Recent Advances in Colon Drug Delivery Technology

Author(s): Rakesh Pahwa, Ridhi Bajaj, Pankaj Bhateja, Mona Piplani*

Journal Name: Drug Delivery Letters

Volume 11 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Colon-targeted drug delivery technology; an approach of immense potential, has acquired tremendous significance for managing a number of ailments, particularly of the colon and for delivering therapeutic proteins and peptides systemically. The major hurdles for delivering drugs in the colonic region include absorption and degradation pathways in the upper gastrointestinal tract (GIT). To achieve a triumphant colonic delivery, the therapeutic agent must be protected from getting absorbed in the preliminary region of GIT to ensure its release in the proximal colon in a controlled way. The principle approaches, for instance, prodrug approach, pH sensitivity, timedependency (lag time), degradation by microbes, etc. have been effectively applied for obtaining colon targeted drug delivery. These approaches have accomplished immense relevance. Therefore, incessant attempts have been mainly focused on the design of colon targeted drug delivery systems having enhanced site-specificity along with the study of its versatile drug release kinetics to achieve diverse therapeutic requirements. The current manuscript illustrates the significance of different colon drug delivery systems and general considerations for designing colon targeting systems, including primary as well as novel approaches. Recent investigational studies carried out by scientific communities worldwide for the designing and preparation of various colon-targeted formulations along with their significant insights have been described. Recent patents, structure-property relationship and dissolution aspects pertaining to the colon-specific drug delivery have also been depicted.

Keywords: Colon targeted drug delivery, pH-dependent, microbial degradation, site-specificity, recent patents, prodrug approach, structure-property relationship, dissolution aspects.

[1]
Chien, Y.W. Oral drug delivery and delivery systems.Novel Drug Delivery Systems; Marcel Dekker Inc.: New York: Basel, 1992, 50, pp. 139-177.
[2]
Venkatraman, S.; Davar, A.; Chester, A.; Kleiner, L.; Wise, D.L. An overview of controlled drug delivery systems.Handbook of Pharmaceutical Controlled Release Technology; Marcel Dekker Inc.: New York, Basel, 2000, pp. 431-464.
[3]
Sharma, G.S.; Srikanth, M.V.; Uhumwangho, M.U.; Phani, K.S.K.; Ramana, M.K.V. Recent trends in pulsatile drug delivery systems. J. Drug Deliv. Sci. Technol., 2010, 2, 200-212.
[4]
Aurora, J.; Talwar, N.; Pathak, V. Colonic drug delivery challenges and opportunities-An overview. Eur. Gastroenterol. Rev., 2006, 1-6.http://www.touchophthalmology.com/sites/wwwtouchoncology.com/files/migrated/articles_pdfs/gastro_6458
[5]
Asghar, L.F.; Chandran, S. Multiparticulate formulation approach to colon specific drug delivery: current perspectives. J. Pharm. Pharm. Sci., 2006, 9(3), 327-338.
[PMID: 17207416]
[6]
Cheng, G.; An, F.; Zou, M.J.; Sun, J.; Hao, X.H.; He, Y.X. Time- and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J. Gastroenterol., 2004, 10(12), 1769-1774.
[http://dx.doi.org/10.3748/wjg.v10.i12.1769] [PMID: 15188503]
[7]
Sinha, V.R.; Kumria, R. Coating polymers for colon specific drug delivery: a comparative in vitro evaluation. Acta Pharm., 2003, 53(1), 41-47.
[PMID: 14769251]
[8]
Philip, A.K.; Philip, B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med. J., 2010, 25(2), 79-87.
[http://dx.doi.org/10.5001/omj.2010.24] [PMID: 22125706]
[9]
Patel, N.; Patel, J.; Gandhi, T.; Soni, T.; Shah, S. Novel pharmaceutical approaches for colon specific drug delivery: an overview. J. Pharm. Res., 2008, 1(1), 2-10.
[10]
Shareef, M.A.; Khar, R.K.; Ahuja, A.; Ahmad, F.J.; Raghava, S. Colonic drug delivery: an updated review. AAPS. Pharm. Sci., 2003, 5(2), E17.
[http://dx.doi.org/10.1208/ps050217] [PMID: 12866944]
[11]
Krishnaiah, Y.S.; Khan, M.A. Strategies of targeting oral drug delivery systems to the colon and their potential use for the treatment of colorectal cancer. Pharm. Dev. Technol., 2012, 17(5), 521-540.
[http://dx.doi.org/10.3109/10837450.2012.696268] [PMID: 22681390]
[12]
Gupta, V.K.; Gnanarajan, G.; Kothiyal, P. A review article on colonic targeted drug delivery system. Pharm. Innov., 2012, 1(7), 14-24.
[13]
Patel, M.K.; Roy, A.; Bahadur, S.; Kukreja, S.; Bhairam, M. Colon targeted drug delivery: approaches and newer technology. Res. J. Pharm. Technol., 2012, 5(9), 1154-1160.
[14]
Haupt, S.; Rubinstein, A. The colon as a possible target for orally administered peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst., 2002, 19(6), 499-551.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i6.10] [PMID: 12822734]
[15]
Kumar, P.; Mishra, B. Colon targeted drug delivery systems-an overview. Curr. Drug Deliv., 2008, 5(3), 186-198.
[http://dx.doi.org/10.2174/156720108784911712] [PMID: 18673262]
[16]
Kumar, J.G.; Kumar, S.S.; Kumar, D.P.; Niranjan, P.C.; Charan, P.K.; Suryakant, S. Ongoing trends and recent patent survey on colon targeting. J. Drug Deliv. Res., 2016, 5(4), 8-25.
[17]
Vemula, S.K.; Veerareddy, P.R. Different approaches to design and evaluation of colon specific drug delivery systems. Int. J. Pharm. Technol., 2009, 1(1), 1-35.
[18]
Jain, A.; Gupta, Y.; Jain, S.K. Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J. Pharm. Pharm. Sci., 2007, 10(1), 86-128.
[PMID: 17498397]
[19]
Asija, R.; Chaudhari, B.; Asija, S. Oral colon targeted drug delivery system: a review on current and novel prospectives. J. Pharm. Sci. Innov., 2012, 1(5), 6-12.
[20]
Chowdhury, A.; Singh, H. Different approaches of colon targeted drug delivery system. Am. J. PharmTech. Res, 2014, 4(6), 104-117.
[21]
Choudhury, P.K.; Panigrahi, T.K.; Murthy, P.N.; Tripathy, N.K.; Panigrahi, R.; Behera, S. Novel approaches and developments in colon specific drug delivery systems- a review. WebmedCentral. Pharm. Sci., 2012, 3(2), WMC003114.
[22]
Prathap, M.; Gulshan, M.D.; Rama Rao, N. Colon: targeted drug delivery system- a review. Int. J. Res. Pharm. Nanosci., 2014, 3(5), 429-437.
[23]
Nemade, M.S.; Chaudhari, R.Y.; Patil, V.R. Novel approaches to colon targeted drug delivery system: a review. Res. Rev. J. Pharm. Pharm. Sci., 2014, 3(2), 63-69.
[24]
Kaur, A.; Kaur, A.; Kaur, V.P.; Kaur, M.; Murthy, R.S. Polymeric drug delivery approaches for colon targeting: a review. Drug Deliv. Lett., 2014, 4, 38-48.
[http://dx.doi.org/10.2174/22103031113036660017]
[25]
Antonin, K.H.; Rak, R.; Bieck, P.R.; Preiss, R.; Schenker, U.; Hastewell, J.; Fox, R.; Mackay, M. The absorption of human calcitonin from the transverse colon of man. Int. J. Pharm., 1996, 130(1), 33-39.
[http://dx.doi.org/10.1016/0378-5173(95)04248-2]
[26]
Sinha, V.R.; Kumria, R. Microbially triggered drug delivery to the colon. Eur. J. Pharm. Sci., 2003, 18(1), 3-18.
[http://dx.doi.org/10.1016/S0928-0987(02)00221-X] [PMID: 12554067]
[27]
Jose, S.; Dhanya, K.; Cinu, T.A.; Litty, J.; Chacko, A.J. Colon targeted drug delivery: different approaches. J. Young Pharm., 2009, 1(1), 13-19.
[http://dx.doi.org/10.4103/0975-1483.51869]
[28]
Chourasia, M.K.; Jain, S.K. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci., 2003, 6(1), 33-66.
[PMID: 12753729]
[29]
Ratnaparkhi, M.P.; Somvanshi, F.U.; Pawar, S.A.; Chaudhari, S.P.; Gupta, J.P.; Budhavant, K.A. Colon targeted drug delivery system. Int. J. Pharm. Res. Rev, 2013, 2(8), 33-42.
[30]
Prasanth, V.V.; Jayaprakash, R.; Mathew, S.T. Colon specific drug delivery systems: a review on various pharmaceutical approaches. J. Appl. Pharm. Sci., 2012, 02(01), 163-169.
[31]
Kumar, M.; Ali, A.; Kaldhone, P.; Shirode, A.; Kadam, V.J. Report on pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Res., 2010, 3(3), 470-473.
[32]
Cherukuri, S.; Chappidi, S.R.; Neelaboina, V.P.; Reddipalli, S.; Komaragiri, K. Colon specific drug delivery systems: a review on pharmaceutical approaches with current trends. Int. Res. J. Pharm., 2012, 3(7), 45-55.
[33]
Patel, M.P.; Patel, J.K.; Patel, J.; Patel, A.; Patel, J.; Solanki, S. Novel approaches and recent innovations in colon targeted drug delivery system-a review. Int. J. Bioinformatics, 2011, 4(2), 29-39.
[34]
Amidon, S.; Brown, J.E.; Dave, V.S. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech, 2015, 16(4), 731-741.
[http://dx.doi.org/10.1208/s12249-015-0350-9] [PMID: 26070545]
[35]
Shi, C.; Yuan, D.; Nangia, S.; Xu, G.; Lam, K.S.; Luo, J. A structure-property relationship study of the well-defined telodendrimers to improve hemocompatibility of nanocarriers for anticancer drug delivery. Langmuir, 2014, 30(23), 6878-6888.
[http://dx.doi.org/10.1021/la5003513] [PMID: 24849780]
[36]
Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.H.; Le, T.H.; Huynh, V.Q.N.; Vo, D.N.; Trinh, Q.T.; Kim, S.Y.; Le, Q.V. Silk fibroin-based biomaterials for biomedical applications: A review. Polymers (Basel), 2019, 11(12), 1933.
[http://dx.doi.org/10.3390/polym11121933] [PMID: 31771251]
[37]
Dasgupta, M.; Judy, E.; Kishore, N. Partitioning of anticancer drug 5-fluorouracil in micellar media explored by physicochemical properties and energetics of interactions: Quantitative insights for implications in drug delivery. Colloids Surf. B Biointerfaces, 2020, 187, 110730.
[38]
Kumar, R.; Mondal, K.; Panda, P.K.; Kaushik, A.; Abolhassani, R.; Ahuja, R.; Rubahn, H.G.; Mishra, Y.K. Core-shell nanostructures: perspectives towards drug delivery applications. J. Mater. Chem. B., 2020, 8(39), 8992-9027.
[http://dx.doi.org/10.1039/D0TB01559H] [PMID: 32902559]
[39]
Bazban-Shotorbani, S.; Hasani-Sadrabadi, M.M.; Karkhaneh, A.; Serpooshan, V.; Jacob, K.I.; Moshaverinia, A.; Mahmoudi, M. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J. Control. Release, 2017, 253, 46-63.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.021] [PMID: 28242418]
[40]
Shriky, B.; Kelly, A.; Isreb, M.; Babenko, M.; Mahmoudi, N.; Rogers, S.; Shebanova, O.; Snow, T.; Gough, T. Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system development. J. Colloid Interface Sci., 2020, 565, 119-130.
[http://dx.doi.org/10.1016/j.jcis.2019.12.096] [PMID: 31945671]
[41]
Varanko, A.; Saha, S.; Chilkoti, A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv. Drug Deliv. Rev., 2020, 156, 133-187.
[http://dx.doi.org/10.1016/j.addr.2020.08.008] [PMID: 32871201]
[42]
Singh, B.; Singh, B. Graft copolymerization of polyvinylpyrollidone onto Azadirachta indica gum polysaccharide in the presence of crosslinker to develop hydrogels for drug delivery applications. Int. J. Biol. Macromol., 2020, 159, 264-275.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.091] [PMID: 32422260]
[43]
Kotla, N.G.; Singh, S.; Maddiboyina, B.; Sunnapu, O.; Webster, T.J. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media. Int. J. Nanomedicine, 2016, 11, 1089-1095.
[PMID: 27051284]
[44]
Qureshi, A.M.; Momin, M.; Rathod, S.; Dev, A.; Kute, C. Colon targeted drug delivery system: a review on current approaches. Indian J. Pharm. Biol. Res., 2013, 1(4), 130-147.
[http://dx.doi.org/10.30750/ijpbr.1.4.24]
[45]
Schacht, E.; Gevaert, A.; Kenawy, E.R.; Molly, K.; Verstraete, W.; Adriaensens, P. Polymers for colon specific drug delivery. J. Control. Release, 1996, 39(2), 327-338.
[http://dx.doi.org/10.1016/0168-3659(95)00184-0]
[46]
Basit, A.; Bloor, J. Perspectives on colonic drug delivery. Pharmtech., 2003, 185-190.
[47]
Friend, D.R.; Chang, G.W. Drug glycosides: potential prodrugs for colon-specific drug delivery. J. Med. Chem., 1985, 28(1), 51-57.
[http://dx.doi.org/10.1021/jm00379a012] [PMID: 3965714]
[48]
Kinget, R.; Kalala, W.; Vervoort, L.; van den Mooter, G. Colonic drug targeting. J. Drug Target., 1998, 6(2), 129-149.
[http://dx.doi.org/10.3109/10611869808997888] [PMID: 9886237]
[49]
Sinha, V.R.; Kumria, R. Colonic drug delivery: prodrug approach. Pharm. Res., 2001, 18(5), 557-564.
[http://dx.doi.org/10.1023/A:1011033121528] [PMID: 11465408]
[50]
Sharma, P.C.; Piplani, M.; Mittal, M.; Pahwa, R. Insight into prodrugs of quinolones and fluoroquinolones. Infect. Disord. Drug Targets, 2016, 16(3), 140-161.
[http://dx.doi.org/10.2174/1871526516666160824153226] [PMID: 27558786]
[51]
Sharma, P.C.; Piplani, M.; Rajak, H. Synthesis, characterization and evaluation of lipid based norfloxacin prodrug. Curr. Drug Deliv., 2018, 15(2), 219-226.
[http://dx.doi.org/10.2174/1567201813666161018153852] [PMID: 27758690]
[52]
Piplani, M.; Rana, A.C.; Sharma, P.C. Prodrugs of antiinfective agents- a review. J. Pharm. Pharm. Sci., 2016, 19(1), 82-113.
[http://dx.doi.org/10.18433/J3X61S] [PMID: 27096695]
[53]
Rafil, F.; Franklin, W.; Heflich, R.H.; Cerniglia, C.E. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl. Environ. Microbiol., 1991, 57(4), 962-968.
[http://dx.doi.org/10.1128/AEM.57.4.962-968.1991] [PMID: 2059053]
[54]
Walker, R.; Ryan, A.J. Some molecular parameters influencing rate of reduction of azo compounds by intestinal microflora. Xenobiotica, 1971, 1(4), 483-486.
[http://dx.doi.org/10.3109/00498257109041513] [PMID: 5006111]
[55]
Azadkhan, A.K.; Truelove, S.C.; Aronson, J.K. The disposition and metabolism of sulphasalazine (salicylazosulphapyridine) in man. Br. J. Clin. Pharmacol., 1982, 13(4), 523-528.
[http://dx.doi.org/10.1111/j.1365-2125.1982.tb01415.x] [PMID: 6121576]
[56]
Chan, R.P.; Pope, D.J.; Gilbert, A.P.; Sacra, P.J.; Baron, J.H.; Lennard-Jones, J.E. Studies of two novel sulfasalazine analogs, ipsalazide and balsalazide. Dig. Dis. Sci., 1983, 28(7), 609-615.
[http://dx.doi.org/10.1007/BF01299921] [PMID: 6345112]
[57]
Lauritsen, K.; Hansen, J.; Ryde, M.; Rask-Madsen, J. Colonic azodisalicylate metabolism determined by in vivo dialysis in healthy volunteers and patients with ulcerative colitis. Gastroenterology, 1984, 86(6), 1496-1500.
[http://dx.doi.org/10.1016/S0016-5085(84)80164-X] [PMID: 6143704]
[58]
Klotz, U. Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin. Pharmacokinet., 1985, 10(4), 285-302.
[http://dx.doi.org/10.2165/00003088-198510040-00001] [PMID: 2864155]
[59]
Sakuma, S.; Lu, Z.R.; Kopecková, P.; Kopecek, J. Biorecognizable HPMA copolymer-drug conjugates for colon-specific delivery of 9-aminocamptothecin. J. Control. Release, 2001, 75(3), 365-379.
[http://dx.doi.org/10.1016/S0168-3659(01)00405-9] [PMID: 11489323]
[60]
Simpkins, J.W.; Smulkowski, M.; Dixon, R.; Tuttle, R. Evidence for the delivery of narcotic antagonists to the colon as their glucuronide conjugates. J. Pharmacol. Exp. Ther., 1988, 244(1), 195-205.
[PMID: 3335997]
[61]
Stella, V.J.; Rajewski, R.A. Cyclodextrins: their future in drug formulation and delivery. Pharm. Res., 1997, 14(5), 556-567.
[http://dx.doi.org/10.1023/A:1012136608249] [PMID: 9165524]
[62]
Harboe, E.; Larsen, C.; Johansen, M.; Olesen, H.P. Macromolecular prodrugs XIV. Absorption characteristics of naproxen after oral administration of dextran T-70-naproxen ester prodrug in pigs. Int. J. Pharm., 1989, 53(2), 157-165.
[http://dx.doi.org/10.1016/0378-5173(89)90239-1]
[63]
Nakamura, J.; Kido, M.; Nishida, K.; Sasaki, H. Effect of oral pretreatment with antibiotics on the hydrolysis of salicylic acid-tyrosine and salicylic acid-methionine prodrugs in rabbit intestinal microorganisms. Chem. Pharm. Bull. (Tokyo), 1992, 40(9), 2572-2575.
[http://dx.doi.org/10.1248/cpb.40.2572] [PMID: 1446381]
[64]
Antenucci, R.N.; Palmer, J.K. Enzymatic degradation of α- and β- cyclodextrins by bacteroides of the human colon. J. Agric. Food Chem., 1984, 32(6), 1316-1321.
[http://dx.doi.org/10.1021/jf00126a025]
[65]
Kolte, B.P.; Tele, K.V.; Mundhe, V.S.; Lahoti, S.S. Colon targeted drug delivery system-a novel perspective. Asian J. Biomed. Pharm. Sci., 2012, 2(14), 21-28.
[66]
Vats, A.; Pathak, K. Exploiting microspheres as a therapeutic proficient doer for colon delivery: a review. Expert Opin. Drug Deliv., 2013, 10(4), 545-557.
[http://dx.doi.org/10.1517/17425247.2013.759937] [PMID: 23316745]
[67]
Talaei, F.; Atyabi, F.; Azhdarzadeh, M.; Dinarvand, R.; Saadatzadeh, A. Overcoming therapeutic obstacles in inflammatory bowel diseases: a comprehensive review on novel drug delivery strategies. Eur. J. Pharm. Sci., 2013, 49(4), 712-722.
[http://dx.doi.org/10.1016/j.ejps.2013.04.031] [PMID: 23665411]
[68]
Embil, K.; Nacht, S. The Microsponge Delivery System (MDS): a topical delivery system with reduced irritancy incorporating multiple triggering mechanisms for the release of actives. J. Microencapsul., 1996, 13(5), 575-588.
[http://dx.doi.org/10.3109/02652049609026042] [PMID: 8864994]
[69]
Orlu, M.; Cevher, E.; Araman, A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int. J. Pharm., 2006, 318(1-2), 103-117.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.025] [PMID: 16687222]
[70]
Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine (Lond.), 2015, 11(5), 1117-1132.
[http://dx.doi.org/10.1016/j.nano.2015.02.018] [PMID: 25784453]
[71]
Chandran, S.P.; Natarajan, S.B.; Chandraseharan, S.; Shahimi, M.S.B.M. Nano drug delivery strategy of 5-fluorouracil for the treatment of colorectal cancer. J. Cancer Res. Pract., 2017, 4(2), 45-48.
[http://dx.doi.org/10.1016/j.jcrpr.2017.02.002]
[72]
Zhang, L.; Sang, Y.; Feng, J.; Li, Z.; Zhao, A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J. Drug Target., 2016, 24(7), 579-589.
[http://dx.doi.org/10.3109/1061186X.2015.1128941] [PMID: 26766303]
[73]
Mathew, P.; Muruganantham, V. Novel approaches to colon targeted drug delivery: an overview. Int. J. Pharm. Sci. Rev. Res., 2020, 63(1), 52-59.
[74]
Rubinstein, A. Natural polysaccharides as targeting tools of drugs to the human colon. Drug Dev. Res., 2000, 50(3-4), 435-439.
[http://dx.doi.org/10.1002/1098-2299(200007/08)50:3/4<435::AID-DDR26>3.0.CO;2-5]
[75]
Chourasia, M.K.; Jain, S.K. Polysaccharides for colon targeted drug delivery. Drug Deliv., 2004, 11(2), 129-148.
[http://dx.doi.org/10.1080/10717540490280778] [PMID: 15200012]
[76]
Ravi, V.; Pramod Kumar, T.M.; Siddaramaiah, Novel colon targeted drug delivery system using natural polymers. Indian J. Pharm. Sci., 2008, 70(1), 111-113.
[http://dx.doi.org/10.4103/0250-474X.40346] [PMID: 20390095]
[77]
Vandamme, Th.F.; Lenourry, A.; Charrueau, C.; Chaumeil, J.C. The use of polysaccharides to target drugs to the colon. Carbohydr. Polym., 2002, 48(3), 219-231.
[http://dx.doi.org/10.1016/S0144-8617(01)00263-6]
[78]
Sinha, V.R.; Kumria, R. Polysaccharides in colon-specific drug delivery. Int. J. Pharm., 2001, 224(1-2), 19-38.
[http://dx.doi.org/10.1016/S0378-5173(01)00720-7] [PMID: 11472812]
[79]
Leopold, C.S.; Eikeler, D. Basic coating polymers for the colon-specific drug delivery in inflammatory bowel disease. Drug Dev. Ind. Pharm., 2000, 26(12), 1239-1246.
[http://dx.doi.org/10.1081/DDC-100102305] [PMID: 11147124]
[80]
Kopeček, J.; Kopečkova, P.; Brondsted, H.; Rathi, R.; Říhová, B.; Yeh, P.Y.; Ikesue, K. Polymers for colon-specific drug delivery. J. Control. Release, 1992, 19(1-3), 121-130.
[http://dx.doi.org/10.1016/0168-3659(92)90070-8]
[81]
Singh, B.N. Modified-release solid formulations for colonic delivery. Recent Pat. Drug Deliv. Formul., 2007, 1(1), 53-63.
[http://dx.doi.org/10.2174/187221107779814122] [PMID: 19075874]
[82]
Kaur, G.; Jain, S.; Tiwary, A.K. Recent approaches for colon drug delivery. Recent Pat. Drug Deliv. Formul., 2007, 1(3), 222-229.
[http://dx.doi.org/10.2174/187221107782331665] [PMID: 19075889]
[83]
Bansal, V.; Malviya, R.; Malaviya, T.; Sharma, P.K. Novel prospective in colon specific drug delivery system. Polim. Med., 2014, 44(2), 109-118.
[PMID: 24967782]
[84]
Rubinstein, A. Approaches and opportunities in colon-specific drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 1995, 12(2-3), 101-149.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v12.i2-3.10] [PMID: 9501968]
[85]
Basit, A.W. Advances in colonic drug delivery. Drugs, 2005, 65(14), 1991-2007.
[http://dx.doi.org/10.2165/00003495-200565140-00006] [PMID: 16162022]
[86]
Rubinstein, A. Microbially controlled drug delivery to the colon. Biopharm. Drug Dispos., 1990, 11(6), 465-475.
[http://dx.doi.org/10.1002/bdd.2510110602] [PMID: 2207298]
[87]
Newton, A.M.J.; Lakshmanan, P. Comparative efficacy of chitosan, pectin based mesalamine colon targeted drug delivery systems on TNBS-induced IBD model rats. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(2), 113-127.
[http://dx.doi.org/10.2174/1871523018666190118112230] [PMID: 30657050]
[88]
Cheng, H.; Huang, S.; Huang, G. Design and application of oral colon administration system. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1590-1596.
[http://dx.doi.org/10.1080/14756366.2019.1655406] [PMID: 31581863]
[89]
Teruel, A.H.; Gonzalez-Alvarez, I.; Bermejo, M.; Merino, V.; Marcos, M.D.; Sancenon, F.; Gonzalez-Alvarez, M.; Martinez-Mañez, R. New insights of oral colonic drug delivery systems for inflammatory bowel disease therapy. Int. J. Mol. Sci., 2020, 21(18), 6502.
[http://dx.doi.org/10.3390/ijms21186502] [PMID: 32899548]
[90]
Cai, D.; Han, C.; Liu, C.; Ma, X.; Qian, J.; Zhou, J.; Li, Y.; Sun, Y.; Zhang, C.; Zhu, W. Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery. Nanoscale Res. Lett., 2020, 15(1), 123.
[http://dx.doi.org/10.1186/s11671-020-03351-8] [PMID: 32488526]
[91]
Gupta, A.; Mittal, A.; Gupta, A.K. Colon targeted drug delivery systems- a review. Russ. J. Biopharm., 2011, 3(4), 3-13.
[92]
Arévalo-Pérez, R.; Maderuelo, C.; Lanao, J.M. Recent advances in colon drug delivery systems. J. Control. Release, 2020, 327, 703-724.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.026] [PMID: 32941930]
[93]
Shelake, S.S.; Patil, S.V.; Sangave, P. Formulation and evaluation of fenofibrate loaded nanoparticles by precipitation method. Indian J. Pharm. Sci., 2018, 80(3), 420-427.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000374]
[94]
Ding, Y.; Lin, Q.; Kan, J. Development and characteristics nanoscale retrograded starch as an encapsulating agent for colon-specific drug delivery. Colloids Surf. B Biointerfaces, 2018, 171, 656-667.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.007] [PMID: 30107339]
[95]
Sabra, R.; Billa, N.; Roberts, C.J. An augmented delivery of the anticancer agent, curcumin, to the colon. React. Funct. Polym., 2018, 123, 54-60.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.12.012]
[96]
Teruel, A.H.; Pérez-Esteve, É.; González-Álvarez, I.; González-Álvarez, M.; Costero, A.M.; Ferri, D.; Parra, M.; Gaviña, P.; Merino, V.; Martínez-Mañez, R.; Sancenón, F. Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. J. Control. Release, 2018, 281, 58-69.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.007] [PMID: 29753956]
[97]
Wang, K.; Wen, H.F.; Yu, D.G.; Zhang, D.F.; Yang, Y. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater. Des., 2018, 143, 248-255.
[http://dx.doi.org/10.1016/j.matdes.2018.02.016]
[98]
Andishmand, H.; Tabibiazar, M.; Mohammadifar, M.A.; Hamishehkar, H. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol. Int. J. Biol. Macromol., 2017, 97, 16-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.087] [PMID: 28064058]
[99]
Tian, B.; Liu, S.; Wu, S.; Lu, W.; Wang, D.; Jin, L.; Hu, B.; Li, K.; Wang, Z.; Quan, Z. pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf. B Biointerfaces, 2017, 154, 287-296.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.024] [PMID: 28351801]
[100]
Hussain, Z.; Katas, H.; Yan, S.L.; Jamaludin, D. Efficient colonic delivery of DsiRNA by pectin-coated polyelectrolyte complex nanoparticles: preparation, characterization and improved gastric survivability. Curr. Drug Deliv., 2017, 14(7), 1016-1027.
[http://dx.doi.org/10.2174/1567201814666170224142446] [PMID: 28240178]
[101]
Kumar, B.; Kulanthaivel, S.; Mondal, A.; Mishra, S.; Banerjee, B.; Bhaumik, A.; Banerjee, I.; Giri, S. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf. B Biointerfaces, 2017, 150, 352-361.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.049] [PMID: 27847225]
[102]
Nguyen, C.T.; Webb, R.I.; Lambert, L.K.; Strounina, E.; Lee, E.C.; Parat, M.O.; McGuckin, M.A.; Popat, A.; Cabot, P.J.; Ross, B.P. Bifunctional succinylated Ɛ-polylysine coated mesoporous silica nanoparticles for pH-responsive and intracellular drug delivery targeting the colon. ACS Appl. Mater. Interfaces, 2017, 9(11), 9470-9483.
[http://dx.doi.org/10.1021/acsami.7b00411] [PMID: 28252278]
[103]
Ngwuluka, N.C.; Kotak, D.J.; Devarajan, P.V. Design and characterization of metformin-loaded solid lipid nanoparticles for colon cancer. AAPS Pharm. Sci. Tech., 2017, 18(2), 358-368.
[http://dx.doi.org/10.1208/s12249-016-0505-3] [PMID: 26975870]
[104]
Zhang, M.; Xiao, B.; Wang, H.; Han, M.K.; Zhang, Z.; Viennois, E.; Xu, C.; Merlin, D. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol. Ther., 2016, 24(10), 1783-1796.
[http://dx.doi.org/10.1038/mt.2016.159] [PMID: 27491931]
[105]
Xie, X.; Li, F.; Zhang, H.; Lu, Y.; Lian, S.; Lin, H.; Gao, Y.; Jia, L. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur. J. Pharm. Sci., 2016, 83, 28-35.
[http://dx.doi.org/10.1016/j.ejps.2015.12.014] [PMID: 26690044]
[106]
Xiao, B.; Han, M.K.; Viennois, E.; Wang, L.; Zhang, M.; Si, X.; Merlin, D. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale, 2015, 7(42), 17745-17755.
[http://dx.doi.org/10.1039/C5NR04831A] [PMID: 26455329]
[107]
Cerchiara, T.; Abruzzo, A.; di Cagno, M.; Bigucci, F.; Bauer-Brandl, A.; Parolin, C.; Vitali, B.; Gallucci, M.C.; Luppi, B. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur. J. Pharm. Biopharm., 2015, 92, 112-119.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.004] [PMID: 25769679]
[108]
Gamboa, A.; Araujo, V.; Caro, N.; Gotteland, M.; Abugoch, L.; Tapia, C. Spray freeze-drying as an alternative to the ionic gelation method to produce chitosan and alginate nano-particles targeted to the colon. J. Pharm. Sci., 2015, 104(12), 4373-4385.
[http://dx.doi.org/10.1002/jps.24617] [PMID: 26305273]
[109]
Li, P.; Yang, Z.; Wang, Y.; Peng, Z.; Li, S.; Kong, L.; Wang, Q. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J. Microencapsul., 2015, 32(1), 40-45.
[http://dx.doi.org/10.3109/02652048.2014.944947] [PMID: 25198909]
[110]
Saboktakin, M.R.; Tabatabaie, R.M.; Maharramov, A.; Ramazanov, M.A. Synthesis and in vitro evaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system to the colon. Int. J. Biol. Macromol., 2011, 48(3), 381-385.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.10.005] [PMID: 20955728]
[111]
Masih, A.; Kumar, A.; Singh, S.; Tiwari, A.K. Fast dissolving tablets: areview. Int. J. Curr. Pharm. Res., 2017, 9(2), 8-18.
[http://dx.doi.org/10.22159/ijcpr.2017v9i2.17382]
[112]
S Kumar, V.; Rijo, J.; M, S. Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery. Int. J. Biol. Macromol., 2018, 110, 318-327.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.082] [PMID: 29378277]
[113]
Park, H.J.; Jung, H.J.; Ho, M.J.; Lee, D.R.; Cho, H.R.; Choi, Y.S.; Jun, J.; Son, M.; Kang, M.J. Colon-targeted delivery of solubilized bisacodyl by doubly enteric-coated multiple-unit tablet. Eur. J. Pharm. Sci., 2017, 102, 172-179.
[http://dx.doi.org/10.1016/j.ejps.2017.03.006] [PMID: 28279763]
[114]
Kavianinia, I.; Plieger, P.G.; Cave, N.J.; Gopakumar, G.; Dunowska, M.; Kandile, N.G.; Harding, D.R. Design and evaluation of a novel chitosan-based system for colon-specific drug delivery. Int. J. Biol. Macromol., 2016, 85, 539-546.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.003] [PMID: 26791585]
[115]
Vemula, S.K. Formulation and pharmacokinetics of colon-specific double-compression coated mini-tablets: Chronopharmaceutical delivery of ketorolac tromethamine. Int. J. Pharm., 2015, 491(1-2), 35-41.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.007] [PMID: 26056929]
[116]
Newton, A.M.; Lakshmanan, P. Effect of HPMC - E15 LV premium polymer on release profile and compression characteristics of chitosan/ pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile. Recent Pat. Drug Deliv. Formul., 2014, 8(1), 46-62.
[http://dx.doi.org/10.2174/1872211308666140225143926] [PMID: 24597626]
[117]
Elkhodairy, K.A.; Elsaghir, H.A.; Al-Subayiel, A.M. Formulation of indomethacin colon targeted delivery systems using polysaccharides as carriers by applying liquisolid technique. BioMed Res. Int., 2014, 2014, 704362.
[http://dx.doi.org/10.1155/2014/704362] [PMID: 24971345]
[118]
Mehta, R.; Chawla, A.; Sharma, P.; Pawar, P. Formulation and in vitro evaluation of Eudragit S-100 coated naproxen matrix tablets for colon-targeted drug delivery system. J. Adv. Pharm. Technol. Res., 2013, 4(1), 31-41.
[http://dx.doi.org/10.4103/2231-4040.107498] [PMID: 23662280]
[119]
Pandey, S.; Mishra, A.; Raval, P.; Patel, H.; Gupta, A.; Shah, D. Chitosan-pectin polyelectrolyte complex as a carrier for colon targeted drug delivery. J. Young Pharm., 2013, 5(4), 160-166.
[http://dx.doi.org/10.1016/j.jyp.2013.11.002] [PMID: 24563596]
[120]
Dangi, A.A.; Ganure, A.L.; Jain, D. Formulation and evaluation of colon targeted drug delivery system of levetiracetam using pectin as polymeric carrier. J. Appl. Pharm. Sci., 2013, 3(01), 78-87.
[121]
Ahmad, M.Z.; Akhter, S.; Ahmad, I.; Rahman, M.; Anwar, M.; Jain, G.K.; Ahmad, F.J.; Khar, R.K. Development of polysaccharide based colon targeted drug delivery system: design and evaluation of Assam Bora rice starch based matrix tablet. Curr. Drug Deliv., 2011, 8(5), 575-581.
[http://dx.doi.org/10.2174/156720111796642327] [PMID: 21696349]
[122]
Chauhan, C.S.; Naruka, P.S.; Rathore, R.S.; Badawal, V. Formulation and evaluation of prednisolone tablet for colon targeted drug delivery system. J. Chem. Pharm. Res., 2010, 2(4), 993-998.
[123]
Al-Saidan, S.M.; Krishnaiah, Y.S.; Satyanarayana, V.; Rao, G.S. In vitro and in vivo evaluation of guar gum-based matrix tablets of rofecoxib for colonic drug delivery. Curr. Drug Deliv., 2005, 2(2), 155-163.
[http://dx.doi.org/10.2174/1567201053586010] [PMID: 16305416]
[124]
Goto, T.; Tanida, N.; Yoshinaga, T.; Sato, S.; Ball, D.J.; Wilding, I.R.; Kobayashi, E.; Fujimura, A. Pharmaceutical design of a novel colon-targeted delivery system using two-layer-coated tablets of three different pharmaceutical formulations, supported by clinical evidence in humans. J. Control. Release, 2004, 97(1), 31-42.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.023] [PMID: 15147802]
[125]
Krishnaiah, Y.S.; Bhaskar Reddy, P.R.; Satyanarayana, V.; Karthikeyan, R.S. Studies on the development of oral colon targeted drug delivery systems for metronidazole in the treatment of amoebiasis. Int. J. Pharm., 2002, 236(1-2), 43-55.
[http://dx.doi.org/10.1016/S0378-5173(02)00006-6] [PMID: 11891069]
[126]
Krishnaiah, Y.S.; Veer Raju, P.; Dinesh Kumar, B.; Bhaskar, P.; Satyanarayana, V. Development of colon targeted drug delivery systems for mebendazole. J. Control. Release, 2001, 77(1-2), 87-95.
[http://dx.doi.org/10.1016/S0168-3659(01)00461-8] [PMID: 11689262]
[127]
Kumari, S.; Nagpal, M.; Aggarwal, G.; Jain, U.K.; Sharma, P. Microparticles drug delivery system: a review. World J. Pharm. Pharm. Sci., 2016, 5(3), 543-566.
[128]
Lengyel, M.; Kállai-Szabó, N.; Antal, V.; József Laki, A.; Antal, I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm., 2019, 87, 20.
[http://dx.doi.org/10.3390/scipharm87030020]
[129]
Chen, J.; Li, X.; Chen, L.; Xie, F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr. Polym., 2018, 191, 242-254.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.025] [PMID: 29661315]
[130]
Samak, Y.O.; El Massik, M.; Coombes, A.G.A. A comparison of aerosolization and homogenization techniques for production of alginate microparticles for delivery of corticosteroids to the colon. J. Pharm. Sci., 2017, 106(1), 208-216.
[http://dx.doi.org/10.1016/j.xphs.2016.08.015] [PMID: 27693300]
[131]
Seeli, D.S.; Prabaharan, M. Guar gum succinate as a carrier for colon-specific drug delivery. Int. J. Biol. Macromol., 2016, 84, 10-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.002] [PMID: 26675135]
[132]
Duan, H.; Lü, S.; Gao, C.; Bai, X.; Qin, H.; Wei, Y.; Wu, X.; Liu, M. Mucoadhesive microparticulates based on polysaccharide for target dual drug delivery of 5-aminosalicylic acid and curcumin to inflamed colon. Colloids Surf. B. Biointerfaces, 2016, 145, 510-519.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.038] [PMID: 27239905]
[133]
Bazan, L.; Bendas, E.R.; El Gazayerly, O.N.; Badawy, S.S. Comparative pharmaceutical study on colon targeted micro-particles of celecoxib: in-vitro-in-vivo evaluation. Drug Deliv., 2016, 23(9), 3339-3349.
[http://dx.doi.org/10.1080/10717544.2016.1178824] [PMID: 27086898]
[134]
Situ, W.; Li, X.; Liu, J.; Chen, L. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery. J. Agric. Food Chem., 2015, 63(16), 4138-4147.
[http://dx.doi.org/10.1021/acs.jafc.5b00393] [PMID: 25865827]
[135]
Perera, G.; Barthelmes, J.; Bernkop-Schnürch, A. Novel pectin-4-aminothiophenole conjugate microparticles for colon-specific drug delivery. J. Control. Release, 2010, 145(3), 240-246.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.024] [PMID: 20438779]
[136]
Rajput, S.; Agrawal, P.; Pathak, A.; Shrivasatava, N.; Baghel, S.; Baghel, R.S. A review on microsphere: methods of preparation and evaluation. World J. Pharm. Pharm. Sci., 2015, 1(1), 422-438.
[137]
Shi, X.; Yan, Y.; Wang, P.; Sun, Y.; Zhang, D.; Zou, Y.; Hu, S.; Zhang, L.; Xing, J.; Dong, Y. In vitro and in vivo study of pH-sensitive and colon-targeting P(LE-IA-MEG) hydrogel microspheres used for ulcerative colitis therapy. Eur. J. Pharm. Biopharm., 2018, 122, 70-77.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.003] [PMID: 29017953]
[138]
Alange, V.V.; Birajdar, R.P.; Kulkarni, R.V. Synthesis, characterization and evaluation of pH sensitive polyacrylamide-g-acacia gum microspheres for colon targeted drug delivery application. Drug Deliv. Lett., 2017, 7(1), 16-23.
[http://dx.doi.org/10.2174/2210303107666170201151028]
[139]
Alange, V.V.; Birajdar, R.P.; Kulkarni, R.V. Functionally modified polyacrylamide-graft-gum karaya pH-sensitive spray dried microspheres for colon targeting of an anti-cancer drug. Int. J. Biol. Macromol., 2017, 102, 829-839.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.023] [PMID: 28392387]
[140]
Hales, D.; Vlase, L.; Porav, S.A.; Bodoki, A.; Barbu-Tudoran, L.; Achim, M.; Tomuță, I. A quality by design (QbD) study on enoxaparin sodium loaded polymeric microspheres for colon-specific delivery. Eur. J. Pharm. Sci., 2017, 100, 249-261.
[http://dx.doi.org/10.1016/j.ejps.2017.01.006] [PMID: 28088371]
[141]
Alange, V.V.; Birajdar, R.P.; Kulkarni, R.V. Novel spray dried pH-sensitive polyacrylamide-grafted-carboxymethylcellulose sodium copolymer microspheres for colon targeted delivery of an anti-cancer drug. J. Biomater. Sci. Polym. Ed., 2017, 28(2), 139-161.
[http://dx.doi.org/10.1080/09205063.2016.1257083] [PMID: 27808009]
[142]
Li, W.; Liu, D.; Zhang, H.; Correia, A.; Mäkilä, E.; Salonen, J.; Hirvonen, J.; Santos, H.A. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomater., 2017, 48, 238-246.
[http://dx.doi.org/10.1016/j.actbio.2016.10.042] [PMID: 27815166]
[143]
Prajapati, B.; Jena, P.K.; Mehta, T.; Seshadri, S. Preparation and optimization of moxifloxacin microspheres for colon targeted delivery using quality by design approach: in vitro and in vivo study. Curr. Drug Deliv., 2016, 13(7), 1021-1033.
[http://dx.doi.org/10.2174/1567201813666160512145625] [PMID: 27174176]
[144]
Wang, Q.S.; Wang, G.F.; Zhou, J.; Gao, L.N.; Cui, Y.L. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int. J. Pharm., 2016, 515(1-2), 176-185.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.002] [PMID: 27713029]
[145]
Sareen, R.; Jain, N.; Rajkumari, A.; Dhar, K.L. pH triggered delivery of curcumin from Eudragit-coated chitosan microspheres for inflammatory bowel disease: characterization and pharmacodynamic evaluation. Drug Deliv., 2016, 23(1), 55-62.
[http://dx.doi.org/10.3109/10717544.2014.903534] [PMID: 24758141]
[146]
López-Molina, D.; Chazarra, S.; How, C.W.; Pruidze, N.; Navarro-Perán, E.; García-Cánovas, F.; García-Ruiz, P.A.; Rojas-Melgarejo, F.; Rodríguez-López, J.N. Cinnamate of inulin as a vehicle for delivery of colonic drugs. Int. J. Pharm., 2015, 479(1), 96-102.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.064] [PMID: 25550210]
[147]
Maestrelli, F.; Zerrouk, N.; Cirri, M.; Mura, P. Comparative evaluation of polymeric and waxy microspheres for combined colon delivery of ascorbic acid and ketoprofen. Int. J. Pharm., 2015, 485(1-2), 365-373.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.073] [PMID: 25746948]
[148]
Vaidya, A.; Jain, S.; Agrawal, R.K.; Jain, S.K. Pectin-metronidazole prodrug bearing microspheres for colon targeting. J. Saudi Chem. Soc., 2015, 19(3), 257-264.
[http://dx.doi.org/10.1016/j.jscs.2012.03.001]
[149]
Nour, S.A.; Abdelmalak, N.S.; Naguib, M.J. Bumadizone calcium dihydrate microspheres compressed tablets for colon targeting: formulation, optimization and in vivo evaluation in rabbits. Drug Deliv., 2015, 22(3), 286-297.
[http://dx.doi.org/10.3109/10717544.2014.889779] [PMID: 24601826]
[150]
Zhou, M.; Peng, Z.; Liao, S.; Li, P.; Li, S. Design of microencapsulated carbon nanotube-based microspheres and its application in colon targeted drug delivery. Drug Deliv., 2014, 21(2), 101-109.
[http://dx.doi.org/10.3109/10717544.2013.834413] [PMID: 24044613]
[151]
Nandy, B.C.; Verma, V.; Dey, S.; Mazumder, B. Three levels face centered central composite design of colon targeted micro-particulates system of celecoxib: screening of formulations variables and in vivo studies. Curr. Drug Deliv., 2014, 11(5), 621-635.
[http://dx.doi.org/10.2174/1567201811666140519161628] [PMID: 24844925]
[152]
Deore, K.L.; Thombre, N.A.; Gide, P.S. Formulation and development of tinidazole microspheres for colon targeted drug delivery system. J. Pharm. Res., 2013, 6, 158-165.
[http://dx.doi.org/10.1016/j.jopr.2012.11.034]
[153]
Sareen, R.; Jain, N.; Dhar, K.L. Development of colon specific microspheres of flurbiprofen for inflammatory bowel disease. Curr. Drug Deliv., 2013, 10(5), 564-571.
[http://dx.doi.org/10.2174/1567201811310050008] [PMID: 23360241]
[154]
Ahmad, M.Z.; Akhter, S.; Ahmad, I.; Singh, A.; Anwar, M.; Shamim, M.; Ahmad, F.J. In vitro and in vivo evaluation of Assam Bora rice starch-based bioadhesive microsphere as a drug carrier for colon targeting. Expert Opin. Drug Deliv., 2012, 9(2), 141-149.
[http://dx.doi.org/10.1517/17425247.2012.633507] [PMID: 22236045]
[155]
Thakral, N.K.; Ray, A.R.; Majumdar, D.K. Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer. J. Mater. Sci. Mater. Med., 2010, 21(9), 2691-2699.
[http://dx.doi.org/10.1007/s10856-010-4109-2] [PMID: 20535630]
[156]
Chaurasia, M.; Chourasia, M.K.; Jain, N.K.; Jain, A.; Soni, V.; Gupta, Y.; Jain, S.K. Methotrexate bearing calcium pectinate microspheres: a platform to achieve colon-specific drug release. Curr. Drug Deliv., 2008, 5(3), 215-219.
[http://dx.doi.org/10.2174/156720108784911668] [PMID: 18673265]
[157]
Paharia, A.; Yadav, A.K.; Rai, G.; Jain, S.K.; Pancholi, S.S.; Agrawal, G.P. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS Pharm. Sci. Tech., 2007, 8(1), 12.
[http://dx.doi.org/10.1208/pt0801012] [PMID: 17408212]
[158]
Bie, P.; Chen, L.; Li, L.; Li, X. Characterization of concanavalin A-conjugated resistant starch acetate bioadhesive film for oral colon-targeting microcapsule delivery system. Ind. Crops Prod., 2016, 84, 320-329.
[http://dx.doi.org/10.1016/j.indcrop.2016.02.023]
[159]
Arimoto, M.; Ichikawa, H.; Fukumori, Y. Microencapsulation of water-soluble macromolecules with acrylic terpolymers by the wurster coating process for colon-specific drug delivery. Powder Technol., 2004, 141(3), 177-186.
[http://dx.doi.org/10.1016/j.powtec.2003.10.018]
[160]
Shivhare, U.D.; Mathur, V.B.; Shrivastava, C.G.; Ramteke, V.I. Preparation of microbeads by different techniques and study of their influence on evaluation parameters. J. Adv. Pharm. Educ. Res., 2013, 3(3), 279-288.
[161]
Sinha, P.; Udhumansha, U.; Rathnam, G.; Ganesh, M.; Jang, H.T. Capecitabine encapsulated chitosan succinate-sodium alginate macromolecular complex beads for colon cancer targeted delivery: in vitro evaluation. Int. J. Biol. Macromol., 2018, 117, 840-850.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.181] [PMID: 29807085]
[162]
Zhu, J.; Zhong, L.; Chen, W.; Song, Y.; Qian, Z.; Cao, X.; Huang, Q.; Zhang, B.; Chen, H.; Chen, W. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: A novel and simple colon targeted drug delivery system. Food Hydrocoll., 2018.
[http://dx.doi.org/10.1016/ j.foodhyd.2018.04.042]
[163]
Günter, E.A.; Markov, P.A.; Melekhin, A.K.; Belozerov, V.S.; Martinson, E.A.; Litvinets, S.G.; Popov, S.V. Preparation and release characteristics of mesalazine loaded calcium pectin-silica gel beads based on callus cultures pectins for colon-targeted drug delivery. Int. J. Biol. Macromol., 2018, 120(Pt B), 2225-2233.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.078] [PMID: 30012483]
[164]
Kumar, A.; Dwivedi, H.; Kymonil, K.M.; Pandey, A.K. Targeted delivery and in vitro evaluation of norfloxacin and tinidazole for colonic ailments. Drug Deliv. Lett., 2018, 8(2), 106-115.
[http://dx.doi.org/10.2174/2210303108666180212144817]
[165]
Zhang, B.; Yan, Y.; Shen, Q.; Ma, D.; Huang, L.; Cai, X.; Tan, S. A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. Mater. Sci. Eng. C, 2017, 79, 185-190.
[http://dx.doi.org/10.1016/j.msec.2017.05.054] [PMID: 28629006]
[166]
Günter, E.A.; Popeyko, O.V. Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery. Carbohydr. Polym., 2016, 147, 490-499.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.026] [PMID: 27178956]
[167]
Sookkasem, A.; Chatpun, S.; Yuenyongsawad, S.; Wiwattanapatapee, R. Alginate beads for colon specific delivery of self-emulsifying curcumin. J. Drug Deliv. Sci. Technol., 2015, 29, 59-166.
[http://dx.doi.org/10.1016/j.jddst.2015.07.005]
[168]
Agarwal, T.; Narayana, S.N.; Pal, K.; Pramanik, K.; Giri, S.; Banerjee, I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol., 2015, 75, 409-417.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.052] [PMID: 25680962]
[169]
Ribeiro, L.N.; Alcântara, A.C.; Darder, M.; Aranda, P.; Araújo-Moreira, F.M.; Ruiz-Hitzky, E. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int. J. Pharm., 2014, 463(1), 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.035] [PMID: 24374607]
[170]
Thenapakiam, S.; Kumar, D.G.; Pushpamalar, J.; Saravanan, M. Aluminium and radiation cross-linked carboxymethyl sago pulp beads for colon targeted delivery. Carbohydr. Polym., 2013, 94(1), 356-363.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.004] [PMID: 23544549]
[171]
Jung, J.; Arnold, R.D.; Wicker, L. Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids Surf. B Biointerfaces, 2013, 104, 116-121.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.042] [PMID: 23298595]
[172]
Omwancha, W.S.; Mallipeddi, R.; Valle, B.L.; Neau, S.H. Chitosan as a pore former in coated beads for colon specific drug delivery of 5-ASA. Int. J. Pharm., 2013, 441(1-2), 343-351.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.022] [PMID: 23200955]
[173]
Das, S.; Ng, K.Y. Colon-specific delivery of resveratrol: optimization of multi-particulate calcium-pectinate carrier. Int. J. Pharm., 2010, 385(1-2), 20-28.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.016] [PMID: 19833179]
[174]
Chambin, O.; Dupuis, G.; Champion, D.; Voilley, A.; Pourcelot, Y. Colon-specific drug delivery: Influence of solution reticulation properties upon pectin beads performance. Int. J. Pharm., 2006, 321(1-2), 86-93.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.015] [PMID: 16790326]
[175]
Sriamornsak, P. Investigation of pectin as a carrier for oral delivery of proteins using calcium pectinate gel beads. Int. J. Pharm., 1998, 169, 213-220.
[http://dx.doi.org/10.1016/S0378-5173(98)00129-X]
[176]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[177]
Seeli, D.S.; Prabaharan, M. Guar gum oleate-graft-poly(methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier. Carbohydr. Polym., 2017, 158, 51-57.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.092] [PMID: 28024542]
[178]
Gerola, A.P.; Silva, D.C.; Matsushita, A.F.Y.; Borges, O.; Rubira, A.F.; Muniz, E.C.; Valente, A.J.M. The effect of methacrylation on the behavior of gum arabic as pH-responsive matrix for colon-specific drug delivery. Eur. Polym. J., 2016, 78, 326-339.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.03.041]
[179]
Hou, L.; Shi, Y.; Jiang, G.; Liu, W.; Han, H.; Feng, Q.; Ren, J.; Yuan, Y.; Wang, Y.; Shi, J.; Zhang, Z. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. Nanotechnology, 2016, 27(31), 315105.
[http://dx.doi.org/10.1088/0957-4484/27/31/315105] [PMID: 27346852]
[180]
You, Y.C.; Dong, L.Y.; Dong, K.; Xu, W.; Yan, Y.; Zhang, L.; Wang, K.; Xing, F.J. In vitro and in vivo application of pH-sensitive colon-targeting polysaccharide hydrogel used for ulcerative colitis therapy. Carbohydr. Polym., 2015, 130, 243-253.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.075] [PMID: 26076623]
[181]
Rao, K.M.; Nagappan, S.; Seo, D.J.; Ha, C.S. pH sensitive halloysite-sodium hyaluronate/poly (hydroxyethyl methacrylate) nanocomposites for colon cancer drug delivery. Appl. Clay Sci., 2014, 97-98(C), 33-42.
[http://dx.doi.org/10.1016/j.clay.2014.06.002]
[182]
Vaghani, S.S.; Patel, M.M.; Satish, C.S. Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole. Carbohydr. Res., 2012, 347(1), 76-82.
[http://dx.doi.org/10.1016/j.carres.2011.04.048] [PMID: 22099382]
[183]
Saboktakin, M.R.; Tabatabaie, R.M.; Maharramov, A.; Ramazanov, M.A. Synthesis and characterization of superparamagnetic chitosan–dextran sulfate hydrogels as nano carriers for colon-specific drug delivery. Carbohydr. Polym., 2010, 81(2), 372-376.
[http://dx.doi.org/10.1016/j.carbpol.2010.02.034]
[184]
Casadei, M.A.; Pitarresi, G.; Calabrese, R.; Paolicelli, P.; Giammona, G. Biodegradable and pH-sensitive hydrogels for potential colon-specific drug delivery: characterization and in vitro release studies. Biomacromolecules, 2008, 9(1), 43-49.
[http://dx.doi.org/10.1021/bm700716c] [PMID: 18052027]
[185]
Bajpai, S.K.; Sonkusley, J. Dynamic release of riboflavin from a colon-targeted delivery device: an in vitro study. React. Funct. Polym., 2003, 55(2), 197-210.
[http://dx.doi.org/10.1016/S1381-5148(02)00247-X]
[186]
Bodo, B.; Singha, R.; Patwari, G. Characterization of chemically synthesized nanofilms. Int. J. Sci. Res. (Ahmedabad), 2016, 5(8), 1619-1622.
[187]
Akhgari, A.; Heshmati, Z.; Afrasiabi Garekani, H.; Sadeghi, F.; Sabbagh, A.; Sharif Makhmalzadeh, B.; Nokhodchi, A. Indomethacin electrospun nanofibers for colonic drug delivery: In vitro dissolution studies. Colloids Surf. B Biointerfaces, 2017, 152, 29-35.
[http://dx.doi.org/10.1016/j.colsurfb.2016.12.035] [PMID: 28064095]
[188]
Wen, P.; Feng, K.; Yang, H.; Huang, X.; Zong, M.H.; Lou, W.Y.; Li, N.; Wu, H. Electrospun core-shell structured nanofilm as a novel colon-specific delivery system for protein. Carbohydr. Polym., 2017, 169, 157-166.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.082] [PMID: 28504131]
[189]
Kavianinia, I.; Plieger, P.G.; Kandile, N.G.; Harding, D.R.K. Preparation and characterization of an amphoteric chitosan derivative employing trimellitic anhydride chloride and its potential for colon targeted drug delivery system. Mater. Today Commun., 2015, 3, 78-86.
[http://dx.doi.org/10.1016/j.mtcomm.2015.03.002]
[190]
Bruni, G.; Maggi, L.; Tammaro, L.; Canobbio, A.; Di Lorenzo, R.; D’aniello, S.; Domenighini, C.; Berbenni, V.; Milanese, C.; Marini, A. Fabrication, physico-chemical and pharmaceutical characterization of budesonide-loaded electrospun fibers for drug targeting to the colon. J. Pharm. Sci., 2015, 104(11), 3798-3803.
[http://dx.doi.org/10.1002/jps.24587] [PMID: 26183222]
[191]
Wang, X.; Yu, D.G.; Li, X.Y.; Bligh, S.W.; Williams, G.R. Electrospun medicated shellac nanofibers for colon-targeted drug delivery. Int. J. Pharm., 2015, 490(1-2), 384-390.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.077] [PMID: 26043827]
[192]
Shen, X.; Yu, D.; Zhu, L.; Branford-White, C.; White, K.; Chatterton, N.P. Electrospun diclofenac sodium loaded Eudragit® L 100-55 nanofibers for colon-targeted drug delivery. Int. J. Pharm., 2011, 408(1-2), 200-207.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.058] [PMID: 21291969]
[193]
Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, 2013, 340315.
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[194]
Wang, D.; Sun, F.; Lu, C.; Chen, P.; Wang, Z.; Qiu, Y.; Mu, H.; Miao, Z.; Duan, J. Inulin based glutathione-responsive delivery system for colon cancer treatment. Int. J. Biol. Macromol., 2018, 111, 1264-1272.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.071] [PMID: 29366899]
[195]
Ma, Z.G.; Ma, R.; Xiao, X.L.; Zhang, Y.H.; Zhang, X.Z.; Hu, N.; Gao, J.L.; Zheng, Y.F.; Dong, D.L.; Sun, Z.J. Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. Acta Biomater., 2016, 44, 323-331.
[http://dx.doi.org/10.1016/j.actbio.2016.08.021] [PMID: 27544813]
[196]
Ren, Y.; Mu, Y.; Song, Y.; Xie, J.; Yu, H.; Gao, S.; Li, S.; Peng, H.; Zhou, Y.; Lu, W. A new peptide ligand for colon cancer targeted delivery of micelles. Drug Deliv., 2016, 23(5), 1763-1772.
[http://dx.doi.org/10.3109/10717544.2015.1077293] [PMID: 26289214]
[197]
Plyduang, T.; Lomlim, L.; Yuenyongsawad, S.; Wiwattanapatapee, R. Carboxymethylcellulose-tetrahydrocurcumin conjugates for colon-specific delivery of a novel anti-cancer agent, 4-amino tetrahydrocurcumin. Eur. J. Pharm. Biopharm., 2014, 88(2), 351-360.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.011] [PMID: 24859389]
[198]
Vadnerkar, G.; Dhaneshwar, S. Macromolecular prodrug of 4-aminosalicylic acid for targeted delivery to inflamed colon. Curr. Drug Discov. Technol., 2013, 10(1), 16-24.
[PMID: 22725691]
[199]
El-Kamel, A.H.; Abdel-Aziz, A.A.; Fatani, A.J.; El-Subbagh, H.I. Oral colon targeted delivery systems for treatment of inflammatory bowel diseases: synthesis, in vitro and in vivo assessment. Int. J. Pharm., 2008, 358(1-2), 248-255.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.021] [PMID: 18502065]
[200]
Haeberlin, B.; Rubas, W.; Nolen, H.W., III; Friend, D.R. In vitro evaluation of dexamethasone-beta-D-glucuronide for colon-specific drug delivery. Pharm. Res., 1993, 10(11), 1553-1562.
[http://dx.doi.org/10.1023/A:1018956232628] [PMID: 8290467]
[201]
Friend, D.R.; Tozer, T.N. Drug glycosides in oral colon-specific drug delivery. J. Control. Release, 1992, 19(1-3), 109-120.
[http://dx.doi.org/10.1016/0168-3659(92)90069-4]
[202]
Friend, D.R.; Chang, G.W. A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J. Med. Chem., 1984, 27(3), 261-266.
[http://dx.doi.org/10.1021/jm00369a005] [PMID: 6699871]
[203]
Grifantini, R.; Taranta, M.; Gherardini, L.; Naldi, I.; Parri, M.; Grandi, A.; Giannetti, A.; Tombelli, S.; Lucarini, G.; Ricotti, L.; Campagnoli, S.; De Camilli, E.; Pelosi, G.; Baldini, F.; Menciassi, A.; Viale, G.; Pileri, P.; Cinti, C. Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. J. Control. Release, 2018, 280, 76-86.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.052] [PMID: 29733876]
[204]
Sharma, A.; Kumar, B.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Rathee, H. Manik; Ghai, D.; Malik A.H.; Yadav, A.K.; Maharshi, P.; Bawa, P.; Rajesh, S.Y.; Sharma, P.; Pandey, N.K.; Mohanta, S. In vitro and in vivo pharmacokinetic evaluation of guar gum Eudragit S-100 based colon targeted spheroids of sulfasalazine co-administered with probiotics. Curr. Drug Deliv., 2018, 15(3), 367-387.
[http://dx.doi.org/10.2174/1567201815666171207165059] [PMID: 29219056]
[205]
Alibolandi, M.; Taghdisi, S.M.; Ramezani, P.; Hosseini Shamili, F.; Farzad, S.A.; Abnous, K.; Ramezani, M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm., 2017, 519(1-2), 352-364.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.044] [PMID: 28126548]
[206]
Victor, S.P.; Paul, W.; Vineeth, V.M.; Komeri, R.; Jayabalan, M.; Sharma, C.P. Neodymium doped hydroxyapatite theranostic nanoplatforms for colon specific drug delivery applications. Colloids Surf. B Biointerfaces, 2016, 145, 539-547.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.067] [PMID: 27281239]
[207]
Lau, Y.; Lim, V. Colon targeted drug delivery of branch-chained disulphide cross-linked polymers: design, synthesis, and characterisation studies. Chem. Cent. J., 2016, 10, 77.
[http://dx.doi.org/10.1186/s13065-016-0226-4] [PMID: 27994641]
[208]
Shah, N.; Sharma, O.P.; Mehta, T.; Amin, A. Design of experiment approach for formulating multi-unit colon-targeted drug delivery system: in vitro and in vivo studies. Drug Dev. Ind. Pharm., 2016, 42(5), 825-835.
[http://dx.doi.org/10.3109/03639045.2015.1082581] [PMID: 27019195]
[209]
Prudhviraj, G.; Vaidya, Y.; Singh, S.K.; Yadav, A.K.; Kaur, P.; Gulati, M.; Gowthamarajan, K. Effect of co-administration of probiotics with polysaccharide based colon targeted delivery systems to optimize site specific drug release. Eur. J. Pharm. Biopharm., 2015, 97(Pt A), 164-172.
[http://dx.doi.org/10.1016/j.ejpb.2015.09.012] [PMID: 26415986]
[210]
Singh, S.K.; Yadav, A.K.; Prudhviraj, G.; Gulati, M.; Kaur, P.; Vaidya, Y. A novel dissolution method for evaluation of polysaccharide based colon specific delivery systems: A suitable alternative to animal sacrifice. Eur. J. Pharm. Sci., 2015, 73, 72-80.
[http://dx.doi.org/10.1016/j.ejps.2015.03.012] [PMID: 25829049]
[211]
Nath, B.; Nath, L.K. Design, development and optimization of oral colon targeted drug delivery system of azathioprine using biodegradable polymers. Pharm. Dev. Technol., 2013, 18(5), 1131-1139.
[http://dx.doi.org/10.3109/10837450.2012.727002] [PMID: 23167303]
[212]
Nath, B.; Nath, L.K. Formulation development and in-vitro/in-vivo correlation for a novel Sterculia gum-based oral colon-targeted drug delivery system of azathioprine. Drug Dev. Ind. Pharm., 2013, 39(11), 1765-1773.
[http://dx.doi.org/10.3109/03639045.2012.736517] [PMID: 23110370]
[213]
Kshirsagar, S.J.; Bhalekar, M.R.; Patel, J.N.; Mohapatra, S.K.; Shewale, N.S. Preparation and characterization of nanocapsules for colon-targeted drug delivery system. Pharm. Dev. Technol., 2012, 17(5), 607-613.
[http://dx.doi.org/10.3109/10837450.2011.557732] [PMID: 21428704]
[214]
Han, M.; Fang, Q.L.; Zhan, H.W.; Luo, T.; Liang, W.Q.; Gao, J.Q. In vitro and in vivo evaluation of a novel capsule for colon-specific drug delivery. J. Pharm. Sci., 2009, 98(8), 2626-2635.
[http://dx.doi.org/10.1002/jps.21627] [PMID: 19067397]
[215]
Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanism behind them. Gels, 2017, 3(1), E6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[216]
Belali, N.; Wathoni, N.; Muchtaridi, M. Advances in orally targeted drug delivery to colon. J. Adv. Pharm. Technol. Res., 2019, 10(3), 100-106.
[http://dx.doi.org/10.4103/japtr.JAPTR_26_19] [PMID: 31334090]
[217]
Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.W.; Park, B.J.; Han, H.K. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics, 2020, 12(1), 68.
[http://dx.doi.org/10.3390/pharmaceutics12010068] [PMID: 31952340]
[218]
Kattamuri, S.B.K.; Potti, L.; Vinukonda, A.; Bandi, V.; Chagantipati, S.; Mogili, R.K. Nanofibers in pharmaceuticals: a review. Am. J. Pharm. Tech. Res., 2012, 2(6), 187-212.
[219]
Lu, Y.; Park, K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm., 2013, 453(1), 198-214.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.042] [PMID: 22944304]
[220]
Singh, G.; Kumar, D.; Singh, M.; Sharma, D.; Kaur, S. Emerging techniques and challenges in colon drug delivery systems. J. Appl. Pharm. Sci., 2012, 3, 139-147.
[221]
Jethara, S.I.; Patel, M.R. Recent approaches and patent survey on colon targeted drug delivery system. Aperito J. Drug Design Pharmacol., 2014, 1(1), 1-26.
[222]
Anand, S.; Tsikitis, L. Compositions and methods used in diagnosing and treating colorectal cancer. W.O. Patent 129402, 2018.
[223]
Diluccio, R. Antimicrobial delivery system for the prevention and treatment of infections in the colon. W.O. Patent 129061 A1, 2018.
[224]
Diluccio, R. Antimicrobial delivery system for the prevention and treatment of infections in the colon. U.S. Patent 0,185,378 A, 2018.
[225]
Tummala, H.; Kesharwani, S. Site specific curcumin-polymer molecular complexes and methods of treating colon diseases and inflammation. U.S. Patent 0,064,821 A1, 2018.
[226]
Li, L. Pharmaceutical compositions for colon-specific delivery. U.S. Patent 0,000,740 A1, 2018.
[227]
Feng, H.; Yu, H.; Hoag, S.; Jiang, B. Microparticulate system for colonic drug delivery. W.O. Patent 173068 A1, 2017.
[228]
López, M.; Millán, C.; Cruz, S.; Micard, V.; Chu, R.; Prakash, S.; Mendoza, L.; Franco, L.; Romero, C.; Guillén, T. Biodegradable covalent matrices for the oral delivery of insulin directed to the colon, activated by microbiota, and the production method thereof. W.O. Patent 105212 A2, 2017.
[229]
Stremmel, W. Bacterial phospholipase inhibitors as modulator of colonic bacterial flora. U.S. Patent 0,043,026 A1, 2017.
[230]
Tigyi, G.J.; Rao, R. Compositions and methods for protecting colonic epthelial barrier function. U.S. Patent 0,007,559 A1, 2017.
[231]
Yang, C.H.; Dyakonov, T.; Vamvakas, G.; Fatmi, A.A. Compositions for colonic delivery of drugs. U.S. Patent 0,287,525 A1, 2016.
[232]
Basit, A.W.; Ibekwe, V.C. Colonic drug delivery formulation. U.S. Patent 9,023,368 B2, 2015.
[233]
Swords, R.L.; Huckfeldt, R.; Taylor, J.; Reuter, M. Colorectal delivery device. U.S. Patent 0,018,775 A1, 2014.
[234]
Sangalli, M.E.; Tavella, G.; Curto, M.D.D.; Gazzaniga, A.; Maroni, A.; Palugan, L.; Zema, L.; Spreafico, M. System for the colon delivery of drugs subject to enzyme degradation and/or poorly absorbed in the gastrointestinal tract. U.S. Patent 0,250,238 A1, 2011.
[235]
Bourgeois, S.; Fattal, E.; Andremont, A.; Couvreur, P. Galenic formulation for colon targeted delivery of active ingredients. U.S. Patent 0,162,339 A1, 2009.
[236]
Kulkarni, S.K.; Kulkarni, R.; Jadhav, P.; Badhe, U.; Gupta, S. Novel colon targeted modified release bioadhesive formulation of 5-amino salicylic acid or its salts and metabolites thereof. W.O. Patent 047802 A2, 2009.
[237]
Etter, J.B. Colon-targeted oral formulations of cytidine analogs. U.S. Patent 0,057,086 A1, 2008.
[238]
Basit, A.W.; Ibekwe, V.C. Colonic drug delivery formulation. U.S. Patent 0,243,253 A1, 2007.
[239]
Bourgeois, S.; Fattal, E.; Andremont, A.; Couvreur, P. Galenic formulation for colon targeted delivery of active principles. U.S. Patent 0,249,716 A1, 2005.
[240]
Lee, S.S.; Lim, C.B.; Pai, C.M.; Lee, S.; Park, I.; Seo, M.G.; Park, H. Composition and pharmaceutical dosage form for colonic drug delivery using polysaccharides. U.S. Patent 6,413,494 B1, 2002.
[241]
Watanabe, S.; Kawai, H.; Katsuma, M.; Fukui, M. Colon specific drug release system. U.S. Patent 0,044,975 A1, 2002.
[242]
Watanabe, S.; Kawai, H.; Katsuma, M.; Fukui, M. Colon-specific drug release system. U.S. Patent 6,368,629 B1, 2002.
[243]
Lerner, E.I.; Flashner, M.; Penhasi, A. Local delivery of non steroidal anti inflammatory drugs (NSAIDS) to the colon as a treatment for colonic polyps. U.S. Patent 6,231,888 B1, 2001.
[244]
Shah, N.H.; Railkar, A.M.; Phuapradit, W. Colon targeted delivery system. U.S. Patent 6,039,975 A, 2000.
[245]
Sintov, A.; Rubinstein, A. Colonic drug delivery system. E.P. Patent 0527942 B1, 1999.
[246]
Sintov, A.; Rubinstein, A. Colonic drug delivery system. U.S. Patent 5,866,619, 1999.
[247]
Lee, S.S.; La, S.B. Colon selective drug delivery system and compositions comprising said system. E.P. Patent 0888778 A1, 1999.
[248]
Friend, D.R.; Wong, D. Colonic delivery of drugs. U.S. Patent 5,656,294 A, 1997.
[249]
Abramowitz, R.; Ranadive, S.A.; Varia, S.A.; Jain, N.B. Colonic drug delivery system. U.S. Patent 5,536,507, 1996.
[250]
Sintov, A.; Rubinstein, A. Colonic drug delivery system. U.S. Patent 5,525,634 A, 1996.
[251]
Shah, N.H.; Phuapradit, W.; Railkar, A. Colon-targeted delivery system. U.S. Patent 5,482,718 A, 1996.
[252]
Sintov, A.; Rubinstein, A. Colonic drug delivery system. W.O. Patent 016881 A1, 1991.
[253]
Theeuwes, F.; Guittard, G.V.; Wong, P.S.L. Delivery of drug to colon by oral dosage form. U.S. Patent 4,904,474, 1990.
[254]
Wong, S.L.P.; Theeuwes, P. Colon delivery system. U.S. Patent 4,693,895, 1987.
[255]
Wong, S.L.P.; Theeuwes, F. Colonic therapeutic delivery system. U.S. Patent 4,627,851, 1986.
[256]
Amin, P.D.; Gupta, S.S.; Prabhu, N.B.; Wadhwani, A.R. Fast disintegrating dosage form of ofloxacin and metronidazole benzoate. Indian Drugs, 2005, 42(9), 614-617.
[257]
Handali, S.; Moghimipour, E.; Maryam, K.; Ramezani, Z.; Dorkoosh, F.A. In vivo evaluation of pH and time dependent colonic drug delivery system using fluorescent imaging. J. Drug Deliv. Sci. Technol., 2018.
[http://dx.doi.org/10.1016/j.jddst.2018.07.027]
[258]
Krishnaiah, Y.S.; Satyanarayana, S.; Prasad, Y.V.; Rao, S.N. In vivo evaluation of 99mTc-DTPA and 99mTc-sulphur colloid as tracers in colonic drug delivery systems using gamma scintigraphy in volunteers. J. Pharm. Pharm. Sci., 2002, 5(1), 24-28.
[PMID: 12042116]
[259]
Kakar, S.; Batra, D.; Singh, R. Preparation and evaluation of magnetic microspheres of melsalamine (5-aminosalicylic acid) for colon drug delivery. J. Acute Dis., 2013, 2(3), 226-231.
[http://dx.doi.org/10.1016/S2221-6189(13)60132-8]
[260]
Smitha, K.T.; Anitha, A.; Furuike, T.; Tamura, H.; Nair, S.V.; Jayakumar, R. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids Surf. B Biointerfaces, 2013, 104, 245-253.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.031] [PMID: 23337120]
[261]
Ishibashi, T.; Pitcairn, G.R.; Yoshino, H.; Mizobe, M.; Wilding, I.R. Scintigraphic evaluation of a new capsule-type colon specific drug delivery system in healthy volunteers. J. Pharm. Sci., 1998, 87(5), 531-535.
[http://dx.doi.org/10.1021/js9704588] [PMID: 9572900]
[262]
Sangalli, M.E.; Maroni, A.; Zema, L.; Busetti, C.; Giordano, F.; Gazzaniga, A. In vitro and in vivo evaluation of an oral system for time and/or site-specific drug delivery. J. Control. Release, 2001, 73(1), 103-110.
[http://dx.doi.org/10.1016/S0168-3659(01)00291-7] [PMID: 11337063]
[263]
Tuğcu-Demiröz, F.; Acartürk, F.; Takka, S.; Konuş-Boyunağa, O. In-vitro and in-vivo evaluation of mesalazine-guar gum matrix tablets for colonic drug delivery. J. Drug Target., 2004, 12(2), 105-112.
[http://dx.doi.org/10.1080/10611860410001693751] [PMID: 15203904]
[264]
Sareen, R.; Jain, N.; Dhar, K.L. An insight to colon targeted drug delivery system. Drug Deliv. Lett., 2013, 3(2), 127-135.
[http://dx.doi.org/10.2174/2210303111303020005]
[265]
Sinha, V.R.; Mittal, B.R.; Kumria, R. In vivo evaluation of time and site of disintegration of polysaccharide tablet prepared for colon-specific drug delivery. Int. J. Pharm., 2005, 289(1-2), 79-85.
[http://dx.doi.org/10.1016/j.ijpharm.2004.10.019] [PMID: 15652201]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 2
Year: 2021
Published on: 29 January, 2021
Page: [110 - 135]
Pages: 26
DOI: 10.2174/2210303111666210129143612
Price: $25

Article Metrics

PDF: 162
HTML: 1