Site-Selective, Chemical Modification of Protein at Aromatic Side Chain and Their Emergent Applications

Author(s): Arnab Chowdhury, Saurav Chatterjee, Akumlong Pongen, Dhanjit Sarania, Nitesh Mani Tripathi, Anupam Bandyopadhyay*

Journal Name: Protein & Peptide Letters

Volume 28 , Issue 7 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Site-selective chemical modification of protein side chain has probed enormous opportunities in the fundamental understanding of cellular biology and therapeutic applications. Primarily, in the field of biopharmaceuticals, the formulation of bioconjugates has been found to have more potential than an individual constituent. In this regard, Lysine and Cysteine are the most widely used endogenous amino acid for these purposes. Recently, the aromatic side chain residues (Trp, Tyr, and His) that are low abundant in protein have gained more attention in therapeutic applications due to their advantages of chemical reactivity and specificity. This review discusses the site-selective bioconjugation methods for aromatic side chains (Trp, Tyr and His) and highlights the developed strategies in the last three years, along with their applications. Also, the review highlights the prevalent methods published earlier. We have examined that metal-catalyzed and photocatalytic reactions are gaining more attention for bioconjugation, though their practical operation is under development. The review has been summarized with the future perspective of protein and peptide conjugations contemplating therapeutic applications and challenges.

Keywords: Bioconjugation, site-selective modification, aromatic amino acids, peptide conjugation, protein therapeutics, antibody- drug conjugate.

[1]
Knorre, D.G.; Kudryashova, N.V.; Godovikova, T.S. Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae, 2009, 1(3), 29-51.
[http://dx.doi.org/10.32607/20758251-2009-1-3-29-51] [PMID: 22649613]
[2]
Ogretmen, B. HHS Public Access. Physiol. Behav., 2019, 176, 139-148.
[http://dx.doi.org/10.1038/nchembio.2572.The]
[3]
Kim, C.H.; Axup, J.Y.; Schultz, P.G. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol., 2013, 17(3), 412-419.
[http://dx.doi.org/10.1016/j.cbpa.2013.04.017] [PMID: 23664497]
[4]
Chalker, J.M.; Davis, B.G. Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues. Curr. Opin. Chem. Biol., 2010, 14(6), 781-789.
[http://dx.doi.org/10.1016/j.cbpa.2010.10.007] [PMID: 21075673]
[5]
deGruyter, J.N.; Malins, L.R.; Baran, P.S. Residue-specific peptide modification: a Chemist’s Guide. Biochemistry, 2017, 56(30), 3863-3873.
[http://dx.doi.org/10.1021/acs.biochem.7b00536] [PMID: 28653834]
[6]
Koniev, O.; Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev., 2015, 44(15), 5495-5551.
[http://dx.doi.org/10.1039/C5CS00048C] [PMID: 26000775]
[7]
Reddy, N.C.; Kumar, M.; Molla, R.; Rai, V. Chemical methods for modification of proteins. Org. Biomol. Chem., 2020, 18(25), 4669-4691.
[http://dx.doi.org/10.1039/D0OB00857E] [PMID: 32538424]
[8]
Chalker, J.M.; Bernardes, G.J.L.; Lin, Y.A.; Davis, B.G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. Asian J., 2009, 4(5), 630-640.
[http://dx.doi.org/10.1002/asia.200800427] [PMID: 19235822]
[9]
Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl., 2009, 48(38), 6974-6998.
[http://dx.doi.org/10.1002/anie.200900942] [PMID: 19714693]
[10]
Jackson, D.Y. Processes for constructing homogeneous antibody drug conjugates. Org. Process Res. Dev., 2016, 20, 852-866.
[http://dx.doi.org/10.1021/acs.oprd.6b00067]
[11]
Lin, S; Yang, X; Jia, S; Weeks, AM; Hornsby, M; Lee, PS Redox-based reagents for chemoselective methionine bioconjugation. Science (80- ), 2017, 355, 597-602.
[http://dx.doi.org/10.1126/science.aal3316]
[12]
Baslé, E.; Joubert, N.; Pucheault, M. Protein chemical modification on endogenous amino acids. Chem. Biol., 2010, 17(3), 213-227.
[http://dx.doi.org/10.1016/j.chembiol.2010.02.008] [PMID: 20338513]
[13]
Gilis, D.; Massar, S.; Cerf, N.J.; Rooman, M. Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol., 2001, 2(11), H0049.
[http://dx.doi.org/10.1186/gb-2001-2-11-research0049] [PMID: 11737948]
[14]
Dau, H.; Zaharieva, I.; Haumann, M. Recent developments in research on water oxidation by photosystem II. Curr. Opin. Chem. Biol., 2012, 16(1-2), 3-10.
[http://dx.doi.org/10.1016/j.cbpa.2012.02.011] [PMID: 22387134]
[15]
Alvarez Dorta, D.; Deniaud, D.; Mével, M.; Gouin, S.G. Tyrosine conjugation methods for protein labelling. Chemistry, 2020, 26(63), 14257-14269.
[http://dx.doi.org/10.1002/chem.202001992] [PMID: 32538529]
[16]
Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry, 2011, 50(24), 5477-5486.
[http://dx.doi.org/10.1021/bi200395t] [PMID: 21598903]
[17]
Ramsden, C.A.; Riley, P.A. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem., 2014, 22(8), 2388-2395.
[http://dx.doi.org/10.1016/j.bmc.2014.02.048] [PMID: 24656803]
[18]
Maza, J.C.; Bader, D.L.V.; Xiao, L.; Marmelstein, A.M.; Brauer, D.D.; ElSohly, A.M.; Smith, M.J.; Krska, S.W.; Parish, C.A.; Francis, M.B. Enzymatic modification of N-terminal proline residues using phenol derivatives. J. Am. Chem. Soc., 2019, 141(9), 3885-3892.
[http://dx.doi.org/10.1021/jacs.8b10845] [PMID: 30726077]
[19]
Marmelstein, A.M.; Lobba, M.J.; Mogilevsky, C.S.; Maza, J.C.; Brauer, D.D.; Francis, M.B. Tyrosinase-mediated oxidative coupling of tyrosine tags on peptides and proteins. J. Am. Chem. Soc., 2020, 142(11), 5078-5086.
[http://dx.doi.org/10.1021/jacs.9b12002] [PMID: 32093466]
[20]
Lobba, M.J.; Fellmann, C.; Marmelstein, A.M.; Maza, J.C.; Kissman, E.N.; Robinson, S.A.; Staahl, B.T.; Urnes, C.; Lew, R.J.; Mogilevsky, C.S.; Doudna, J.A.; Francis, M.B. Site-specific bioconjugation through enzyme-catalyzed tyrosine-cysteine bond formation. ACS Cent. Sci., 2020, 6(9), 1564-1571.
[http://dx.doi.org/10.1021/acscentsci.0c00940] [PMID: 32999931]
[21]
Geeson, M.B.; Bernardes, G.J.L. Protein-protein conjugates: tyrosine delivers. ACS Cent. Sci., 2020, 6(9), 1473-1475.
[http://dx.doi.org/10.1021/acscentsci.0c01008] [PMID: 32999919]
[22]
Bruins, J.J.; Blanco-Ania, D.; van der Doef, V.; van Delft, F.L.; Albada, B. Orthogonal, dual protein labelling by tandem cycloaddition of strained alkenes and alkynes to ortho-quinones and azides. Chem. Commun. (Camb.), 2018, 54(53), 7338-7341.
[http://dx.doi.org/10.1039/C8CC02638F] [PMID: 29911239]
[23]
Montanari, E.; Gennari, A.; Pelliccia, M.; Manzi, L.; Donno, R.; Oldham, N.J.; MacDonald, A.; Tirelli, N. Tyrosinase-mediated bioconjugation. a versatile approach to chimeric macromolecules. Bioconjug. Chem., 2018, 29(8), 2550-2560.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00227] [PMID: 29975838]
[24]
Song, C.; Liu, K.; Wang, Z.; Ding, B.; Wang, S.; Weng, Y.; Chiang, C.W.; Lei, A. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem. Sci. (Camb.), 2019, 10(34), 7982-7987.
[http://dx.doi.org/10.1039/C9SC02218J] [PMID: 31673320]
[25]
Kaiser, D.; Winne, J.M.; Ortiz-Soto, M.E.; Seibel, J.; Le, T.A.; Engels, B. Mechanistical insights into the bioconjugation reaction of triazolinediones with tyrosine. J. Org. Chem., 2018, 83(17), 10248-10260.
[http://dx.doi.org/10.1021/acs.joc.8b01445] [PMID: 30005167]
[26]
Alvarez-Dorta, D.; Thobie-Gautier, C.; Croyal, M.; Bouzelha, M.; Mével, M.; Deniaud, D.; Boujtita, M.; Gouin, S.G. Electrochemically promoted tyrosine-click-chemistry for protein labeling. J. Am. Chem. Soc., 2018, 140(49), 17120-17126.
[http://dx.doi.org/10.1021/jacs.8b09372] [PMID: 30422648]
[27]
Hang, Y.; Ma, J.; Li, S.; Zhang, X.; Liu, B.; Ding, Z. Structure-chemical modification relationships with silk materials. ACS Biomater. Sci. Eng., 2019, 5, 2762-2768.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00369]
[28]
Ertl, J.; Ortiz-Soto, M.E.; Le, T.A.; Bechold, J.; Shan, J.; Teßmar, J.; Engels, B.; Seibel, J. Tuning the product spectrum of a glycoside hydrolase enzyme by a combination of site-directed mutagenesis and tyrosine-specific chemical modification. Chemistry, 2019, 25(26), 6533-6541.
[http://dx.doi.org/10.1002/chem.201900576] [PMID: 30820987]
[29]
Sato, S.; Nakane, K.; Nakamura, H. A laccase-catalysed tyrosine click reaction. Org. Biomol. Chem., 2020, 18(19), 3664-3668.
[http://dx.doi.org/10.1039/D0OB00650E] [PMID: 32356542]
[30]
Sato, S.; Nakamura, H. Labeling of peroxide-induced oxidative stress hotspots by hemin-catalyzed tyrosine click. Chem. Pharm. Bull. (Tokyo), 2020, 68(9), 885-890.
[http://dx.doi.org/10.1248/cpb.c20-00434] [PMID: 32879229]
[31]
Sato, S.; Matsumura, M.; Kadonosono, T.; Abe, S.; Ueno, T.; Ueda, H.; Nakamura, H. Site-selective protein chemical modification of exposed tyrosine residues using tyrosine Click reaction. Bioconjug. Chem., 2020, 31(5), 1417-1424.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00120] [PMID: 32223219]
[32]
Zhu, Y.; Tao, H.; Janaswamy, S.; Zhang, Z.; Cui, B.; Guo, L. The functionality of laccase- or peroxidase-treated potato flour: Role of interactions between protein and protein/starch. Food Chem., 2020, 128082
[http://dx.doi.org/10.1016/j.foodchem.2020.128082] [PMID: 33166823]
[33]
Moinpour, M.; Barker, N.K.; Guzman, L.E.; Jewett, J.C.; Langlais, P.R.; Schwartz, J.C. Discriminating changes in protein structure using tyrosine conjugation. Protein Sci., 2020, 29(8), 1784-1793.
[http://dx.doi.org/10.1002/pro.3897] [PMID: 32483864]
[34]
Dong, J.; Sharpless, K.B.; Kwisnek, L.; Oakdale, J.S.; Fokin, V.V. SuFEx-based synthesis of polysulfates. Angew. Chem. Int. Ed. Engl., 2014, 53(36), 9466-9470.
[http://dx.doi.org/10.1002/anie.201403758] [PMID: 25100330]
[35]
Barrow, A.S.; Smedley, C.J.; Zheng, Q.; Li, S.; Dong, J.; Moses, J.E. The growing applications of SuFEx click chemistry. Chem. Soc. Rev., 2019, 48(17), 4731-4758.
[http://dx.doi.org/10.1039/C8CS00960K] [PMID: 31364998]
[36]
Choi, E.J.; Jung, D.; Kim, J.S.; Lee, Y.; Kim, B.M. Chemoselective tyrosine bioconjugation through sulfate click reaction. Chemistry, 2018, 24(43), 10948-10952.
[http://dx.doi.org/10.1002/chem.201802380] [PMID: 29935027]
[37]
Hahm, H.S.; Toroitich, E.K.; Borne, A.L.; Brulet, J.W.; Libby, A.H.; Yuan, K.; Ware, T.B.; McCloud, R.L.; Ciancone, A.M.; Hsu, K.L. Global targeting of functional tyrosines using sulfur-triazole exchange chemistry. Nat. Chem. Biol., 2020, 16(2), 150-159.
[http://dx.doi.org/10.1038/s41589-019-0404-5] [PMID: 31768034]
[38]
Brulet, J.W.; Borne, A.L.; Yuan, K.; Libby, A.H.; Hsu, K.L. Liganding functional tyrosine sites on proteins using sulfur-triazole exchange chemistry. J. Am. Chem. Soc., 2020, 142(18), 8270-8280.
[http://dx.doi.org/10.1021/jacs.0c00648] [PMID: 32329615]
[39]
Sengupta, S.; Chandrasekaran, S. Modifications of amino acids using arenediazonium salts. Org. Biomol. Chem., 2019, 17(36), 8308-8329.
[http://dx.doi.org/10.1039/C9OB01471C] [PMID: 31469151]
[40]
Leier, S.; Richter, S.; Bergmann, R.; Wuest, M.; Wuest, F. Radiometal-containing aryl diazonium salts for chemoselective bioconjugation of tyrosine residues. ACS Omega, 2019, 4(26), 22101-22107.
[http://dx.doi.org/10.1021/acsomega.9b03248] [PMID: 31891090]
[41]
Paiva, I.; Mattingly, S.; Wuest, M.; Leier, S.; Vakili, M.R.; Weinfeld, M.; Lavasanifar, A.; Wuest, F. Synthesis and analysis of 64Cu-labeled ge11-modified polymeric micellar nanoparticles for EGFR-targeted molecular imaging in a colorectal cancer model. Mol. Pharm., 2020, 17(5), 1470-1481.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01043] [PMID: 32233491]
[42]
Ohata, J.; Miller, M.K.; Mountain, C.M.; Vohidov, F.; Ball, Z.T. A three-component organometallic tyrosine bioconjugation. Angew. Chem. Int. Ed. Engl., 2018, 57(11), 2827-2830.
[http://dx.doi.org/10.1002/anie.201711868] [PMID: 29356233]
[43]
Allan, C.; Kosar, M.; Burr, C.V.; Mackay, C.L.; Duncan, R.R.; Hulme, A.N. A catch-and-release approach to selective modification of accessible tyrosine residues. ChemBioChem, 2018, 19(23), 2443-2447.
[http://dx.doi.org/10.1002/cbic.201800532] [PMID: 30212615]
[44]
Sato, S.; Hatano, K.; Tsushima, M.; Nakamura, H. 1-Methyl-4-aryl-urazole (MAUra) labels tyrosine in proximity to ruthenium photocatalysts. Chem. Commun. (Camb.), 2018, 54(46), 5871-5874.
[http://dx.doi.org/10.1039/C8CC02891E] [PMID: 29785428]
[45]
Wadzinski, T.J.; Steinauer, A.; Hie, L.; Pelletier, G.; Schepartz, A.; Miller, S.J. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nat. Chem., 2018, 10(6), 644-652.
[http://dx.doi.org/10.1038/s41557-018-0041-8] [PMID: 29713033]
[46]
Seki, Y.; Ishiyama, T.; Sasaki, D.; Abe, J.; Sohma, Y.; Oisaki, K.; Kanai, M. Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Soc., 2016, 138(34), 10798-10801.
[http://dx.doi.org/10.1021/jacs.6b06692] [PMID: 27534812]
[47]
Boutureira, O.; Bernardes, G.J.L. Advances in chemical protein modification. Chem. Rev., 2015, 115(5), 2174-2195.
[http://dx.doi.org/10.1021/cr500399p] [PMID: 25700113]
[48]
Hu, J.J.; He, P.Y.; Li, Y.M. Chemical modifications of tryptophan residues in peptides and proteins. J. Pept. Sci., 2020, 27(1), e3286.
[http://dx.doi.org/10.1002/psc.3286] [PMID: 32945039]
[49]
Creed, D. The photophysics and photochemistry of the near‐UV absorbing amino acids–I. tryptophan and its simple derivatives. Photochem. Photobiol., 1984, 39, 537-562.
[http://dx.doi.org/10.1111/j.1751-1097.1984.tb03890.x]
[50]
Bent, D.V.; Hayon, E. Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan. J. Am. Chem. Soc., 1975, 97(10), 2612-2619.
[http://dx.doi.org/10.1021/ja00843a004] [PMID: 237041]
[51]
Tower, S.J.; Hetcher, W.J.; Myers, T.E.; Kuehl, N.J.; Taylor, M.T. Selective Modi fi cation of tryptophan residues in peptides and proteins using a biomimetic electron transfer process. J. Am. Chem. Soc., 2020, 142(20), 9112-9118.
[52]
Wang, G.; Zhang, Z.T.; Jiang, B.; Zhang, X.; Li, C.; Liu, M. Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research. Anal. Bioanal. Chem., 2014, 406(9-10), 2279-2288.
[http://dx.doi.org/10.1007/s00216-013-7518-5] [PMID: 24309626]
[53]
Lin, J.; Li, Z.; Kan, J.; Huang, S.; Su, W.; Li, Y. Photo-driven redox-neutral decarboxylative carbon-hydrogen trifluoromethylation of (hetero)arenes with trifluoroacetic acid. Nat. Commun., 2017, 8, 14353.
[http://dx.doi.org/10.1038/ncomms14353] [PMID: 28165474]
[54]
Natte, K.; Jagadeesh, R.V.; He, L.; Rabeah, J.; Chen, J.; Taeschler, C.; Ellinger, S.; Zaragoza, F.; Neumann, H.; Brückner, A.; Beller, M. Palladium-catalyzed trifluoromethylation of (hetero)arenes with CF3 Br. Angew. Chem. Int. Ed. Engl., 2016, 55(8), 2782-2786.
[http://dx.doi.org/10.1002/anie.201511131] [PMID: 26804330]
[55]
Eisenberger, P.; Gischig, S.; Togni, A. Novel 10-I-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation. Chemistry, 2006, 12(9), 2579-2586.
[http://dx.doi.org/10.1002/chem.200501052] [PMID: 16402401]
[56]
Matoušek, V.; Václavík, J.; Hájek, P.; Charpentier, J.; Blastik, Z.E.; Pietrasiak, E.; Budinská, A.; Togni, A.; Beier, P. Expanding the scope of hypervalent iodine reagents for perfluoroalkylation: from trifluoromethyl to functionalized perfluoroethyl. Chemistry, 2016, 22(1), 417-424.
[http://dx.doi.org/10.1002/chem.201503531] [PMID: 26592210]
[57]
Rahimidashaghoul, K.; Klimánková, I.; Hubálek, M.; Korecký, M.; Chvojka, M.; Pokorný, D.; Matoušek, V.; Fojtík, L.; Kavan, D.; Kukačka, Z.; Novák, P.; Beier, P. Reductant-induced free radical fluoroalkylation of nitrogen heterocycles and innate aromatic amino acid residues in peptides and proteins. Chemistry, 2019, 25(69), 15779-15785.
[http://dx.doi.org/10.1002/chem.201902944] [PMID: 31523878]
[58]
Rahimidashaghoul, K.; Klimánková, I.; Hubálek, M.; Matoušek, V.; Filgas, J.; Slavíček, P. Visible-light-driven fluoroalkylation of tryptophan residues in peptides. ChemPhotoChem, 2020.
[59]
Imiołek, M.; Karunanithy, G.; Ng, W.L.; Baldwin, A.J.; Gouverneur, V.; Davis, B.G. Selective radical trifluoromethylation of native residues in proteins. J. Am. Chem. Soc., 2018, 140(5), 1568-1571.
[http://dx.doi.org/10.1021/jacs.7b10230] [PMID: 29301396]
[60]
Jiang, Y.; Yu, H.; Fu, Y.; Liu, L. Redox potentials of trifluoromethyl-containing compounds. Sci. China Chem., 2015, 58, 673-683.
[http://dx.doi.org/10.1007/s11426-014-5178-8]
[61]
Preciado, S.; Mendive-Tapia, L.; Albericio, F.; Lavilla, R. Synthesis of C-2 arylated tryptophan amino acids and related compounds through palladium-catalyzed C-H activation. J. Org. Chem., 2013, 78(16), 8129-8135.
[http://dx.doi.org/10.1021/jo400961x] [PMID: 23865986]
[62]
Dardir, A.H.; Hazari, N.; Miller, S.J.; Shugrue, C.R. Palladium-catalyzed Suzuki-Miyaura reactions of aspartic acid derived phenyl esters. Org. Lett., 2019, 21(14), 5762-5766.
[http://dx.doi.org/10.1021/acs.orglett.9b02214] [PMID: 31290674]
[63]
Mendive-Tapia, L.; Preciado, S.; García, J.; Ramón, R.; Kielland, N.; Albericio, F.; Lavilla, R. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues. Nat. Commun., 2015, 6, 7160.
[http://dx.doi.org/10.1038/ncomms8160] [PMID: 25994485]
[64]
Perez-Rizquez, C.; Abian, O.; Palomo, J.M. Site-selective modification of tryptophan and protein tryptophan residues through PdNP bionanohybrid-catalysed C-H activation in aqueous media. Chem. Commun. (Camb.), 2019, 55(86), 12928-12931.
[http://dx.doi.org/10.1039/C9CC06971B] [PMID: 31599273]
[65]
Brito E Cunha, D.A.; Bartkevihi, L.; Robert, J.M.; Cipolatti, E.P.; Ferreira, A.T.S.; Oliveira, D.M.P.; Gomes-Neto, F.; Almeida, R.V.; Fernandez-Lafuente, R.; Freire, D.M.G.; Anobom, C.D. Structural differences of commercial and recombinant lipase B from Candida antarctica: an important implication on enzymes thermostability. Int. J. Biol. Macromol., 2019, 140, 761-770.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.148] [PMID: 31434004]
[66]
Kaplaneris, N.; Rogge, T.; Yin, R.; Wang, H.; Sirvinskaite, G.; Ackermann, L. Late-stage diversification through manganese-catalyzed C-H activation: access to acyclic, hybrid, and stapled peptides. Angew. Chem. Int. Ed. Engl., 2019, 58(11), 3476-3480.
[http://dx.doi.org/10.1002/anie.201812705] [PMID: 30565829]
[67]
Lorion, M.M.; Kaplaneris, N.; Son, J.; Kuniyil, R.; Ackermann, L. Late-Stage Peptide diversification through cobalt-catalyzed C-H activation: sequential multicatalysis for stapled peptides. Angew. Chem. Int. Ed. Engl., 2019, 58(6), 1684-1688.
[http://dx.doi.org/10.1002/anie.201811668] [PMID: 30499607]
[68]
Schischko, A.; Kaplaneris, N.; Rogge, T.; Sirvinskaite, G.; Son, J.; Ackermann, L. Late-stage peptide C-H alkylation for bioorthogonal C-H activation featuring solid phase peptide synthesis. Nat. Commun., 2019, 10(1), 3553.
[http://dx.doi.org/10.1038/s41467-019-11395-3] [PMID: 31391461]
[69]
Zhu, Y.; Bauer, M.; Ackermann, L. Late-stage peptide diversification by bioorthogonal catalytic C-H arylation at 23 °C in H2 O. Chemistry, 2015, 21(28), 9980-9983.
[http://dx.doi.org/10.1002/chem.201501831] [PMID: 26037620]
[70]
Kalyani, D.; Deprez, N.R.; Desai, L.V.; Sanford, M.S. Oxidative C-H activation/C-C bond forming reactions: synthetic scope and mechanistic insights. J. Am. Chem. Soc., 2005, 127(20), 7330-7331.
[http://dx.doi.org/10.1021/ja051402f] [PMID: 15898779]
[71]
Ohata, J.; Minus, M.B.; Abernathy, M.E.; Ball, Z.T. Histidine-directed arylation/alkenylation of backbone N-H bonds mediated by copper(II). J. Am. Chem. Soc., 2016, 138(24), 7472-7475.
[http://dx.doi.org/10.1021/jacs.6b03390] [PMID: 27249339]
[72]
Du, Z.; Zhang, S.; Zhou, C.; Liu, M.; Li, G. L-histidine functionalized multi-walled carbon nanotubes for on-line affinity separation and purification of immunoglobulin G in serum. Talanta, 2012, 99, 40-49.
[http://dx.doi.org/10.1016/j.talanta.2012.05.018] [PMID: 22967519]
[73]
Mathavan, T.; Dhas, M.K.; Kanimozhi, C.V.; Jothi Rajan, M.A.; Umapathy, S.; Ramasubbu, A. Spectroscopic studies on pure and histidine-functionalized multiwalled carbon nanotubes. Spectrosc. Lett., 2014, 47, 642-648.
[http://dx.doi.org/10.1080/00387010.2013.825870]
[74]
Mahindra, A.; Jain, R. Regiocontrolled palladium-catalyzed and copper-mediated C-H bond functionalization of protected L-histidine. Org. Biomol. Chem., 2014, 12(23), 3792-3796.
[http://dx.doi.org/10.1039/C4OB00430B] [PMID: 24781708]
[75]
Wang, X.; Jia, J.; Huang, Z.; Zhou, M.; Fei, H. Luminescent peptide labeling based on a histidine-binding iridium(III) complex for cell penetration and intracellular targeting studies. Chemistry, 2011, 17(29), 8028-8032.
[http://dx.doi.org/10.1002/chem.201100568] [PMID: 21626590]
[76]
Halland, N. An atom-efficient direct regioselective N(τ)-allylation of histidine derivatives. Synlett, 2012, 23, 2969-2971.
[http://dx.doi.org/10.1055/s-0032-1317669]
[77]
Ban, H.; Gavrilyuk, J.; Barbas, C.F., III Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine. J. Am. Chem. Soc., 2010, 132(5), 1523-1525.
[http://dx.doi.org/10.1021/ja909062q] [PMID: 20067259]
[78]
Antos, J.M.; McFarland, J.M.; Iavarone, A.T.; Francis, M.B. Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. J. Am. Chem. Soc., 2009, 131(17), 6301-6308.
[http://dx.doi.org/10.1021/ja900094h] [PMID: 19366262]
[79]
Taylor, M.T.; Nelson, J.E.; Suero, M.G.; Gaunt, M.J. A protein functionalization platform based on selective reactions at methionine residues. Nature, 2018, 562(7728), 563-568.
[http://dx.doi.org/10.1038/s41586-018-0608-y] [PMID: 30323287]
[80]
Jia, S.; He, D.; Chang, C.J. Bioinspired thiophosphorodichloridate reagents for chemoselective histidine bioconjugation. J. Am. Chem. Soc., 2019, 141(18), 7294-7301.
[http://dx.doi.org/10.1021/jacs.8b11912] [PMID: 31017395]
[81]
Medzihradszky, KE; Philljpps, NJ; Senderowicz, L; Wang, P Synthesis and characterization of histidine-phosphorylated peptides. 1997.
[http://dx.doi.org/10.1002/pro.5560060704]
[82]
Jain, R.; Cohen, L.A.; El-Kadi, N.A.; King, M.M. Regiospecific alkylation of histidine and histamine at C-2. Tetrahedron, 1997, 53, 2365-2370.
[http://dx.doi.org/10.1016/S0040-4020(96)01193-3]
[83]
Chen, X.; Ye, F.; Luo, X.; Liu, X.; Zhao, J.; Wang, S.; Zhou, Q.; Chen, G.; Wang, P. Histidine-specific peptide modification via visible-light-promoted C-H Alkylation. J. Am. Chem. Soc., 2019, 141(45), 18230-18237.
[http://dx.doi.org/10.1021/jacs.9b09127] [PMID: 31635455]
[84]
Schneider, F. Histidine in enzyme active centers. Angew. Chem. Int. Ed. Engl., 1978, 17(8), 583-592.
[http://dx.doi.org/10.1002/anie.197805831] [PMID: 101098]
[85]
Gromiha, M.M.; Selvaraj, S. Inter-residue interactions in protein folding and stability. Prog. Biophys. Mol. Biol., 2004, 86(2), 235-277.
[http://dx.doi.org/10.1016/j.pbiomolbio.2003.09.003] [PMID: 15288760]
[86]
Joshi, P.N.; Rai, V. Single-site labeling of histidine in proteins, on-demand reversibility, and traceless metal-free protein purification. Chem. Commun. (Camb.), 2019, 55(8), 1100-1103.
[http://dx.doi.org/10.1039/C8CC08733D] [PMID: 30620346]
[87]
Jasensky, J.; Ferguson, K.; Baria, M.; Zou, X.; McGinnis, R.; Kaneshiro, A.; Badieyan, S.; Wei, S.; Marsh, E.N.G.; Chen, Z. Simultaneous observation of the orientation and activity of surface-immobilized enzymes. Langmuir, 2018, 34(31), 9133-9140.
[http://dx.doi.org/10.1021/acs.langmuir.8b01657] [PMID: 29993252]
[88]
Gao, X.; Li, Y.; Qin, Y.; Chen, E.; Li, Q.; Zhao, X. Reversible and oriented immobilization of histidine-tagged protein on silica gel characterized by frontal analysis. RSC Advances, 2015, 5, 24449-24454.
[http://dx.doi.org/10.1039/C5RA01012H]
[89]
Li, M.; Cheng, F.; Li, H.; Jin, W.; Chen, C.; He, W.; Cheng, G.; Wang, Q. Site-specific and covalent immobilization of His-tagged proteins via surface vinyl sulfone-imidazole coupling. Langmuir, 2019, 35(50), 16466-16475.
[http://dx.doi.org/10.1021/acs.langmuir.9b02933] [PMID: 31756107]
[90]
Cheng, F; Li, M; Zhao, X; Wang, H; He, W; Hua, X Controllable functionalization of hydroxyl-terminated self-assembled monolayers via catalytic oxa-Michael reaction. Biointerphases, 2018, 13, 06E407.
[91]
England, C.G.; Luo, H.; Cai, W. HaloTag technology: a versatile platform for biomedical applications. Bioconjugate Chem., 2015, 26(6), 975-986.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00191]
[92]
Turecek, P.L.; Bossard, M.J.; Schoetens, F.; Ivens, I.A. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci., 2016, 105(2), 460-475.
[http://dx.doi.org/10.1016/j.xphs.2015.11.015] [PMID: 26869412]
[93]
Peciak, K.; Laurine, E.; Tommasi, R.; Choi, J.W.; Brocchini, S. Site-selective protein conjugation at histidine. Chem. Sci. (Camb.), 2018, 10(2), 427-439.
[http://dx.doi.org/10.1039/C8SC03355B] [PMID: 30809337]
[94]
Adusumalli, S.R.; Rawale, D.G.; Singh, U.; Tripathi, P.; Paul, R.; Kalra, N.; Mishra, R.K.; Shukla, S.; Rai, V. Single-site labeling of native proteins enabled by a chemoselective and site-selective chemical technology. J. Am. Chem. Soc., 2018, 140(44), 15114-15123.
[http://dx.doi.org/10.1021/jacs.8b10490] [PMID: 30336012]
[95]
Chen, G.; Heim, A.; Riether, D.; Yee, D.; Milgrom, Y.; Gawinowicz, M.A.; Sames, D. Reactivity of functional groups on the protein surface: development of epoxide probes for protein labeling. J. Am. Chem. Soc., 2003, 125(27), 8130-8133.
[http://dx.doi.org/10.1021/ja034287m] [PMID: 12837082]
[96]
Li, C.; Liu, Y.; Wu, Y.; Sun, Y.; Li, F. The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes. Biomaterials, 2013, 34(4), 1223-1234.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.014] [PMID: 23131533]
[97]
Chen, M.; Wu, Y.; Liu, Y.; Yang, H.; Zhao, Q.; Li, F. A phosphorescent iridium(III) solvent complex for multiplex assays of cell death. Biomaterials, 2014, 35(30), 8748-8755.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.041] [PMID: 25016431]
[98]
Chen, L.; Hayne, D.J.; Doeven, E.H.; Agugiaro, J.; Wilson, D.J.D.; Henderson, L.C.; Connell, T.U.; Nai, Y.H.; Alexander, R.; Carrara, S.; Hogan, C.F.; Donnelly, P.S.; Francis, P.S. A conceptual framework for the development of iridium(iii) complex-based electrogenerated chemiluminescence labels. Chem. Sci. (Camb.), 2019, 10(37), 8654-8667.
[http://dx.doi.org/10.1039/C9SC01391A] [PMID: 31803440]
[99]
Zhou, Y.; Ding, Y.; Huang, Y.; Cai, L.; Xu, J.; Ma, X. Synthesis and structural optimization of iridium(III) solvent complex for electrochemiluminescence labeling of histidine-rich protein and immunoassay applications for CRP detection. ACS Omega, 2020, 5(7), 3638-3645.
[http://dx.doi.org/10.1021/acsomega.9b04159] [PMID: 32118179]
[100]
Hu, Q.Y.; Berti, F.; Adamo, R. Towards the next generation of biomedicines by site-selective conjugation. Chem. Soc. Rev., 2016, 45(6), 1691-1719.
[http://dx.doi.org/10.1039/C4CS00388H] [PMID: 26796469]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 28
ISSUE: 7
Year: 2021
Published on: 29 January, 2021
Page: [788 - 808]
Pages: 21
DOI: 10.2174/0929866528666210129152535
Price: $65

Article Metrics

PDF: 107
HTML: 1