Therapies of Hematological Malignancies: An Overview of the Potential Targets and Their Inhibitors

Author(s): Suvankar Banerjee, Sk. Abdul Amin, Tarun Jha*

Journal Name: Current Chemical Biology

Volume 15 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The term “hematological malignancy” means a cluster of cancer and tumor conditions, including leukemia, lymphoma, myeloproliferative neoplasm, lymphoproliferative disorders, etc., involved with circulatory organs like blood, bone marrow, lymph, and lymph nodes.

Introduction: The increase in the number of hematological malignancy-related cases in our modern society urges suitable treatment of such disease. In this current era, there is still a major deficiency in the number of suitable chemotherapeutic agents for the treatment of hematological malignancies.

Methods: The researchers were successful in identifying various cellular, extracellular proteins, and cytokines, as well as their involvement in different hematological malignancies via epigenetic modulation and regulation of other proteins and signaling pathways. Here, we have discussed the structural aspects, connection, and pathophysiological contributions of a group of different cellular and extracellular proteins that are regulated and/or have a significant influence on the progression of different hematological malignancies along with their potent inhibitors.

Result and Conclusion: The correlation of physiological proteins with cancerous hematological conditions has been discussed here. It can be crucial for the development of potent inhibitors as chemotherapeutic agents to contest such malignancies. This review will also be useful in the chemotherapeutic agent development by providing crucial information about such hematological malignancy-related proteins and their inhibitors. The repurposed drugs with potential for anticancer applications are also discussed.

Keywords: Hematological malignancies, PIM kinase, MMPs, HDACs, DNMT, tyrosine kinase, RUNX.

[1]
Gallipoli P, Huntly BJP. Novel epigenetic therapies in hematological malignancies: Current status and beyond. Semin Cancer Biol 2018; 51: 198-210.
[http://dx.doi.org/10.1016/j.semcancer.2017.07.005] [PMID: 28782607]
[2]
Button E, Chan RJ, Chambers S, Butler J, Yates P. A systematic review of prognostic factors at the end of life for people with a hematological malignancy. BMC Cancer 2017; 17(1): 213.
[http://dx.doi.org/10.1186/s12885-017-3207-7] [PMID: 28335744]
[3]
Irigoyen M, García-Ruiz JC, Berra E. The hypoxia signalling pathway in haematological malignancies. Oncotarget 2017; 8(22): 36832-44.
[http://dx.doi.org/10.18632/oncotarget.15981] [PMID: 28415662]
[4]
Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 2006; 169(2): 338-46.
[http://dx.doi.org/10.2353/ajpath.2006.060312] [PMID: 16877336]
[5]
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127(20): 2391-405.
[http://dx.doi.org/10.1182/blood-2016-03-643544] [PMID: 27069254]
[6]
Rodriguez-Abreu D, Bordoni A, Zucca E. Epidemiology of hematological malignancies. Ann Oncol 2007; 18(Suppl. 1): i3-8.
[http://dx.doi.org/10.1093/annonc/mdl443] [PMID: 17311819]
[7]
Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127(20): 2375-90.
[http://dx.doi.org/10.1182/blood-2016-01-643569] [PMID: 26980727]
[9]
Asati V, Mahapatra DK, Bharti SK. PIM kinase inhibitors: Structural and pharmacological perspectives. Eur J Med Chem 2019; 172: 95-108.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.050] [PMID: 30954777]
[10]
Biswas S, Rao CM. Epigenetics in cancer: Fundamentals and Beyond. Pharmacol Ther 2017; 173: 118-34.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.011] [PMID: 28188812]
[11]
Asnafi AA, Farshchi N, Khosravi A, Ketabchi N, Behzad MM, Shahrabi S. Significance of genetic polymorphisms in hematological malignancies: implications of risk factors for prognosis and relapse. memo 2018; 11: 330-44.
[12]
Gaidzik VI, Teleanu V, Papaemmanuil E, et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 2016; 30(11): 2160-8.
[http://dx.doi.org/10.1038/leu.2016.126] [PMID: 27137476]
[13]
Barbui T, Thiele J, Gisslinger H, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J 2018; 8(2): 15.
[http://dx.doi.org/10.1038/s41408-018-0054-y] [PMID: 29426921]
[14]
Oncology nursing society. Overview of hematologic malignancies. Available from: . https://www.ons.org/sites/default/files/publication_pdfs/HM%20Ch%20%201.pdf
[15]
Taylor J, Xiao W, Abdel-Wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017; 130(4): 410-23.
[http://dx.doi.org/10.1182/blood-2017-02-734541] [PMID: 28600336]
[16]
Ramdass B, Chowdhary A, Koka PS. Hematological malignancies: disease pathophysiology of leukemic stem cells. J Stem Cells 2013; 8(3-4): 151-87.
[PMID: 24699024]
[18]
Saultz JN, Garzon R. Acute myeloid leukemia: a concise review. J Clin Med 2016; 5(3): 33.
[http://dx.doi.org/10.3390/jcm5030033] [PMID: 26959069]
[19]
De Kouchkovsky I, Abdul-Hay M. ‘Acute myeloid leukemia: a comprehensive review and 2016 update’. Blood Cancer J 2016; 6(7): e441.
[http://dx.doi.org/10.1038/bcj.2016.50] [PMID: 27367478]
[20]
Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114(5): 937-51.
[http://dx.doi.org/10.1182/blood-2009-03-209262] [PMID: 19357394]
[21]
Lindsley RC, Mar BG, Mazzola E, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 2015; 125(9): 1367-76.
[http://dx.doi.org/10.1182/blood-2014-11-610543] [PMID: 25550361]
[22]
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-7.
[http://dx.doi.org/10.1038/nm0797-730] [PMID: 9212098]
[23]
Campos L, Guyotat D, Archimbaud E, et al. Surface marker expression in adult acute myeloid leukaemia: correlations with initial characteristics, morphology and response to therapy. Br J Haematol 1989; 72(2): 161-6.
[http://dx.doi.org/10.1111/j.1365-2141.1989.tb07677.x] [PMID: 2757962]
[24]
Launder TM, Bray RA, Stempora L, Chenggis ML, Farhi DC. Lymphoid-associated antigen expression by acute myeloid leukemia. Am J Clin Pathol 1996; 106(2): 185-91.
[http://dx.doi.org/10.1093/ajcp/106.2.185] [PMID: 8712171]
[25]
Granatowicz A, Piatek CI, Moschiano E, El-Hemaidi I, Armitage JD, Akhtari M. An overview and update of chronic myeloid leukemia for primary care physicians. Korean J Fam Med 2015; 36(5): 197-202.
[http://dx.doi.org/10.4082/kjfm.2015.36.5.197] [PMID: 26435808]
[26]
Houshmand M, Simonetti G, Circosta P, et al. Chronic myeloid leukemia stem cells. Leukemia 2019; 33(7): 1543-56.
[http://dx.doi.org/10.1038/s41375-019-0490-0] [PMID: 31127148]
[27]
Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 2003; 17(7): 1211-62.
[http://dx.doi.org/10.1038/sj.leu.2402912] [PMID: 12835715]
[28]
Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 2010; 120(7): 2254-64.
[http://dx.doi.org/10.1172/JCI41246] [PMID: 20592475]
[29]
Shanbhag S, Ambinder RF. Hodgkin lymphoma: A review and update on recent progress. CA Cancer J Clin 2018; 68(2): 116-32.
[http://dx.doi.org/10.3322/caac.21438] [PMID: 29194581]
[30]
Hjalgrim H, Askling J, Rostgaard K, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med 2003; 349(14): 1324-32.
[http://dx.doi.org/10.1056/NEJMoa023141] [PMID: 14523140]
[31]
Landgren O, Engels EA, Pfeiffer RM, et al. Autoimmunity and susceptibility to Hodgkin lymphoma: a population-based case-control study in Scandinavia. J Natl Cancer Inst 2006; 98(18): 1321-30.
[http://dx.doi.org/10.1093/jnci/djj361] [PMID: 16985251]
[32]
Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 2017; 7(6): e577.
[http://dx.doi.org/10.1038/bcj.2017.53] [PMID: 28665419]
[33]
Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer 2015; 121(15): 2517-28.
[http://dx.doi.org/10.1002/cncr.29383] [PMID: 25891003]
[34]
Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446(7137): 758-64.
[http://dx.doi.org/10.1038/nature05690] [PMID: 17344859]
[35]
Alvarnas JC, Brown PA, Aoun P, et al. Acute lymphoid leukemia, version 2.2015. J Natl Compr Canc Netw 2015; 13(10): 1240-79.
[http://dx.doi.org/10.6004/jnccn.2015.0153] [PMID: 26483064]
[36]
Jabbour EJ, Faderl S, Kantarjian HM. Adult acute lymphoblastic leukemia. Mayo Clin Proc 2005; 80(11): 1517-27.
[http://dx.doi.org/10.4065/80.11.1517] [PMID: 16295033]
[37]
Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33(4): 451-8.
[http://dx.doi.org/10.1111/j.1365-2141.1976.tb03563.x] [PMID: 188440]
[38]
Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17(12): 3835-49.
[http://dx.doi.org/10.1200/JCO.1999.17.12.3835] [PMID: 10577857]
[39]
Bosch F, Dalla-Favera R. Chronic lymphocytic leukaemia: from genetics to treatment. Nat Rev Clin Oncol 2019; 16(11): 684-701.
[http://dx.doi.org/10.1038/s41571-019-0239-8] [PMID: 31278397]
[40]
Kipps TJ, Stevenson FK, Wu CJ, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers 2017; 3: 16096.
[http://dx.doi.org/10.1038/nrdp.2016.96] [PMID: 28102226]
[41]
Agathangelidis A, Darzentas N, Hadzidimitriou A, et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 2012; 119(19): 4467-75.
[http://dx.doi.org/10.1182/blood-2011-11-393694] [PMID: 22415752]
[42]
Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343(26): 1910-6.
[http://dx.doi.org/10.1056/NEJM200012283432602] [PMID: 11136261]
[43]
Damm F, Mylonas E, Cosson A, et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 2014; 4(9): 1088-101.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0104] [PMID: 24920063]
[44]
Kyle RA, Rajkumar SV. Multiple myeloma. Blood 2008; 111(6): 2962-72.
[http://dx.doi.org/10.1182/blood-2007-10-078022] [PMID: 18332230]
[45]
Gerecke C, Fuhrmann S, Strifler S, Schmidt-Hieber M, Einsele H, Knop S. The Diagnosis and Treatment of Multiple Myeloma. Dtsch Arztebl Int 2016; 113(27-28): 470-6.
[http://dx.doi.org/10.3238/arztebl.2016.0470] [PMID: 27476706]
[46]
Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 2002; 346(8): 564-9.
[http://dx.doi.org/10.1056/NEJMoa01133202] [PMID: 11856795]
[47]
Nishihori T, Shain K. Insights on genomic and molecular alterations in multiple myeloma and their incorporation towards risk-adapted treatment strategy: Concise clinical review. Int J Genomics 2017; 2017: 6934183.
[http://dx.doi.org/10.1155/2017/6934183] [PMID: 29250532]
[48]
Moreau P, Attal M, Garban F, et al. SAKK; IFM Group. Heterogeneity of t(4;14) in multiple myeloma. Long-term follow-up of 100 cases treated with tandem transplantation in IFM99 trials. Leukemia 2007; 21(9): 2020-4.
[http://dx.doi.org/10.1038/sj.leu.2404832] [PMID: 17625611]
[49]
Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood 2012; 119(9): 2100-5.
[http://dx.doi.org/10.1182/blood-2011-11-390658] [PMID: 22234687]
[50]
Li KK, Luo LF, Shen Y, Xu J, Chen Z, Chen SJ. DNA methyltransferases in hematologic malignancies. Semin Hematol 2013; 50(1): 48-60.
[http://dx.doi.org/10.1053/j.seminhematol.2013.01.005] [PMID: 23507483]
[51]
Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer 2015; 15(3): 152-65.
[http://dx.doi.org/10.1038/nrc3895] [PMID: 25693834]
[52]
Brunetti L, Gundry MC, Goodell MA. DNMT3A in Leukemia. Cold Spring Harb Perspect Med 2017; 7(2): a030320.
[http://dx.doi.org/10.1101/cshperspect.a030320] [PMID: 28003281]
[53]
Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998; 19(3): 219-20.
[http://dx.doi.org/10.1038/890] [PMID: 9662389]
[54]
Song J, Rechkoblit O, Bestor TH, Patel DJ. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 2011; 331(6020): 1036-40.
[http://dx.doi.org/10.1126/science.1195380] [PMID: 21163962]
[55]
Callebaut I, Courvalin JC, Mornon JP. The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 1999; 446(1): 189-93.
[http://dx.doi.org/10.1016/S0014-5793(99)00132-5] [PMID: 10100640]
[56]
Schaefer M, Lyko F. Solving the Dnmt2 enigma. Chromosoma 2010; 119(1): 35-40.
[http://dx.doi.org/10.1007/s00412-009-0240-6] [PMID: 19730874]
[57]
Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007; 449(7159): 248-51.
[http://dx.doi.org/10.1038/nature06146] [PMID: 17713477]
[58]
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99(3): 247-57.
[http://dx.doi.org/10.1016/S0092-8674(00)81656-6] [PMID: 10555141]
[59]
Mizuno S, Chijiwa T, Okamura T, et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001; 97(5): 1172-9.
[http://dx.doi.org/10.1182/blood.V97.5.1172] [PMID: 11222358]
[60]
Challen GA, Sun D, Jeong M, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2011; 44(1): 23-31.
[http://dx.doi.org/10.1038/ng.1009] [PMID: 22138693]
[61]
Yan X-J, Xu J, Gu Z-H, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43(4): 309-15.
[http://dx.doi.org/10.1038/ng.788] [PMID: 21399634]
[62]
Shen Y, Zhu YM, Fan X, et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood 2011; 118(20): 5593-603.
[http://dx.doi.org/10.1182/blood-2011-03-343988] [PMID: 21881046]
[63]
Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 2009; 5(4): 442-9.
[http://dx.doi.org/10.1016/j.stem.2009.08.016] [PMID: 19796624]
[64]
Bonifer C, Levantini E, Kouskoff V, Lacaud G. Runx1 structure and function in blood cell development. Adv Exp Med Biol 2017; 962: 65-81.
[http://dx.doi.org/10.1007/978-981-10-3233-2_5] [PMID: 28299651]
[65]
Samarakkody AS, Shin NY, Cantor AB. Role of RUNX family transcription factors in DNA damage response. Mol Cells 2020; 43(2): 99-106.
[PMID: 32024352]
[66]
Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood 2017; 129(15): 2070-82.
[http://dx.doi.org/10.1182/blood-2016-10-687830] [PMID: 28179279]
[67]
Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93(8): 3444-9.
[http://dx.doi.org/10.1073/pnas.93.8.3444] [PMID: 8622955]
[68]
Levanon D, Bettoun D, Harris-Cerruti C, et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 2002; 21(13): 3454-63.
[http://dx.doi.org/10.1093/emboj/cdf370] [PMID: 12093746]
[69]
Levanon D, Groner Y. Runx3-deficient mouse strains circa 2008: resemblance and dissimilarity. Blood Cells Mol Dis 2009; 43(1): 1-5.
[http://dx.doi.org/10.1016/j.bcmd.2009.01.009] [PMID: 19233693]
[70]
Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y. Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 2001; 20(4): 723-33.
[http://dx.doi.org/10.1093/emboj/20.4.723] [PMID: 11179217]
[71]
Yan J, Liu Y, Lukasik SM, Speck NA, Bushweller JH. CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat Struct Mol Biol 2004; 11(9): 901-6.
[http://dx.doi.org/10.1038/nsmb819] [PMID: 15322525]
[72]
Challen GA, Goodell MA. Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp Hematol 2010; 38(5): 403-16.
[http://dx.doi.org/10.1016/j.exphem.2010.02.011] [PMID: 20206228]
[73]
Imai Y, Kurokawa M, Tanaka K, et al. TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem Biophys Res Commun 1998; 252(3): 582-9.
[http://dx.doi.org/10.1006/bbrc.1998.9705] [PMID: 9837750]
[74]
Wu D, Ozaki T, Yoshihara Y, Kubo N, Nakagawara A. Runt-related transcription factor 1 (RUNX1) stimulates tumor suppressor p53 protein in response to DNA damage through complex formation and acetylation. J Biol Chem 2013; 288(2): 1353-64.
[http://dx.doi.org/10.1074/jbc.M112.402594] [PMID: 23148227]
[75]
Chi XZ, Kim J, Lee YH, et al. Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Cancer Res 2009; 69(20): 8111-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1057] [PMID: 19808967]
[76]
Ozaki T, Wu D, Sugimoto H, Nagase H, Nakagawara A. Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis 2013; 4: e610.
[http://dx.doi.org/10.1038/cddis.2013.127] [PMID: 23618908]
[77]
Ozaki T, Nakagawara A, Nagase H. RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response. Int J Genomics 2013; 2013: 271347.
[http://dx.doi.org/10.1155/2013/271347] [PMID: 24078903]
[78]
Roos A, Satterfield L, Zhao S, et al. Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. Br J Cancer 2015; 113(9): 1289-97.
[http://dx.doi.org/10.1038/bjc.2015.305] [PMID: 26528706]
[79]
Yan M, Kanbe E, Peterson LF, et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 2006; 12(8): 945-9.
[http://dx.doi.org/10.1038/nm1443] [PMID: 16892037]
[80]
Pulikkan JA, Madera D, Xue L, et al. Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling. Blood 2012; 120(4): 868-79.
[http://dx.doi.org/10.1182/blood-2012-03-414649] [PMID: 22613795]
[81]
Chou FS, Griesinger A, Wunderlich M, et al. The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO. Blood 2012; 120(4): 709-19.
[http://dx.doi.org/10.1182/blood-2012-01-403212] [PMID: 22337712]
[82]
Nakagawa M, Shimabe M, Watanabe-Okochi N, et al. AML1/RUNX1 functions as a cytoplasmic attenuator of NF-κB signaling in the repression of myeloid tumors. Blood 2011; 118(25): 6626-37.
[http://dx.doi.org/10.1182/blood-2010-12-326710] [PMID: 22021368]
[83]
Klampfer L, Zhang J, Zelenetz AO, Uchida H, Nimer SD. The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA 1996; 93(24): 14059-64.
[http://dx.doi.org/10.1073/pnas.93.24.14059] [PMID: 8943060]
[84]
Grisolano JL, O’Neal J, Cain J, Tomasson MH. An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 2003; Therapies of Hematological Malignancies Current Chemical Biology, 2021, Vol. 15, No. 1 43. 100(16): 9506-11.
[http://dx.doi.org/10.1073/pnas.1531730100] [PMID: 12881486]
[85]
Wee HJ, Voon DC, Bae SC, Ito Y. PEBP2-beta/CBF-beta-dependent phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis. Blood 2008; 112(9): 3777-87.
[http://dx.doi.org/10.1182/blood-2008-01-134122] [PMID: 18695000]
[86]
Gunji H, Waga K, Nakamura F, et al. TEL/AML1 shows dominant-negative effects over TEL as well as AML1. Biochem Biophys Res Commun 2004; 322(2): 623-30.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.169] [PMID: 15325275]
[87]
Keane NA, Reidy M, Natoni A, Raab MS, O’Dwyer M. Targeting the Pim kinases in multiple myeloma. Blood Cancer J 2015; 5: e325.
[http://dx.doi.org/10.1038/bcj.2015.46] [PMID: 26186558]
[88]
Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7: 95.
[http://dx.doi.org/10.1186/s13045-014-0095-z] [PMID: 25491234]
[89]
Pratt WB. The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 1997; 37: 297-326.
[http://dx.doi.org/10.1146/annurev.pharmtox.37.1.297] [PMID: 9131255]
[90]
Mizuno K, Shirogane T, Shinohara A, Iwamatsu A, Hibi M, Hirano T. Regulation of Pim-1 by Hsp90. Biochem Biophys Res Commun 2001; 281(3): 663-9.
[http://dx.doi.org/10.1006/bbrc.2001.4405] [PMID: 11237709]
[91]
Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 2011; 11(1): 23-34.
[http://dx.doi.org/10.1038/nrc2986] [PMID: 21150935]
[92]
Lu J, Zavorotinskaya T, Dai Y, et al. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood 2013; 122(9): 1610-20.
[http://dx.doi.org/10.1182/blood-2013-01-481457] [PMID: 23818547]
[93]
Berns A, Mikkers H, Krimpenfort P, Allen J, Scheijen B, Jonkers J. Identification and characterization of collaborating oncogenes in compound mutant mice. Cancer Res 1999; 59(7)(Suppl.): 1773s-7s.
[PMID: 10197595]
[94]
Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 2008; 27(35): 4809-19.
[http://dx.doi.org/10.1038/onc.2008.123] [PMID: 18438430]
[95]
Hsieh AC, Costa M, Zollo O, et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 2010; 17(3): 249-61.
[http://dx.doi.org/10.1016/j.ccr.2010.01.021] [PMID: 20227039]
[96]
Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ, Arthur JS. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL. BMC Cell Biol 2006; 7: 1.
[http://dx.doi.org/10.1186/1471-2121-7-1] [PMID: 16403219]
[97]
Hogan C, Hutchison C, Marcar L, et al. Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem 2008; 283(26): 18012-23.
[http://dx.doi.org/10.1074/jbc.M709695200] [PMID: 18467333]
[98]
Wang Z, Zhang Y, Gu JJ, Davitt C, Reeves R, Magnuson NS. Pim-2 phosphorylation of p21(Cip1/WAF1) enhances its stability and inhibits cell proliferation in HCT116 cells. Int J Biochem Cell Biol 2010; 42(6): 1030-8.
[http://dx.doi.org/10.1016/j.biocel.2010.03.012] [PMID: 20307683]
[99]
Cohen AM, Grinblat B, Bessler H, et al. Increased expression of the hPim-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 2004; 45(5): 951-5.
[http://dx.doi.org/10.1080/10428190310001641251] [PMID: 15291354]
[100]
Hsi ED, Jung SH, Lai R, et al. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma 2008; 49(11): 2081-90.
[http://dx.doi.org/10.1080/10428190802419640] [PMID: 19021050]
[101]
Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412(6844): 341-6.
[http://dx.doi.org/10.1038/35085588] [PMID: 11460166]
[102]
Brault L, Menter T, Obermann EC, et al. PIM kinases are progression markers and emerging therapeutic targets in diffuse large B- cell lymphoma. Br J Cancer 2012; 107(3): 491-500.
[http://dx.doi.org/10.1038/bjc.2012.272] [PMID: 22722314]
[103]
Halldórsdóttir AM, Frühwirth M, Deutsch A, et al. Quantifying the role of aberrant somatic hypermutation in transformation of follicular lymphoma. Leuk Res 2008; 32(7): 1015-21.
[http://dx.doi.org/10.1016/j.leukres.2007.11.028] [PMID: 18180034]
[104]
Baron BW, Anastasi J, Hyjek EM, et al. PIM1 gene cooperates with human BCL6 gene to promote the development of lymphomas. Proc Natl Acad Sci USA 2012; 109(15): 5735-9.
[http://dx.doi.org/10.1073/pnas.1201168109] [PMID: 22451912]
[105]
Asano J, Nakano A, Oda A, et al. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells. Leukemia 2011; 25(7): 1182-8.
[http://dx.doi.org/10.1038/leu.2011.60] [PMID: 21475253]
[106]
Hiasa M, Teramachi J, Oda A, et al. Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma. Leukemia 2015; 29(1): 207-17.
[http://dx.doi.org/10.1038/leu.2014.147] [PMID: 24787487]
[107]
Grundler R, Brault L, Gasser C, et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med 2009; 206(9): 1957-70.
[http://dx.doi.org/10.1084/jem.20082074] [PMID: 19687226]
[108]
Spoo AC, Lübbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood 2007; 109(2): 786-91.
[http://dx.doi.org/10.1182/blood-2006-05-024844] [PMID: 16888090]
[109]
Decker S, Finter J, Forde AJ, et al. PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1). Mol Cancer Ther 2014; 13(5): 1231-45.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0575-T] [PMID: 24659821]
[110]
Chen J, Kobayashi M, Darmanin S, et al. Pim-1 plays a pivotal role in hypoxia-induced chemoresistance. Oncogene 2009; 28(28): 2581-92.
[http://dx.doi.org/10.1038/onc.2009.124] [PMID: 19483729]
[111]
Chaudhary AK, Chaudhary S, Ghosh K, Nadkarni A. Pleiotropic Roles of Metalloproteinases in Hematological Malignancies: an Update. Asian Pac J Cancer Prev 2016; 17(7): 3043-51.
[PMID: 27509927]
[112]
Amin SA, Adhikari N, Jha T. Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol Res 2017; 122: 8-19.
[http://dx.doi.org/10.1016/j.phrs.2017.05.002] [PMID: 28501516]
[113]
Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem 2020; 194: 112260.
[http://dx.doi.org/10.1016/j.ejmech.2020.112260] [PMID: 32224379]
[114]
Hsiao YH, Su SC, Lin CW, Chao YH, Yang WE, Yang SF. Pathological and therapeutic aspects of matrix metalloproteinases: implications in childhood leukemia. Cancer Metastasis Rev 2019; 38(4): 829-37.
[http://dx.doi.org/10.1007/s10555-019-09828-y] [PMID: 31802358]
[115]
Chaudhary AK, Pandya S, Ghosh K, Nadkarni A. Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: an overview. Mutat Res 2013; 753(1): 7-23.
[http://dx.doi.org/10.1016/j.mrrev.2013.01.002] [PMID: 23370482]
[116]
Mukherjee A, Adhikari N, Jha T. A pentanoic acid derivative targeting matrix metalloproteinase-2 (MMP-2) induces apoptosis in a chronic myeloid leukemia cell line. Eur J Med Chem 2017; 141: 37-50.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.052] [PMID: 29028530]
[117]
Gusella M, Bolzonella C, Paolini R, et al. Plasma matrix metalloprotease 9 correlates with blood lymphocytosis, leukemic cell invasiveness, and prognosis in B-cell chronic lymphocytic leukemia. Tumour Biol 2017; 39(2): 1010428317694325.
[http://dx.doi.org/10.1177/1010428317694325] [PMID: 28240053]
[118]
Redondo-Muñoz J, Escobar-Díaz E, Samaniego R, Terol MJ, García-Marco JA, García-Pardo A. MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 2006; 108(9): 3143-51.
[http://dx.doi.org/10.1182/blood-2006-03-007294] [PMID: 16840734]
[119]
Redondo-Muñoz J, Ugarte-Berzal E, Terol MJ, et al. Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain. Cancer Cell 2010; 17(2): 160-72.
[http://dx.doi.org/10.1016/j.ccr.2009.12.044] [PMID: 20159608]
[120]
Ries C, Loher F, Zang C, Ismair MG, Petrides PE. Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes. Clin Cancer Res 1999; 5(5): 1115-24.
[PMID: 10353746]
[121]
Wesołowska-Andersen A, Borst L, Dalgaard MD, et al. Genomic profiling of thousands of candidate polymorphisms predicts risk of relapse in 778 Danish and German childhood acute lymphoblastic leukemia patients. Leukemia 2015; 29(2): 297-303.
[http://dx.doi.org/10.1038/leu.2014.205] [PMID: 24990611]
[122]
Lin CM, Zeng YL, Xiao M, et al. The relationship between MMP-2 -1306C>T and MMP-9 -1562C>T polymorphisms and the risk and prognosis of T-Cell acute lymphoblastic leukemia in a Chinese population: A case-control study. Cell Physiol Biochem 2017; 42(4): 1458-68.
[http://dx.doi.org/10.1159/000479210] [PMID: 28719899]
[123]
Lin LI, Lin DT, Chang CJ, Lee CY, Tang JL, Tien HF. Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia. Br J Haematol 2002; 117(4): 835-41.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03510.x] [PMID: 12060118]
[124]
Aref S, Osman E, Mansy S, et al. Prognostic relevance of circulating matrix metalloproteinase-2 in acute myeloid leukaemia patients. Hematol Oncol 2007; 25(3): 121-6.
[http://dx.doi.org/10.1002/hon.817] [PMID: 17497745]
[125]
Chen YJ, Chang LS. NFκB- and AP-1-mediated DNA looping regulates matrix metalloproteinase-9 transcription in TNF-α-treated human leukemia U937 cells. Biochim Biophys Acta 2015; 1849(10): 1248-59.
[http://dx.doi.org/10.1016/j.bbagrm.2015.07.016] [PMID: 26260845]
[126]
Rodriguez CM, Gilardoni MB, Remedi MM, et al. Tumor-stroma interaction increases CD147 expression in neoplastic B lymphocytes in chronic lymphocytic leukemia. Blood Cells Mol Dis 2020; 82: 102405.
[http://dx.doi.org/10.1016/j.bcmd.2020.102405] [PMID: 32007924]
[127]
Aguilera-Montilla N, Bailón E, Ugarte-Berzal E, et al. Matrix metalloproteinase-9 induces a pro-angiogenic profile in chronic lymphocytic leukemia cells. Biochem Biophys Res Commun 2019; 520(1): 198-204.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.127] [PMID: 31585732]
[128]
Jiang L, Meng W, Yu G, et al. MicroRNA-144 targets APP to regulate AML1/ETO+ leukemia cell migration via the p-ERK/c-Myc/MMP-2 pathway. Oncol Lett 2019; 18(2): 2034-42.
[http://dx.doi.org/10.3892/ol.2019.10477] [PMID: 31423275]
[129]
Banerjee S, Adhikari N, Amin SA, Jha T. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur J Med Chem 2019; 164: 214-40.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.039] [PMID: 30594678]
[130]
Halder AK, Mallick S, Shikha D, et al. Design of dual MMP-2/HDAC-8 inhibitors by pharmacophore mapping, molecular docking, synthesis and biological activity. RSC Advances 2015; 5: 72373.
[http://dx.doi.org/10.1039/C5RA12606A]
[131]
Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 2020; 19(1): 5.
[http://dx.doi.org/10.1186/s12943-019-1127-7] [PMID: 31910827]
[132]
Varricchio L, Dell’Aversana C, Nebbioso A, et al. Identification of NuRSERY, a new functional HDAC complex composed by HDAC5, GATA1, EKLF and pERK present in human erythroid cells. Int J Biochem Cell Biol 2014; 50: 112-22.
[http://dx.doi.org/10.1016/j.biocel.2014.02.019] [PMID: 24594363]
[133]
Roth M, Wang Z, Chen WY. Sirtuins in hematological aging and malignancy. Crit Rev Oncog 2013; 18(6): 531-47.
[http://dx.doi.org/10.1615/CritRevOncog.2013010187] [PMID: 24579733]
[134]
Mankidy R, Faller DV, Mabaera R, et al. Short-chain fatty acids induce gamma-globin gene expression by displacement of a HDAC3-NCoR repressor complex. Blood 2006; 108(9): 3179-86.
[http://dx.doi.org/10.1182/blood-2005-12-010934] [PMID: 16849648]
[135]
Lernoux M, Schnekenburger M, Losson H, et al. Novel HDAC inhibitor MAKV-8 and imatinib synergistically kill chronic myeloid leukemia cells via inhibition of BCR-ABL/MYC-signaling: effect on imatinib resistance and stem cells. Clin Epigenetics 2020; 12(1): 69.
[http://dx.doi.org/10.1186/s13148-020-00839-z] [PMID: 32430012]
[136]
Chen CQ, Yu K, Yan QX, et al. Pure curcumin increases the expression of SOCS1 and SOCS3 in myeloproliferative neoplasms through suppressing class I histone deacetylases. Carcinogenesis 2013; 34(7): 1442-9.
[http://dx.doi.org/10.1093/carcin/bgt070] [PMID: 23430957]
[137]
Gao SM, Chen CQ, Wang LY, et al. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol 2013; 41(3): 261-70.e4.
[http://dx.doi.org/10.1016/j.exphem.2012.10.012] [PMID: 23111066]
[138]
Song C, Ge Z, Ding Y, et al. IKAROS and CK2 regulate expression of BCL-XL and chemosensitivity inhigh-risk B-cell acute lymphoblastic leukemia. Blood 2020.
[139]
Lai QY, He YZ, Peng XW, Zhou X, Liang D, Wang L. Histone deacetylase 1 induced by neddylation inhibition contributes to drug resistance in acute myelogenous leukemia. Cell Commun Signal 2019; 17(1): 86.
[http://dx.doi.org/10.1186/s12964-019-0393-8] [PMID: 31358016]
[140]
Richter LE, Wang Y, Becker ME, et al. HDAC1 is a required cofactor of CBFβ-SMMHC and a potential therapeutic target in inversion 16 acute myeloid leukemia. Mol Cancer Res 2019; 17(6): 1241-52.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0922] [PMID: 30814129]
[141]
Zhou Z, Fang Q, Li P, et al. Entinostat combined with Fludarabine synergistically enhances the induction of apoptosis in TP53 mutated CLL cells via the HDAC1/HO-1 pathway. Life Sci 2019; 232: 116583.
[http://dx.doi.org/10.1016/j.lfs.2019.116583] [PMID: 31226417]
[142]
Chen SH, Chow JM, Hsieh YY, et al. HDAC1,2 knock-out and HDACi induced cell apoptosis in imatinib-resistant K562 cells. Int J Mol Sci 2019; 20(9): 2271.
[http://dx.doi.org/10.3390/ijms20092271] [PMID: 31071955]
[143]
Zhang H, Lv H, Jia X, et al. Clinical significance of enhancer of zeste homolog 2 and histone deacetylases 1 and 2 expression in peripheral T-cell lymphoma. Oncol Lett 2019; 18(2): 1415-23.
[http://dx.doi.org/10.3892/ol.2019.10410] [PMID: 31423206]
[144]
Jung H, Kim JY, Kim KB, et al. Deacetylase activity-independent transcriptional activation by HDAC2 during TPA-induced HL-60 cell differentiation. PLoS One 2018; 13(8): e0202935.
[http://dx.doi.org/10.1371/journal.pone.0202935] [PMID: 30142192]
[145]
Harada T, Ohguchi H, Grondin Y, et al. HDAC3 regulates DNMT1 expression in multiple myeloma: therapeutic implications. Leukemia 2017; 31(12): 2670-7.
[http://dx.doi.org/10.1038/leu.2017.144] [PMID: 28490812]
[146]
Long J, Fang WY, Chang L, et al. Targeting HDAC3, a new partner protein of AKT in the reversal of chemoresistance in acute myeloid leukemia via DNA damage response. Leukemia 2017; 31(12): 2761-70.
[http://dx.doi.org/10.1038/leu.2017.130] [PMID: 28462918]
[147]
Long J, Jia MY, Fang WY, et al. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood 2020; 135(17): 1472-83.
[http://dx.doi.org/10.1182/blood.2019003538] [PMID: 32315388]
[148]
Guo Y, Fang Q, Ma D, et al. Up-regulation of HO-1 promotes resistance of B-cell acute lymphocytic leukemia cells to HDAC4/5 inhibitor LMK-235 via the Smad7 pathway. Life Sci 2018; 207: 386-94.
[http://dx.doi.org/10.1016/j.lfs.2018.06.004] [PMID: 29886060]
[149]
Lee DH, Kim GW, Kwon SH. The HDAC6-selective inhibitor is effective against non-Hodgkin lymphoma and synergizes with ibrutinib in follicular lymphoma. Mol Carcinog 2019; 58(6): 944-56.
[http://dx.doi.org/10.1002/mc.22983] [PMID: 30693983]
[150]
Cosenza M, Pozzi S. The therapeutic strategy of HDAC6 inhibitors in lymphoproliferative disease. Int J Mol Sci 2018; 19(8): 2337.
[http://dx.doi.org/10.3390/ijms19082337] [PMID: 30096875]
[151]
Li T, Zhang C, Hassan S, et al. Histone deacetylase 6 in cancer. J Hematol Oncol 2018; 11(1): 111.
[http://dx.doi.org/10.1186/s13045-018-0654-9] [PMID: 30176876]
[152]
Maharaj K, Powers JJ, Achille A, et al. Silencing of HDAC6 as a therapeutic target in chronic lymphocytic leukemia. Blood Adv 2018; 2(21): 3012-24.
[http://dx.doi.org/10.1182/bloodadvances.2018020065] [PMID: 30425065]
[153]
Fernandez S, Desplat V, Villacreces A, et al. Targeting tyrosine kinases in acute myeloid leukemia: why, who and how? Int J Mol Sci 2019; 20(14): 3429.
[http://dx.doi.org/10.3390/ijms20143429] [PMID: 31336846]
[154]
Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev 2012; 6(1): e8.
[http://dx.doi.org/10.4081/oncol.2012.e8] [PMID: 25992210]
[155]
Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000; 19(49): 5548-57.
[http://dx.doi.org/10.1038/sj.onc.1203957] [PMID: 11114734]
[156]
Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 2019; 33(2): 299-312.
[http://dx.doi.org/10.1038/s41375-018-0357-9] [PMID: 30651634]
[157]
Pinilla-Ibarz J, Sweet KL, Corrales-Yepez GM, Komrokji RS. Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned. OncoTargets Ther 2016; 9: 4937-57.
[http://dx.doi.org/10.2147/OTT.S102504] [PMID: 27570458]
[158]
Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005; 5(3): 172-83.
[http://dx.doi.org/10.1038/nrc1567] [PMID: 15719031]
[159]
Goldman JM, Melo JV. BCR-ABL in chronic myelogenous leukemia--how does it work? Acta Haematol 2008; 119(4): 212-7.
[http://dx.doi.org/10.1159/000140633] [PMID: 18566539]
[160]
Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21(21): 3314-33.
[http://dx.doi.org/10.1038/sj.onc.1205317] [PMID: 12032772]
[161]
Cilloni D, Saglio G. Molecular pathways: BCR-ABL. Clin Cancer Res 2012; 18(4): 930-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1613] [PMID: 22156549]
[162]
Nelson MH, Paulos CM. Novel immunotherapies for hematologic malignancies. Immunol Rev 2015; 263(1): 90-105.
[http://dx.doi.org/10.1111/imr.12245] [PMID: 25510273]
[163]
Bachireddy P, Burkhardt UE, Rajasagi M, Wu CJ. Haematological malignancies: at the forefront of immunotherapeutic innovation. Nat Rev Cancer 2015; 15(4): 201-15.
[http://dx.doi.org/10.1038/nrc3907] [PMID: 25786696]
[164]
Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol 2007; 25: 139-70.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141606] [PMID: 17129175]
[165]
Ghosh A, Holland AM, van den Brink MR. Genetically engineered donor T cells to optimize graft-versus-tumor effects across MHC barriers. Immunol Rev 2014; 257(1): 226-36.
[http://dx.doi.org/10.1111/imr.12142] [PMID: 24329800]
[166]
Kolb HJ, Schmid C, Barrett AJ, Schendel DJ. Graft-versus-leukemia reactions in allogeneic chimeras. Blood 2004; 103(3): 767-76.
[http://dx.doi.org/10.1182/blood-2003-02-0342] [PMID: 12958064]
[167]
Kolb HJ, Mittermüller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76(12): 2462-5.
[http://dx.doi.org/10.1182/blood.V76.12.2462.2462] [PMID: 2265242]
[168]
Ritz J, Schlossman SF. Utilization of monoclonal antibodies in the treatment of leukemia and lymphoma. Blood 1982; 59(1): 1-11.
[http://dx.doi.org/10.1182/blood.V59.1.1.1] [PMID: 7032624]
[169]
Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 2009; 1(6): 539-47.
[http://dx.doi.org/10.4161/mabs.1.6.10015] [PMID: 20073127]
[170]
Maloney DG, Grillo-López AJ, White CA, et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 1997; 90(6): 2188-95.
[http://dx.doi.org/10.1182/blood.V90.6.2188] [PMID: 9310469]
[171]
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86(24): 10024-8.
[http://dx.doi.org/10.1073/pnas.86.24.10024] [PMID: 2513569]
[172]
Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 2002; 20(1): 70-5.
[http://dx.doi.org/10.1038/nbt0102-70] [PMID: 11753365]
[173]
Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119(12): 2709-20.
[http://dx.doi.org/10.1182/blood-2011-10-384388] [PMID: 22160384]
[174]
Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5(177): 177ra38.
[http://dx.doi.org/10.1126/scitranslmed.3005930] [PMID: 23515080]
[175]
Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368(16): 1509-18.
[http://dx.doi.org/10.1056/NEJMoa1215134] [PMID: 23527958]
[176]
Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015; 33(6): 540-9.
[http://dx.doi.org/10.1200/JCO.2014.56.2025] [PMID: 25154820]
[177]
Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331(6013): 44-9.
[http://dx.doi.org/10.1126/science.1198687] [PMID: 21212348]
[178]
Locatelli F, Merli P, Rutella S. At the Bedside: Innate immunity as an immunotherapy tool for hematological malignancies. J Leukoc Biol 2013; 94(6): 1141-57.
[http://dx.doi.org/10.1189/jlb.0613343] [PMID: 24096380]
[179]
Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295(5562): 2097-100.
[http://dx.doi.org/10.1126/science.1068440] [PMID: 11896281]
[180]
Venstrom JM, Pittari G, Gooley TA, et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N Engl J Med 2012; 367(9): 805-16.
[http://dx.doi.org/10.1056/NEJMoa1200503] [PMID: 22931314]
[181]
Hsu KC, Keever-Taylor CA, Wilton A, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 2005; 105(12): 4878-84.
[http://dx.doi.org/10.1182/blood-2004-12-4825] [PMID: 15731175]
[182]
Brouwer RE, Zwinderman KH, Kluin-Nelemans HC, van Luxemburg-Heijs SA, Willemze R, Falkenburg JH. Expression and induction of costimulatory and adhesion molecules on acute myeloid leukemic cells: implications for adoptive immunotherapy. Exp Hematol 2000; 28(2): 161-8.
[http://dx.doi.org/10.1016/S0301-472X(99)00143-5] [PMID: 10706072]
[183]
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711-23.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[184]
Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 2011; 17(22): 6958-62.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1595] [PMID: 21900389]
[185]
Bashey A, Medina B, Corringham S, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood 2009; 113(7): 1581-8.
[http://dx.doi.org/10.1182/blood-2008-07-168468] [PMID: 18974373]
[186]
Liu X, Shin N, Koblish HK, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 2010; 115(17): 3520-30.
[http://dx.doi.org/10.1182/blood-2009-09-246124] [PMID: 20197554]
[187]
Lake RA, Robinson BW. Immunotherapy and chemotherapy--a practical partnership. Nat Rev Cancer 2005; 5(5): 397-405.
[http://dx.doi.org/10.1038/nrc1613] [PMID: 15864281]
[188]
McCabe B, Liberante F, Mills KI. Repurposing medicinal compounds for blood cancer treatment. Ann Hematol 2015; 94(8): 1267-76.
[http://dx.doi.org/10.1007/s00277-015-2412-1] [PMID: 26048243]
[189]
Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[190]
Li F, Zhao C, Wang L. Molecular-targeted agents combination therapy for cancer: developments and potentials. Int J Cancer 2014; 134(6): 1257-69.
[http://dx.doi.org/10.1002/ijc.28261] [PMID: 23649791]
[191]
Huang R, Southall N, Wang Y, et al. The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med 2011; 3(80): 80ps16.
[http://dx.doi.org/10.1126/scitranslmed.3001862] [PMID: 21525397]
[192]
Amin SA, Jha T. Fight against novel coronavirus: A perspective of medicinal chemists. Eur J Med Chem 2020; 201: 112559.
[http://dx.doi.org/10.1016/j.ejmech.2020.112559] [PMID: 32563814]
[193]
McBride WG. Thalidomide embryopathy. Teratology 1977; 16(1): 79-82.
[http://dx.doi.org/10.1002/tera.1420160113] [PMID: 331548]
[194]
Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341(21): 1565-71.
[http://dx.doi.org/10.1056/NEJM199911183412102] [PMID: 10564685]
[195]
Fehniger TA, Byrd JC, Marcucci G, et al. Single-agent lenalidomide induces complete remission of acute myeloid leukemia in patients with isolated trisomy 13. Blood 2009; 113(5): 1002-5.
[http://dx.doi.org/10.1182/blood-2008-04-152678] [PMID: 18824593]
[196]
Kale VP, Habib H, Chitren R, et al. Old drugs, new uses: Drug repurposing in hematological malignancies. Semin Cancer Biol 2020.
[197]
Bernard MP, Bancos S, Sime PJ, Phipps RP. Targeting cyclooxygenase-2 in hematological malignancies: rationale and promise. Curr Pharm Des 2008; 14(21): 2051-60.
[http://dx.doi.org/10.2174/138161208785294654] [PMID: 18691115]
[198]
Tołoczko-Iwaniuk N, Dziemiańczyk-Pakieła D, Nowaszewska BK, Celińska-Janowicz K, Miltyk W. Celecoxib in cancer therapy and prevention - review. Curr Drug Targets 2019; 20(3): 302-15.
[http://dx.doi.org/10.2174/1389450119666180803121737] [PMID: 30073924]
[199]
Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000; 342(26): 1946-52.
[http://dx.doi.org/10.1056/NEJM200006293422603] [PMID: 10874062]
[200]
Lu Y, Liu XF, Liu TR, et al. Celecoxib exerts antitumor effects in HL-60 acute leukemia cells and inhibits autophagy by affecting lysosome function. Biomed Pharmacother 2016; 84: 1551-7.
[http://dx.doi.org/10.1016/j.biopha.2016.11.026] [PMID: 27884749]
[201]
Sehgal SN, Baker H, Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 1975; 28(10): 727-32.
[http://dx.doi.org/10.7164/antibiotics.28.727] [PMID: 1102509]
[202]
Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: a review of the evidence. Kidney Int 2001; 59(1): 3-16.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00460.x] [PMID: 11135052]
[203]
Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 2009; 122(Pt 20): 3589-94.
[http://dx.doi.org/10.1242/jcs.051011] [PMID: 19812304]
[204]
Gu S, Tian Y, Chlenski A, et al. Valproic acid shows a potent antitumor effect with alteration of DNA methylation in neuroblastoma. Anticancer Drugs 2012; 23(10): 1054-66.
[http://dx.doi.org/10.1097/CAD.0b013e32835739dd] [PMID: 22863973]
[205]
Abdul M, Hoosein N. Inhibition by anticonvulsants of prostate-specific antigen and interleukin-6 secretion by human prostate cancer cells. Anticancer Res 2001; 21(3B): 2045-8.
[PMID: 11497296]
[206]
Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010; 11(5): 390-401.
[http://dx.doi.org/10.1016/j.cmet.2010.03.014] [PMID: 20444419]
[207]
Fan L, Hong J, Huang H, et al. High expression of phosphorylated extracellular signal-regulated kinase (ERK1/2) is associated with poor prognosis in newly diagnosed patients with multiple myeloma. Med Sci Monit 2017; 23: 2636-43.
[http://dx.doi.org/10.12659/MSM.901850] [PMID: 28557972]
[208]
Chapman-Shimshoni D, Yuklea M, Radnay J, Shapiro H, Lishner M. Simvastatin induces apoptosis of B-CLL cells by activation of mitochondrial caspase 9. Exp Hematol 2003; 31(9): 779-83.
[http://dx.doi.org/10.1016/S0301-472X(03)00192-9] [PMID: 12962723]
[209]
Broughton T, Sington J, Beales IL. Statin use is associated with a reduced incidence of colorectal cancer: a colonoscopy-controlled case-control study. BMC Gastroenterol 2012; 12: 36.
[http://dx.doi.org/10.1186/1471-230X-12-36] [PMID: 22530742]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2021
Published on: 02 February, 2021
Page: [19 - 49]
Pages: 31
DOI: 10.2174/2212796815666210203104446
Price: $25

Article Metrics

PDF: 94
HTML: 2