caballero, B., Ed.; Elsevier: Oxford, 2005, pp. 132-142.
[http://dx.doi.org/10.1016/B0-12-226694-3/00193-9]
[87]
Jeon, G.W. Surfactant preparations for preterm infants with respiratory distress syndrome: past, present, and future. Korean J. Pediatr., 2019, 62(5), 155-161.
[http://dx.doi.org/10.3345/kjp.2018.07185] [PMID: 30744318]
[88]
Ninio, E. Lipid Mediators. Encyclopedia of Cancer; Schwab, M., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011, pp. 2051-2054.
[http://dx.doi.org/10.1007/978-3-642-16483-5_3372]
[89]
Rouzer, C.A.; Marnett, L.J. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem. Rev., 2011, 111(10), 5899-5921.
[http://dx.doi.org/10.1021/cr2002799] [PMID: 21923193]
[90]
Wymann, M.P.; Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 162-176.
[http://dx.doi.org/10.1038/nrm2335] [PMID: 18216772]
[91]
Küllenberg, D.; Taylor, L.A.; Schneider, M.; Massing, U. Health effects of dietary phospholipids. Lipids Health Dis., 2012, 11, 3-3.
[http://dx.doi.org/10.1186/1476-511X-11-3] [PMID: 22221489]
[92]
Ninio, E. Phospholipid mediators in the vessel wall: involvement in atherosclerosis. Curr. Opin. Clin. Nutr. Metab. Care, 2005, 8(2), 123-131.
[http://dx.doi.org/10.1097/00075197-200503000-00004] [PMID: 15716789]
[93]
Chang, M-C.; Lee, J-J.; Chen, Y-J.; Lin, S-I.; Lin, L-D.; Jein-Wen Liou, E.; Huang, W-L.; Chan, C-P.; Huang, C-C.; Jeng, J-H. Lysophosphatidylcholine induces cytotoxicity/apoptosis and IL-8 production of human endothelial cells: Related mechanisms. Oncotarget, 2017, 8(63), 106177-106189.
[http://dx.doi.org/10.18632/oncotarget.22425] [PMID: 29290940]
[94]
Rosa Neto, J.C.; Lira, F.S.; Roy, S.; Festuccia, W. Immunometabolism: Molecular Mechanisms, Diseases, and Therapies 2016. Mediators Inflamm., 2017, 2017, 8230298-8230298.
[http://dx.doi.org/10.1155/2017/8230298] [PMID: 28757685]
[95]
Ghidoni, R.; Caretti, A.; Signorelli, P. Role of sphingolipids in the pathobiology of lung inflammation. Mediators Inflamm., 2015, 2015, 487508.
[http://dx.doi.org/10.1155/2015/487508] [PMID: 26770018]
[96]
Rhee, S.H. Lipopolysaccharide: basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intest. Res., 2014, 12(2), 90-95.
[http://dx.doi.org/10.5217/ir.2014.12.2.90] [PMID: 25349574]
[97]
Gomez-Muñoz, A.; Presa, N.; Gomez-Larrauri, A.; Rivera, I-G.; Trueba, M.; Ordoñez, M. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog. Lipid Res., 2016, 61, 51-62.
[http://dx.doi.org/10.1016/j.plipres.2015.09.002] [PMID: 26703189]
[98]
Chen, H.; Li, Z.; Dong, L.; Wu, Y.; Shen, H.; Chen, Z. Lipid metabolism in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2019, 14, 1009-1018.
[http://dx.doi.org/10.2147/COPD.S196210] [PMID: 31190786]
[99]
Freigang, S. The regulation of inflammation by oxidized phospholipids. Eur. J. Immunol., 2016, 46(8), 1818-1825.
[http://dx.doi.org/10.1002/eji.201545676] [PMID: 27312261]
[100]
Bochkov, V.N.; Oskolkova, O.V.; Birukov, K.G.; Levonen, A-L.; Binder, C.J.; Stöckl, J. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal., 2010, 12(8), 1009-1059.
[http://dx.doi.org/10.1089/ars.2009.2597] [PMID: 19686040]
[101]
Choudhary, V.; Uaratanawong, R.; Patel, R.R.; Patel, H.; Bao, W.; Hartney, B.; Cohen, E.; Chen, X.; Zhong, Q.; Isales, C.M.; Bollag, W.B. Phosphatidylglycerol inhibits toll-like receptor-mediated inflammation by danger-associated molecular patterns. J. Invest. Dermatol., 2019, 139(4), 868-877.
[http://dx.doi.org/10.1016/j.jid.2018.10.021] [PMID: 30391260]
[102]
Karki, P.; Birukov, K.G. Oxidized phospholipids in healthy and diseased lung endothelium. Cells, 2020, 9(4), 981.
[http://dx.doi.org/10.3390/cells9040981] [PMID: 32326516]
[103]
Otto, F.; Brezesinski, G.; van Hoogevest, P.; Neubert, R.H.H. Physicochemical characterization of natural phospholipid excipients with varying PC content. Colloids Surf. A Physicochem. Eng. Asp., 2018, 558, 291-296.
[http://dx.doi.org/10.1016/j.colsurfa.2018.08.037]
[104]
van Hoogevest, P.; Wendel, A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol., 2014, 116(9), 1088-1107.
[http://dx.doi.org/10.1002/ejlt.201400219] [PMID: 25400504]
[105]
Alavi, M.; Karimi, N.; Safaei, M. Application of Various Types of Liposomes in Drug Delivery Systems. Adv. Pharm. Bull., 2017, 7(1), 3-9.
[http://dx.doi.org/10.15171/apb.2017.002] [PMID: 28507932]
[106]
Fadok, V.A.; Bratton, D.L.; Frasch, S.C.; Warner, M.L.; Henson, P.M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ., 1998, 5(7), 551-562.
[http://dx.doi.org/10.1038/sj.cdd.4400404] [PMID: 10200509]
[107]
Wu, Z.; Ma, H.M.; Kukita, T.; Nakanishi, Y.; Nakanishi, H. Phosphatidylserine-containing liposomes inhibit the differentiation of osteoclasts and trabecular bone loss. J. Immunol., 2010, 184(6), 3191-3201.
[http://dx.doi.org/10.4049/jimmunol.0803609] [PMID: 20176740]
[108]
Schuliga, M. NF-kappaB Signaling in Chronic Inflammatory Airway Disease. Biomolecules, 2015, 5(3), 1266-1283.
[http://dx.doi.org/10.3390/biom5031266] [PMID: 26131974]
[109]
Ou, Z.; Zhao, J.; Zhu, L.; Huang, L.; Ma, Y.; Ma, C.; Luo, C.; Zhu, Z.; Yuan, Z.; Wu, J.; Li, R.; Yi, J. Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice. Biomed. Pharmacother., 2019, 118, 109347.
[http://dx.doi.org/10.1016/j.biopha.2019.109347] [PMID: 31545273]
[110]
Huang, G-J.; Pan, C-H.; Wu, C-H. Sclareol exhibits anti-inflammatory activity in both lipopolysaccharide-stimulated macrophages and the λ-carrageenan-induced paw edema model. J. Nat. Prod., 2012, 75(1), 54-59.
[http://dx.doi.org/10.1021/np200512a] [PMID: 22250858]
[111]
Hajhashemi, V.; Sadeghi, H.; Minaiyan, M.; Movahedian, A.; Talebi, A. Central and peripheral anti-inflammatory effects of maprotiline on carrageenan-induced paw edema in rats. Inflamm. Res., 2010, 59(12), 1053-1059.
[http://dx.doi.org/10.1007/s00011-010-0225-1] [PMID: 20574769]
[112]
Ramos, G.C.; Fernandes, D.; Charão, C.T.; Souza, D.G.; Teixeira, M.M.; Assreuy, J. Apoptotic mimicry: phosphatidylserine liposomes reduce inflammation through activation of peroxisome proliferator-activated receptors (PPARs) in vivo. Br. J. Pharmacol., 2007, 151(6), 844-850.
[http://dx.doi.org/10.1038/sj.bjp.0707302] [PMID: 17533418]
[113]
Stokes, C.A.; Kaur, R.; Edwards, M.R.; Mondhe, M.; Robinson, D.; Prestwich, E.C.; Hume, R.D.; Marshall, C.A.; Perrie, Y.; O’Donnell, V.B.; Harwood, J.L.; Sabroe, I.; Parker, L.C. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes. Mucosal Immunol., 2016, 9(5), 1303-1316.
[http://dx.doi.org/10.1038/mi.2015.137] [PMID: 26906404]
[114]
Barnes, P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest., 2008, 118(11), 3546-3556.
[http://dx.doi.org/10.1172/JCI36130] [PMID: 18982161]
[115]
Guan, X.; Hou, Y.; Sun, F.; Yang, Z.; Li, C. Dysregulated chemokine signaling in cystic fibrosis lung disease: A potential therapeutic target. Curr. Drug Targets, 2016, 17(13), 1535-1544.
[http://dx.doi.org/10.2174/1389450117666151209120516] [PMID: 26648071]
[116]
Furse, S. Is phosphatidylglycerol essential for terrestrial life? J. Chem. Biol., 2016, 10(1), 1-9.
[http://dx.doi.org/10.1007/s12154-016-0159-3] [PMID: 28101250]
[117]
Xie, D.; Choudhary, V.; Seremwe, M.; Edwards, J.G.; Wang, A.; Emmons, A.C.; Bollag, K.A.; Johnson, M.H.; Bollag, W.B. Soy phosphatidylglycerol reduces inflammation in a contact irritant ear edema mouse model in vivo. J. Pharmacol. Exp. Ther., 2018, 366(1), 1-8.
[http://dx.doi.org/10.1124/jpet.117.244756] [PMID: 29695409]
[118]
Chen, W-W.; Chao, Y-J.; Chang, W-H.; Chan, J-F.; Hsu, Y-H.H. Phosphatidylglycerol incorporates into cardiolipin to improve mitochondrial activity and inhibits inflammation.S Sci. Rep., 2018, 8(1), 4919.
[http://dx.doi.org/10.1038/s41598-018-23190-z] [PMID: 29559686]
[119]
Numata, M.; Chu, H.W.; Dakhama, A.; Voelker, D.R. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 320-325.
[http://dx.doi.org/10.1073/pnas.0909361107] [PMID: 20080799]
[120]
Kandasamy, P.; Zarini, S.; Chan, E.D.; Leslie, C.C.; Murphy, R.C.; Voelker, D.R. Pulmonary surfactant phosphatidylglycerol inhibits Mycoplasma pneumoniae-stimulated eicosanoid production from human and mouse macrophages. J. Biol. Chem., 2011, 286(10), 7841-7853.
[http://dx.doi.org/10.1074/jbc.M110.170241] [PMID: 21205826]
[121]
Zuo, L.; Lucas, K.; Fortuna, C.A.; Chuang, C-C.; Best, T.M. Molecular regulation of toll-like receptors in asthma and COPD. Front. Physiol., 2015, 6, 312-312.
[http://dx.doi.org/10.3389/fphys.2015.00312] [PMID: 26617525]
[122]
Haw, T.J.; Starkey, M.R.; Pavlidis, S.; Fricker, M.; Arthurs, A.L.; Nair, P.M.; Liu, G.; Hanish, I.; Kim, R.Y.; Foster, P.S.; Horvat, J.C.; Adcock, I.M.; Hansbro, P.M. Toll-like receptor 2 and 4 have opposing roles in the pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 314(2), L298-L317.
[PMID: 29025711]
[123]
Cui, Z.; Houweling, M. Phosphatidylcholine and cell death. Biochim. Biophys. Acta, 2002, 1585(2), 87-96.
[http://dx.doi.org/10.1016/S1388-1981(02)00328-1]
[124]
Lugea, A.; Mourelle, M.; Guarner, F.; Domingo, A.; Salas, A.; Malagelada, J.R. Phosphatidylcholines as mediators of adaptive cytoprotection of the rat duodenum. Gastroenterology, 1994, 107(3), 720-727.
[http://dx.doi.org/10.1016/0016-5085(94)90119-8] [PMID: 8076757]
[125]
Dial, E.J.; Zayat, M.; Lopez-Storey, M.; Tran, D.; Lichtenberger, L. Oral phosphatidylcholine preserves the gastrointestinal mucosal barrier during LPS-induced inflammation. Shock, 2008, 30(6), 729-733.
[http://dx.doi.org/10.1097/SHK.0b013e318173e8d4] [PMID: 18496240]
[126]
Dunjic, B.S.; Axelson, J.; Ar’Rajab, A.; Larsson, K.; Bengmark, S. Gastroprotective capability of exogenous phosphatidylcholine in experimentally induced chronic gastric ulcers in rats. Scand. J. Gastroenterol., 1993, 28(1), 89-94.
[http://dx.doi.org/10.3109/00365529309096051] [PMID: 8430278]
[127]
Ehehalt, R.; Wagenblast, J.; Erben, G.; Lehmann, W.D.; Hinz, U.; Merle, U.; Stremmel, W. Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoElectrospray-tandem mass spectrometry. Scand. J. Gastroenterol., 2004, 39(8), 737-742.
[http://dx.doi.org/10.1080/00365520410006233] [PMID: 15513358]
[128]
Stremmel, W.; Merle, U.; Zahn, A.; Autschbach, F.; Hinz, U.; Ehehalt, R. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut, 2005, 54(7), 966-971.
[http://dx.doi.org/10.1136/gut.2004.052316] [PMID: 15951544]
[129]
Stremmel, W.; Ehehalt, R.; Autschbach, F.; Karner, M. Phosphatidylcholine for steroid-refractory chronic ulcerative colitis: a randomized trial. Ann. Intern. Med., 2007, 147(9), 603-610.
[http://dx.doi.org/10.7326/0003-4819-147-9-200711060-00004] [PMID: 17975182]
[130]
Treede, I.; Braun, A.; Jeliaskova, P.; Giese, T.; Füllekrug, J.; Griffiths, G.; Stremmel, W.; Ehehalt, R. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol., 2009, 9(1), 53.
[http://dx.doi.org/10.1186/1471-230X-9-53] [PMID: 19594939]
[131]
Chen, M.; Pan, H.; Dai, Y.; Zhang, J.; Tong, Y.; Huang, Y.; Wang, M.; Huang, H. Phosphatidylcholine regulates NF-κB activation in attenuation of LPS-induced inflammation: evidence from in vitro study. Anim. Cells Syst., 2018, 22(1), 7-14.
[http://dx.doi.org/10.1080/19768354.2017.1405072]
[132]
Erős, G.; Ibrahim, S.; Siebert, N.; Boros, M.; Vollmar, B. Oral phosphatidylcholine pretreatment alleviates the signs of experimental rheumatoid arthritis. Arthritis Res. Ther., 2009, 11(2), R43.
[http://dx.doi.org/10.1186/ar2651] [PMID: 19296835]
[133]
Pan, W.; Hao, W.T.; Xu, H.W.; Qin, S.P.; Li, X.Y.; Liu, X.M.; Sun, F.F.; Li, H.; Tang, R.X.; Zheng, K.Y. Polyene Phosphatidylcholine inhibited the inflammatory response in LPS-stimulated macrophages and ameliorated the adjuvant-induced rat arthritis. Am. J. Transl. Res., 2017, 9(9), 4206-4216.
[PMID: 28979694]
[134]
Eros, G.; Varga, G.; Váradi, R.; Czóbel, M.; Kaszaki, J.; Ghyczy, M.; Boros, M. Anti-inflammatory action of a phosphatidylcholine, phosphatidylethanolamine and N-acylphosphatidylethanolamine-enriched diet in carrageenan-induced pleurisy. Eur. Surg. Res., 2009, 42(1), 40-48.
[http://dx.doi.org/10.1159/000167856] [PMID: 18987473]
[135]
Seimetz, M.; Parajuli, N.; Pichl, A.; Veit, F.; Kwapiszewska, G.; Weisel, F.C.; Milger, K.; Egemnazarov, B.; Turowska, A.; Fuchs, B.; Nikam, S.; Roth, M.; Sydykov, A.; Medebach, T.; Klepetko, W.; Jaksch, P.; Dumitrascu, R.; Garn, H.; Voswinckel, R.; Kostin, S.; Seeger, W.; Schermuly, R.T.; Grimminger, F.; Ghofrani, H.A.; Weissmann, N. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell, 2011, 147(2), 293-305.
[http://dx.doi.org/10.1016/j.cell.2011.08.035] [PMID: 22000010]
[136]
Jung, Y.Y.; Nam, Y.; Park, Y.S.; Lee, H.S.; Hong, S.A.; Kim, B.K.; Park, E.S.; Chung, Y.H.; Jeong, J.H. Protective effect of phosphatidylcholine on lipopolysaccharide-induced acute inflammation in multiple organ injury. Korean J. Physiol. Pharmacol., 2013, 17(3), 209-216.
[http://dx.doi.org/10.4196/kjpp.2013.17.3.209] [PMID: 23776397]
[137]
Yan, J.J.; Jung, J.S.; Lee, J.E.; Lee, J.; Huh, S.O.; Kim, H.S.; Jung, K.C.; Cho, J.Y.; Nam, J.S.; Suh, H.W.; Kim, Y.H.; Song, D.K. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat. Med., 2004, 10(2), 161-167.
[http://dx.doi.org/10.1038/nm989] [PMID: 14716308]
[138]
Gwinn, W.M.; Kapita, M.C.; Wang, P.M.; Cesta, M.F.; Martin, W.J., II Synthetic liposomes are protective from bleomycin-induced lung toxicity. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(2), L207-L217.
[http://dx.doi.org/10.1152/ajplung.00149.2010] [PMID: 21602446]
[139]
Dvoriantchikova, G.; Agudelo, C.; Hernandez, E.; Shestopalov, V.I.; Ivanov, D. Phosphatidylserine-containing liposomes promote maximal survival of retinal neurons after ischemic injury. J. Cereb. Blood Flow Metab., 2009, 29(11), 1755-1759.
[http://dx.doi.org/10.1038/jcbfm.2009.95] [PMID: 19675564]
[140]
Ishikado, A.; Nishio, Y.; Yamane, K.; Mukose, A.; Morino, K.; Murakami, Y.; Sekine, O.; Makino, T.; Maegawa, H.; Kashiwagi, A. Soy phosphatidylcholine inhibited TLR4-mediated MCP-1 expression in vascular cells. Atherosclerosis, 2009, 205(2), 404-412.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.01.010] [PMID: 19215923]
[141]
Son, Y.; Lee, J.H.; Kim, N-H.; Surh, N-Y.; Kim, E-C.; Chung, H-T.; Kang, D.G.; Pae, H-O. Dilinoleoylphosphatidylcholine induces the expression of the anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Biofactors, 2010, 36(3), 210-215.
[http://dx.doi.org/10.1002/biof.87] [PMID: 20336709]
[142]
Cao, Q.; Mak, K.M.; Lieber, C.S. DLPC decreases TGF-β1-induced collagen mRNA by inhibiting p38 MAPK in hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283(5), G1051-G1061.
[http://dx.doi.org/10.1152/ajpgi.00128.2002] [PMID: 12381518]
[143]
Roskoski, R., Jr ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res., 2012, 66(2), 105-143.
[http://dx.doi.org/10.1016/j.phrs.2012.04.005] [PMID: 22569528]
[144]
Banerjee, A.; Koziol-White, C.; Panettieri, R., Jr p38 MAPK inhibitors, IKK2 inhibitors, and TNFα inhibitors in COPD. Curr. Opin. Pharmacol., 2012, 12(3), 287-292.
[http://dx.doi.org/10.1016/j.coph.2012.01.016] [PMID: 22365729]
[145]
Raia, V.; Maiuri, L.; Ciacci, C.; Ricciardelli, I.; Vacca, L.; Auricchio, S.; Cimmino, M.; Cavaliere, M.; Nardone, M.; Cesaro, A.; Malcolm, J.; Quaratino, S.; Londei, M. Inhibition of p38 mitogen activated protein kinase controls airway inflammation in cystic fibrosis. Thorax, 2005, 60(9), 773-780.
[http://dx.doi.org/10.1136/thx.2005.042564] [PMID: 15994249]
[146]
Matera, M.G.; Calzetta, L.; Cazzola, M. TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm. Pharmacol. Ther., 2010, 23(2), 121-128.
[http://dx.doi.org/10.1016/j.pupt.2009.10.007] [PMID: 19853667]
[147]
Vicenova, M.; Nechvatalova, K.; Chlebova, K.; Kucerova, Z.; Leva, L.; Stepanova, H.; Faldyna, M. Evaluation of in vitro and in vivo anti-inflammatory activity of biologically active phospholipids with anti-neoplastic potential in porcine model. BMC Complement. Altern. Med., 2014, 14(1), 339.
[http://dx.doi.org/10.1186/1472-6882-14-339] [PMID: 25234616]
[148]
Norris, H.G.; Porter, M.C.; Jiang, C.; Blesso, N.C. Dietary milk sphingomyelin reduces systemic inflammation in diet-induced obese mice and inhibits lps activity in macrophages. Beverages, 2017, 3(3), 37.
[149]
Lordan, R.; Redfern, S.; Tsoupras, A.; Zabetakis, I. Inflammation and cardiovascular disease: Are marine phospholipids the answer? Food Funct., 2020, 11(4), 2861-2885.
[http://dx.doi.org/10.1039/C9FO01742A] [PMID: 32270798]
[150]
Che, H.; Li, Q.; Zhang, T.; Ding, L.; Zhang, L.; Shi, H.; Yanagita, T.; Xue, C.; Chang, Y.; Wang, Y. A comparative study of EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine on Aβ42 induced cognitive deficiency in a rat model of Alzheimer’s disease. Food Funct., 2018, 9(5), 3008-3017.
[http://dx.doi.org/10.1039/C8FO00643A] [PMID: 29774334]
[151]
Saresella, M.; La Rosa, F.; Piancone, F.; Zoppis, M.; Marventano, I.; Calabrese, E.; Rainone, V.; Nemni, R.; Mancuso, R.; Clerici, M. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol. Neurodegener., 2016, 11, 23-23.
[http://dx.doi.org/10.1186/s13024-016-0088-1] [PMID: 26939933]
[152]
Che, H.; Zhou, M.; Zhang, T.; Zhang, L.; Ding, L.; Yanagita, T.; Xu, J.; Xue, C.; Wang, Y. Comparative study of the effects of phosphatidylcholine rich in DHA and EPA on Alzheimer’s disease and the possible mechanisms in CHO-APP/PS1 cells and SAMP8 mice. Food Funct., 2018, 9(1), 643-654.
[http://dx.doi.org/10.1039/C7FO01342F] [PMID: 29292421]
[153]
Bredesen, D.E. Neurodegeneration in Alzheimer’s disease: caspases and synaptic element interdependence. Mol. Neurodegener., 2009, 4, 27-27.
[http://dx.doi.org/10.1186/1750-1326-4-27] [PMID: 19558683]
[154]
Gu, L.; Guo, Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J. Neurochem., 2013, 126(3), 305-311.
[http://dx.doi.org/10.1111/jnc.12202] [PMID: 23406382]
[155]
McElvaney, O.J.; Zaslona, Z.; Becker-Flegler, K.; Palsson-McDermott, E.M.; Boland, F.; Gunaratnam, C.; Gulbins, E.; O’Neill, L.A.; Reeves, E.P.; McElvaney, N.G. Specific Inhibition of the NLRP3 Inflammasome as an Antiinflammatory Strategy in Cystic Fibrosis. Am. J. Respir. Crit. Care Med., 2019, 200(11), 1381-1391.
[http://dx.doi.org/10.1164/rccm.201905-1013OC] [PMID: 31454256]
[156]
Pandey, K.C.; De, S.; Mishra, P.K. Role of Proteases in Chronic Obstructive Pulmonary Disease. Front. Pharmacol., 2017, 8(512), 512.
[http://dx.doi.org/10.3389/fphar.2017.00512] [PMID: 28848433]
[157]
Hartmann, P.; Szabó, A.; Erős, G.; Gurabi, D.; Horváth, G.; Németh, I.; Ghyczy, M.; Boros, M. Anti-inflammatory effects of phosphatidylcholine in neutrophil leukocyte-dependent acute arthritis in rats. Eur. J. Pharmacol., 2009, 622(1-3), 58-64.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.012] [PMID: 19766625]
[158]
Melo, T.; Marques, S.S.; Ferreira, I.; Cruz, M.T.; Domingues, P.; Segundo, M.A.; Domingues, M.R.M. New Insights into the Anti-Inflammatory and Antioxidant Properties of Nitrated Phospholipids. Lipids, 2018, 53(1), 117-131.
[http://dx.doi.org/10.1002/lipd.12007] [PMID: 29488638]
[159]
Toita, R.; Fujita, S.; Kang, J.H. Macrophage Uptake Behavior and Anti-inflammatory Response of Bovine Brain- or Soybean-derived Phosphatidylserine Liposomes. J. Oleo Sci., 2018, 67(9), 1131-1135.
[http://dx.doi.org/10.5650/jos.ess18097] [PMID: 30111684]
[160]
Ke, Y.; Zebda, N.; Oskolkova, O.; Afonyushkin, T.; Berdyshev, E.; Tian, Y.; Meng, F.; Sarich, N.; Bochkov, V.N.; Wang, J.M.; Birukova, A.A.; Birukov, K.G. Anti-Inflammatory Effects of OxPAPC Involve Endothelial Cell-Mediated Generation of LXA4. Circ. Res., 2017, 121(3), 244-257.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310308] [PMID: 28522438]
[161]
Pierrat, P.; Kereselidze, D.; Lux, M.; Lebeau, L.; Pons, F. Enhanced gene delivery to the lung using biodegradable polyunsaturated cationic phosphatidylcholine-detergent conjugates. Int. J. Pharm., 2016, 511(1), 205-218.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.012] [PMID: 27418568]
[162]
Aghasafari, P.; George, U.; Pidaparti, R. A review of inflammatory mechanism in airway diseases. Inflamm. Res., 2019, 68(1), 59-74.
[http://dx.doi.org/10.1007/s00011-018-1191-2] [PMID: 30306206]
[163]
Barnes, P.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol., 2006, 148(3), 245-254.
[http://dx.doi.org/10.1038/sj.bjp.0706736] [PMID: 16604091]
[164]
Peprah, K.M.S. A review of clinical effectiveness [Internet]. Canadian Agency for Drugs and Technologies in Health: Ottawa (ON), 2019.
[165]
Pavord, I.D. Biologics and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol., 2018, 141(6), 1983-1991.
[http://dx.doi.org/10.1016/j.jaci.2018.04.020] [PMID: 29729941]
[166]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[167]
Nekkanti, V.; Kalepu, S. Recent Advances in Liposomal Drug Delivery: A Review. Pharm. Nanotechnol., 2015, 3, 35-55.
[http://dx.doi.org/10.2174/2211738503666150709173905]
[168]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics, 2017, 9(2), 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[169]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[170]
Komalla, V.; Allam, V.S.R.R.; Kwok, P.C.L.; Sheikholeslami, B.; Owen, L.; Jaffe, A.; Waters, S.A.; Mohammad, S.; Oliver, B.G.; Chen, H.; Haghi, M. A phospholipid-based formulation for the treatment of airway inflammation in chronic respiratory diseases. Eur. J. Pharm. Biopharm., 2020, 157, 47-58.
[http://dx.doi.org/10.1016/j.ejpb.2020.09.017] [PMID: 33065219]
[171]
Komalla, V.; Sheikholeslami, B.; Li, G.; Bokshi, B.; Chan, Y.L.; Ung, A.; Gregory Oliver, B.; Chen, H.; Haghi, M. Impact of A Cargo-Less Liposomal Formulation on Dietary Obesity-Related Metabolic Disorders in Mice. Int. J. Mol. Sci., 2020, 21(20), E7640.
[http://dx.doi.org/10.3390/ijms21207640] [PMID: 33076522]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 3
Year: 2021
Published on: 07 February, 2021
Page: [333 - 349]
Pages: 17
DOI: 10.2174/1874467214666210208114439
Price: $65

Article Metrics

PDF: 154
HTML: 3