Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Genome-Wide Association Studies (GWAS) for Traits Related to Fodder Quality and Biofuel in Sorghum: Progress and Prospects

Author(s): Vinutha Kanuganahalli Somegowda, Laavanya Rayaprolu, Abhishek Rathore, Santosh Pandurang Deshpande* and Rajeev Gupta*

Volume 28, Issue 8, 2021

Published on: 27 January, 2021

Page: [843 - 854] Pages: 12

DOI: 10.2174/0929866528666210127153103

Price: $65

Abstract

The main focus of this review is to discuss the current status of the use of GWAS for fodder quality and biofuel owing to its similarity of traits. Sorghum is a potential multipurpose crop, popularly cultivated for various uses as food, feed fodder, and biomass for ethanol. Production of a huge quantity of biomass and genetic variation for complex sugars are the main motivations not only to use sorghum as fodder for livestock nutritionists but also as a potential candidate for biofuel generation. Few studies have been reported on the knowledge transfer that can be used from the development of biofuel technologies to complement improved fodder quality and vice versa. With recent advances in genotyping technologies, GWAS became one of the primary tools used to identify the genes/genomic regions associated with the phenotype. These modern tools and technologies accelerate the genomic assisted breeding process to enhance the rate of genetic gains. Hence, this mini-review focuses on GWAS studies on genetic architecture and dissection of traits underpinning fodder quality and biofuel traits and their limited comparison with other related model crop species.

Keywords: Sorghum, fodder, biofuel, GWAS, SNPs, candidate gene, quality.

Graphical Abstract
[1]
Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security - a review. Prog. Nat. Sci., 2009, 19(12), 1665-1674.
[http://dx.doi.org/10.1016/j.pnsc.2009.08.001]
[2]
Pushparani Devi, A.; Sanju Singh, M.; Priyadarshinee Das, S.; Kabiraj, J. Effect of climate change on vegetable production- a review. Int. J. Curr. Microbiol. Appl. Sci., 2017, 6(10), 477-483.
[http://dx.doi.org/10.20546/ijcmas.2017.610.058]
[3]
Wubie, A.A. Review on the Impact of Climate Change on Crop Production in Ethiopia. J. Biol. Agric. Healthc., 2015, 5(13), 103-111.
[4]
Salassi, M.E.; Holzapfel, A.; Hilbun, B.M.; Deliberto, M.A.; Gravois, K.A.; Viator, H.P.; Falconer, L.L.; Mark, T.B. Feedstock crop production costs and biofuel feedstock input costs associated with the production of energy cane and sweet sorghum in the southeastern USA. BioEnergy Res., 2017, 10(3), 772-782.
[http://dx.doi.org/10.1007/s12155-017-9838-3]
[5]
Rao, P.S.; Vinutha, K.S.; Kumar, G.S.A.; Chiranjeevi, T.; Uma, A.; Lal, P.; Prakasham, R.S.; Singh, H.P.; Sreenivasa, R.; Chopra, S. Sorghum : a multipurpose bioenergy crop. In: In: Sorghum Ciampitti, I.A.; Vara Prasad, P., Eds.; Wiley Online; , 2019; 58, .
[http://dx.doi.org/10.2134/agronmonogr58.2014.0074]
[6]
Prakasham, R.S.; Nagaiah, D.; Vinutha, K.S.; Uma, A.; Chiranjeevi, T.; Umakanth, A.V.; Rao, P.S.; Yan, N. Sorghum biomass: a novel renewable carbon source for industrial bioproducts. Biofuels, 2014, 5(2), 159-174.
[http://dx.doi.org/10.4155/bfs.13.74]
[7]
Guragain, Y.N.; Srinivasa Rao, P.; Vara Prasad, P.V.; Vadlani, P.V. Evaluation of brown midrib sorghum mutants as a potential biomass feedstock for 2,3-butanediol biosynthesis. Appl. Biochem. Biotechnol., 2017, 183(3), 1093-1110.
[http://dx.doi.org/10.1007/s12010-017-2486-4] [PMID: 28451955]
[8]
Vinutha, K.S.; Rayaprolu, L.; Yadagiri, K.; Umakanth, A.V.; Patil, J.V.; Srinivasa Rao, P. Sweet sorghum research and development in India: status and prospects. Sugar Tech., 2014, 16(2), 133-143.
[http://dx.doi.org/10.1007/s12355-014-0302-9]
[9]
Sathya, A.; Kanaganahalli, V.; Srinivas Rao, P.; Gopalakrishnan, S. Cultivation of sweet sorghum on heavy metalcontaminated soils by phytoremediation approach for production of bioethanol. In: Bioremediation and Bioeconomy Prasad, M.N.V., Ed.; Elsevier,, 2016, pp. 271-292.
[10]
De Nicola, G.R.; Leoni, O.; Malaguti, L.; Bernardi, R.; Lazzeri, L. A simple analytical method for dhurrin content evaluation in cyanogenic plants for their utilization in fodder and biofumigation. J. Agric. Food Chem., 2011, 59(15), 8065-8069.
[http://dx.doi.org/10.1021/jf200754f] [PMID: 21707058]
[11]
Zhao, Y.L.; Dolat, A.; Steinberger, Y.; Wang, X.; Osman, A.; Xie, G.H. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. F. Crop. Res., 2009, 111, 55-64.
[http://dx.doi.org/10.1016/j.fcr.2008.10.006]
[12]
Van Soest, P.J.; Robertson, J.B. Analysis of forage and fibrous foods. In: In: Laboratory Manual for Animal Science. Cornell University: Ithaca; , 1985. Vol. 613.
[13]
Association of Official Analytical Chemists (AOAC) Official Methods of Analysis. (13th ed. ), 1980,
[14]
Blümmel, M.; Tui, S.H.K.; Valbuena, D.; Duncan, A.J.; Herrero, M. Biomass in crop-livestock systems in the context of the livestock revolution. Sci. Chang. Planetaires - Secher, 2013, 24(4), 330-339.
[15]
Parthasarathy Rao, P.; Hall, A. J. Importance of crop residues in crop-livestock systems in India and farmers’ perceptions of fodder quality in coarse cereals. F. Crop. Res., 2003, 84(1-2), 189-198.
[16]
Blümmel, M.; Teymouri, F.; Moore, J.; Nielson, C.; Videto, J.; Kodukula, P.; Pothu, S.; Devulapalli, R.; Varijakshapanicker, P. Ammonia Fiber Expansion (AFEX) as spin off technology from 2nd generation biofuel for upgrading cereal straws and stovers for livestock feed. Anim. Feed Sci. Technol., 2018, 236, 178-186.
[http://dx.doi.org/10.1016/j.anifeedsci.2017.12.016]
[17]
Haussmann, B.I.G.; Fred Rattunde, H.; Weltzien-Rattunde, E.; Traoré, P.S.C.; vom Brocke, K.; Parzies, H.K. Breeding strategies for adaptation of pearl millet and sorghum to climate variability and change in West Africa. J. Agron. Crop Sci., 2012, 198(5), 327-339.
[http://dx.doi.org/10.1111/j.1439-037X.2012.00526.x]
[18]
Li, J.; Lammerts van Bueren, E.T.; Huang, K.; Qin, L.; Song, Y. The potential of participatory hybrid breeding. Int. J. Agric. Sustain., 2013, 11(3), 234-251.
[http://dx.doi.org/10.1080/14735903.2012.728050]
[19]
Rattunde, H.F.W.; Michel, S.; Leiser, W.L.; Piepho, H.P.; Diallo, C.; Vom Brocke, K.; Diallo, B.; Haussmann, B.I.G.; Weltzien, E. Farmer participatory early-generation yield testing of sorghum in West Africa: possibilities to optimize genetic gains for yield in farmers’ fields. Crop Sci., 2016, 56(5), 2493-2505.
[http://dx.doi.org/10.2135/cropsci2015.12.0758]
[20]
Bean, B.W.; Baumhardt, R.L.; McCollum, F.T.; McCuistion, K.C. Comparison of sorghum classes for grain and forage yield and forage nutritive value. F. Crop. Res., 2013, 142, 20-26.
[http://dx.doi.org/10.1016/j.fcr.2012.11.014]
[21]
Aruna, C.; Swarnalatha, M.; Praveen Kumar, P.; Devender, V.; Suguna, M.; Blümmel, M.; Patil, J. V. Genetic options for improving fodder yield and quality in forage sorghum. Trop. Grasslands - Forrajes Trop., 2015, 3(1), 49.
[22]
Vinutha, K. S.; Anil Kumar, G. S.; Blümmel, M.; Srinivasa Rao, P. Evaluation of yield and forage quality in main and ratoon crops of different sorghum lines. Trop. Grasslands-Forrajes Trop., 2017, 5(1), 40-49.
[23]
Dos Santos, R.D.; Neves, A.L.A.; Pereira, L.G.R.; Sollenberger, L.E.; Rodrigues, J.A.S.; Tabosa, J.N.; Verneque, R.S.; Oliveira, G.F.; Jayme, D.G.; Gonçalves, L.C. Agronomic traits, ensilability and nutritive value of five pearl millet cultivars grown in a Brazilian semi-arid region. J. Agric. Sci., 2016, 154(1), 165-173.
[http://dx.doi.org/10.1017/S0021859615000908]
[24]
Ashok Kumar, A.; Reddy, B.V.S.; Blümmel, M.; Anandan, S.; Ramana Reddy, Y.; Ravinder Reddy, C.; Srinivasa Rao, P.; Sanjana Reddy, P.; Ramaiah, B. On-farm evaluation of elite sweet sorghum genotypes for grain and stover yields and fodder quality. Anim. Nutr. Feed Technol., 2010, 10(Suppl.), 1-, 69-78.
[25]
Gul, I.; Demirel, R.; Kilicalp, N.; Sumerli, M.; Kilic, H. Effect of crop maturity stages on yield, silage chemical composition and in vivo digestibilities of the maize, sorghum and sorghum-sudangrass hybrids grown in semi-arid conditions. J. Anim. Vet. Adv., 2008, 7(8), 1021-1028.
[26]
Abdelhadi, L.O.; Santini, F.J. Corn silage versus grain sorghum silage as a supplement to growing steers grazing high quality pastures: effects on performance and ruminal fermentation. Anim. Feed Sci. Technol., 2006, 127(1–2), 33-43.
[http://dx.doi.org/10.1016/j.anifeedsci.2005.08.010]
[27]
Blümmel, M. Stover fodder quality traits for dual-purpose sorghum genetic improvement. J. SAT Agric. Res, 2006, 2(1), 3.
[28]
Oliver, A. L.; Grant, R. J.; Pedersen, J. F.; O’Rear, J. Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows. J. Dairy Sci., 2004, 87(3), 637-644.
[29]
Miron, J.; Zuckerman, E.; Sadeh, D.; Adin, G.; Nikbachat, M.; Yosef, E.; Ben-Ghedalia, D.; Carmi, A.; Kipnis, T.; Solomon, R. Yield, composition and in vitro digestibility of new forage sorghum varieties and their ensilage characteristics. Anim. Feed Sci. Technol., 2005, 120, 17-32.
[http://dx.doi.org/10.1016/j.anifeedsci.2005.01.008]
[30]
Srinivasa, P.; Michael, R.; Belum, B. Enhancement of in vitro digestibility of sorghum (Sorghum bicolor (L. Moench)) in brown midrib (bmr) mutant derivatives of bmr 1 and bmr 7. Eur. J. Plant Sci. Biotechnol., 2012, 6(Special Issue 1), 76-80. http://oar.icrisat.org/id/eprint/6154
[31]
Oliver, A.L.; Pedersen, J.F.; Grant, R.J.; Klopfenstein, T.J. Comparative effects of the sorghum Bmr-6 and Bmr-12 Genes: I. Forage sorghum yield and quality. Crop Sci., 2005, 45(6), 2234-2239.
[http://dx.doi.org/10.2135/cropsci2004.0644]
[32]
Basavaraj, G.; Parthasarathy Rao, P.; Ravinder Reddy, C.; Ashok Kumar, A.; Datta Mazumdar, S.; Ramana Reddy, Y.; Srinivasa Rao, P.; Karuppan Chetty, S.M.; Reddy, B.V. Sweet sorghum: A Smart crop to meet the demands for food, fodder, fuel and feed. In: Innovative Institutions Public Policies and Private Strategies for Agro- Enterprise Development Christy, R.D.; da Silva, C.A.; Mhlanga, N.; Mabaya, E.; Tihanyi, K., Eds.; World Scientific Publishing Co. Inc.: NJ, USA,, 2014, pp. 169-187.
[http://dx.doi.org/10.1142/9789814596619_0007]
[33]
Ray, R.C.; Uppuluri, K.B.; Trilokesh, C.; Lareo, C. Sweet sorghum for bioethanol production: scope, technology, and economics. In: Bioethanol Production from Food Crops Ray, R.C.; Ramachandran, C., Eds.; Academic Press, 2019, pp. 81-100.
[34]
Kumar, A.A.; Hari, C.S.; Sharma, R.; Blummel, M.; Reddy, S.; Belum, V.S.R.; Phenotyping in Sorghum [Sorghum bicolor (L.) Moench]. In: Phenotyping for Plant Breeding: Applications of Phenotyping Methods for Crop Improvement. Panguluri, S.K.; Kumar, A.A.; Eds.; Springer-Verlag: New York, N.Y., 2013, pp. 73-109.
[35]
Morrissey, K. Life cycle assessment of sweet sorghum as feedstock for second-generation biofuel production. Chemical Engineering Undergraduate Honors Theses, University of Arkansas: Fayetteville, 2017.
[36]
Ahmad Dar, R.; Ahmad Dar, E.; Kaur, A.; Gupta Phutela, U. Sweet sorghum-a promising alternative feedstock for biofuel production. Renew. Sustain. Energy Rev., 2017, 2018(82), 4070-4090.
[http://dx.doi.org/10.1016/j.rser.2017.10.066]
[37]
Umakanth, A.V.; Kumar, A.A.; Vermerris, W.; Tonapi, V.A. Sweet sorghum for biofuel industry. In: Breeding Sorghum for Diverse End Uses Aruna, C.; Visarada, K.B.R.S.; Bhat, B.V.; Tonapi, V.A., Eds.; Woodhead Publishing, 2019, pp. 255-270.
[38]
Codesido, V.; Vacas, R.; Macarulla, B.; Gracia, M.P.; Igartua, E. Agronomic and digital phenotyping evaluation of sweet sorghum public varieties and f1 hybrids with potential for ethanol production in Spain. Maydica, 2013, 58(1), 42-53.
[39]
Belum, V.S. Reddy.; P.S. Rao.; A. Kumar.; P.S. Reddy.; P. Rao.; K.K. Sharma; M. Blummel. Sweet sorghum as a biofuel crop: Where are we now? Sixth Winrock Int. Work. Biofuels, 2009.
[40]
Mathur, S.; Umakanth, A.V.; Tonapi, V.A.; Sharma, R.; Sharma, M.K. Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol. Biofuels, 2017, 10(1), 146.
[http://dx.doi.org/10.1186/s13068-017-0834-9] [PMID: 28603553]
[41]
Disasa, T.; Feyissa, T.; Admassu, B. Characterization of Ethiopian sweet sorghum accessions for 0brix, morphological and grain yield traits. Sugar Tech, 2017, 19, 72-82.
[http://dx.doi.org/10.1007/s12355-016-0440-3]
[42]
Rutto, L.K.; Xu, Y.; Brandt, M.; Ren, S.; Kering, M.K. Juice, ethanol, and grain yield potential of five sweet sorghum (Sorghum bicolor; [L.] Moench) cultivars. J. Sustain. Bioenergy Syst., 2013, 03, 113-118.
[http://dx.doi.org/10.4236/jsbs.2013.32016]
[43]
Sukumaran, S. X. Li.; X. Li.; C. Zhu.; G. Bai.; R. Perumal.; M.R. Tuinstra.; P.V.V. Prasad.; S.E. Mitchell.; T.T. Tesso.; J. Yu. QTL mapping for grain yield, flowering time, and stay-green traits in sorghum with genotyping-by-sequencing markers. Crop Sci., 2016, 56, 1429-1442.
[http://dx.doi.org/10.2135/cropsci2015.02.0097]
[44]
K, S, Vinutha.; Lokesh, H.; GS, A. K.; Vadlani, P. V.; Pinnamaneni, S. R. Performance of Bmr 6 and 12 sorghum mutants in different wild backgrounds under salinity. Sugar Tech., 2018, 20(3), 293-304.
[http://dx.doi.org/10.1007/s12355-017-0585-8]
[45]
Saballos, A.; Vermerris, W.; Rivera, L.; Ejeta, G. Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L. Moench)). BioEnergy Res., 2008, 1(3–4), 193-204.
[http://dx.doi.org/10.1007/s12155-008-9025-7]
[46]
Fu, H.M.; Meng, F.Y.; Molatudi, R.L.; Zhang, B.G. Sorghum and switchgrass as biofuel feedstocks on marginal lands in Northern China. BioEnergy Res., 2016, 9(2), 633-642.
[http://dx.doi.org/10.1007/s12155-015-9704-0]
[47]
Jiang, D.; Hao, M.; Fu, J.; Liu, K.; Yan, X. Potential bioethanol production from sweet sorghum on marginal land in China. J. Clean. Prod., 2019, 220, 225-234.
[http://dx.doi.org/10.1016/j.jclepro.2019.01.294]
[48]
Tang, C.; Li, S.; Li, M.; Xie, G.H. Bioethanol potential of energy sorghum grown on marginal and arable lands. Front. Plant Sci., 2018, 9(9), 440.
[http://dx.doi.org/10.3389/fpls.2018.00440] [PMID: 29686688]
[49]
Truong, S.K.; McCormick, R.F.; Mullet, J.E. Bioenergy sorghum crop model predicts VPD-Limited transpiration traits enhance biomass yield in water-limited environments. Front. Plant Sci., 2017, 8(March), 335.
[http://dx.doi.org/10.3389/fpls.2017.00335] [PMID: 28377779]
[50]
Rai, K. M.; Thu, S. W.; Balasubramanian, V. K.; Cobos, C. J.; Disasa, T.; Mendu, V. Identification, characterization, and expression analysis of cell wall related genes in Sorghum bicolor (L. Moench), a food, fodder, and biofuel crop. Front. Plant Sci, 2016, 7, 1-19.
[51]
McKinley, B.; Rooney, W.; Wilkerson, C.; Mullet, J. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor. Plant J., 2016, 88(4), 662-680.
[http://dx.doi.org/10.1111/tpj.13269] [PMID: 27411301]
[52]
Xu, H.; Ding, A.; Chen, S.; Marowa, P.; Wang, D.; Chen, M.; Hu, R.; Kong, Y.; O’Neill, M.; Chai, G. Genome-wide analysis of sorghum GT47 family reveals functional divergences of MUR3-like genes. Front. Plant Sci., 2018, 871.
[http://dx.doi.org/10.3389/fpls.2018.01773]
[53]
Wang, J.; Feng, J.; Jia, W.; Fan, P.; Bao, H.; Li, S.; Li, Y. Genome-wide identification of Sorghum bicolor laccases reveals potential targets for lignin modification. Front. Plant Sci., 2017, 8(May), 714.
[http://dx.doi.org/10.3389/fpls.2017.00714] [PMID: 28529519]
[54]
Wang, Y.-H.; Upadhyaya, H. D.; Burrell, A. M.; Sahraeian, S. M. E.; Klein, R. R.; Klein, P. E. Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3 Genes|Genomes|Genetics, 2013, 3(5), 783-793.
[55]
Li, J.; Tang, W.; Zhang, Y. W.; Chen, K. N.; Wang, C.; Liu, Y.; Zhan, Q.; Wang, C.; Wang, S. B.; Xie, S. Q. Genome-wide association studies for five forage quality-related traits in sorghum (Sorghum bicolor). Front. Plant Sci, 2018, 9, 1146.
[56]
Girma, G.; Nida, H.; Seyoum, A.; Mekonen, M.; Nega, A.; Lule, D.; Dessalegn, K.; Bekele, A.; Gebreyohannes, A.; Adeyanju, A.; Tirfessa, A.; Ayana, G.; Taddese, T.; Mekbib, F.; Belete, K.; Tesso, T.; Ejeta, G.; Mengiste, T. A large-scale genome-wide association analyses of Ethiopian sorghum landrace collection reveal loci associated with important traits. Front. Plant Sci., 2019, 10(May), 691.
[http://dx.doi.org/10.3389/fpls.2019.00691] [PMID: 31191590]
[57]
Bandillo, N.; Raghavan, C.; Muyco, P.A.; Sevilla, M.A.L.; Lobina, I.T.; Dilla-Ermita, C.J.; Tung, C.W.; McCouch, S.; Thomson, M.; Mauleon, R.; Singh, R.K.; Gregorio, G.; Redoña, E.; Leung, H. Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice (N. Y.), 2013, 6(1), 11.
[http://dx.doi.org/10.1186/1939-8433-6-11] [PMID: 24280183]
[58]
Brachi, B.; Morris, G.P.; Borevitz, J.O. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol., 2011, 12(10), 232.
[http://dx.doi.org/10.1186/gb-2011-12-10-232] [PMID: 22035733]
[59]
Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 2013, 9(1), 29.
[http://dx.doi.org/10.1186/1746-4811-9-29] [PMID: 23876160]
[60]
Morris, G.P.; Rhodes, D.H.; Brenton, Z.; Ramu, P.; Thayil, V.M.; Deshpande, S.; Hash, C.T.; Acharya, C.; Mitchell, S.E.; Buckler, E.S. Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. G3 Genes|Genomes|Genetics, 2013, 3(11), 2085-2094.
[61]
Vandenbrink, J.P.; Delgado, M.P.; Frederick, J.R.; Feltus, F.A. A sorghum diversity panel biofuel feedstock screen for genotypes with high hydrolysis yield potential. Ind. Crops Prod., 2010, 31(3), 444-448.
[http://dx.doi.org/10.1016/j.indcrop.2010.01.001]
[62]
Xin, Z.; Wang, M.L.; Burow, G.; Burke, J. An induced sorghum mutant population suitable for bioenergy research. BioEnergy Res., 2009, 2(1-2), 10-16.
[http://dx.doi.org/10.1007/s12155-008-9029-3]
[63]
Casa, A.M.; Pressoir, G.; Brown, P.J.; Mitchell, S.E.; Rooney, W.L.; Tuinstra, M.R.; Franks, C.D.; Kresovich, S. Community resources and strategies for association mapping in sorghum. Crop Sci., 2008, 48(1), 30-40.
[http://dx.doi.org/10.2135/cropsci2007.02.0080]
[64]
Brenton, Z.W.; Cooper, E.A.; Myers, M.T.; Boyles, R.E.; Shakoor, N.; Zielinski, K.J.; Rauh, B.L.; Bridges, W.C.; Morris, G.P.; Kresovich, S. A genomic resource for the development, improvement, and exploitation of sorghum for bioenergy. Genetics, 2016, 204(1), 21-33.
[http://dx.doi.org/10.1534/genetics.115.183947] [PMID: 27356613]
[65]
Salas Fernandez, M.G.; Bao, Y.; Tang, L.; Schnable, P.S. A high-throughput, field-based phenotyping technology for tall biomass crops. Plant Physiol., 2017, 174(4), 2008-2022.
[http://dx.doi.org/10.1104/pp.17.00707] [PMID: 28620124]
[66]
Batz, J.; Méndez-Dorado, M.A.; Thomasson, J.A. Imaging for high-throughput phenotyping in energy sorghum. J. Imaging, 2016, 2(1), 4.
[http://dx.doi.org/10.3390/jimaging2010004]
[67]
Young, S.N.; Kayacan, E.; Peschel, J.M. Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precis. Agric., 2019, 20, 697-722.
[http://dx.doi.org/10.1007/s11119-018-9601-6]
[68]
Watanabe, K.; Guo, W.; Arai, K.; Takanashi, H.; Kajiya-Kanegae, H.; Kobayashi, M.; Yano, K.; Tokunaga, T.; Fujiwara, T.; Tsutsumi, N.; Iwata, H. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front. Plant Sci., 2017, 8, 421.
[http://dx.doi.org/10.3389/fpls.2017.00421] [PMID: 28400784]
[69]
Wegrzyn, J.L.; Eckert, A.J.; Choi, M.; Lee, J.M.; Stanton, B.J.; Sykes, R.; Davis, M.F.; Tsai, C.J.; Neale, D.B. Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol., 2010, 188(2), 515-532.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03415.x] [PMID: 20831625]
[70]
Porth, I.; Klápště, J.; Skyba, O.; Lai, B.S.; Geraldes, A.; Muchero, W.; Tuskan, G.A.; Douglas, C.J.; El-Kassaby, Y.A.; Mansfield, S.D. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations. New Phytol., 2013, 197(3), 777-790.
[http://dx.doi.org/10.1111/nph.12014] [PMID: 23278123]
[71]
Riedelsheimer, C.; Lisec, J.; Czedik-Eysenberg, A.; Sulpice, R.; Flis, A.; Grieder, C.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA, 2012, 109(23), 8872-8877.
[http://dx.doi.org/10.1073/pnas.1120813109] [PMID: 22615396]
[72]
Li, K.; Wang, H.; Hu, X.; Liu, Z.; Wu, Y.; Huang, C. Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS One, 2016, 11(8), e0158906.
[http://dx.doi.org/10.1371/journal.pone.0158906] [PMID: 27479588]
[73]
Slavov, G.; Allison, G.; Bosch, M. Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus. Front. Plant Sci., 2013, 4(JUL), 217.
[http://dx.doi.org/10.3389/fpls.2013.00217] [PMID: 23847628]
[74]
Houston, K. R.A. Burton.; B. Sznajder.; A.J. Rafalski.; K.S. Dhugga.; D.E. Mather.; J. Taylor.; B.J. Steffenson.; R. Waugh.; G.B. Fincher. A genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the cellulose synthase a gene family. PLoS One, 2015, 10, 1-21.
[http://dx.doi.org/10.1371/journal.pone.0130890] [PMID: 26154104]
[75]
Gajardo, H.A.; Wittkop, B.; Soto-Cerda, B.; Higgins, E.E.; Parkin, I.A.P.; Snowdon, R.J.; Federico, M.L.; Iniguez-Luy, F.L. Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol. Breed., 2015, 35, 143.
[http://dx.doi.org/10.1007/s11032-015-0340-3]
[76]
Kaur, S.; Zhang, X.; Mohan, A.; Dong, H.; Vikram, P.; Singh, S.; Zhang, Z.; Gill, K.S.; Dhugga, K.S.; Singh, J. Genome-wide association study reveals novel genes associated with culm cellulose content in bread wheat (Triticum aestivum, L.). Front. Plant Sci., 2017, 8, 1913.
[http://dx.doi.org/10.3389/fpls.2017.01913] [PMID: 29163625]
[77]
de Alencar Figueiredo, L.F. B. Sine.; J. Chantereau.; C. Mestres.; G. Fliedel.; J.F. Rami.; J.C. Glaszmann.; M. Deu.; B. Courtois. Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theor. Appl. Genet., 2010, 121, 1171-1185.
[http://dx.doi.org/10.1007/s00122-010-1380-z]
[78]
Alam, M.M.; Hammer, G.L.; van Oosterom, E.J.; Cruickshank, A.W.; Hunt, C.H.; Jordan, D.R. A physiological framework to explain genetic and environmental regulation of tillering in sorghum. New Phytol., 2014, 203(1), 155-167.
[http://dx.doi.org/10.1111/nph.12767] [PMID: 24665928]
[79]
Xia, J.; Zhao, Y.; Burks, P.; Pauly, M.; Brown, P.J. A sorghum NAC gene is associated with variation in biomass properties and yield potential. Plant Direct, 2018, 2(7), e00070.
[http://dx.doi.org/10.1002/pld3.70] [PMID: 31245734]
[80]
Zhao, J.; Mantilla Perez, M.B.; Hu, J.; Salas Fernandez, M.G. Genome-wide association study for nine plant architecture traits in sorghum. Plant Genome, 2016, 9(2), 1-14.
[http://dx.doi.org/10.3835/plantgenome2015.06.0044]
[81]
Spindel, J.E.; Dahlberg, J.; Colgan, M.; Hollingsworth, J.; Sievert, J.; Staggenborg, S.H.; Hutmacher, R.; Jansson, C.; Vogel, J.P. Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought. BMC Genomics, 2018, 19(1), 679.
[http://dx.doi.org/10.1186/s12864-018-5055-5] [PMID: 30223789]
[82]
Wang, Y.H.; Acharya, A.; Burrell, A.M.; Klein, R.R.; Klein, P.E.; Hasenstein, K.H. Mapping and candidate genes associated with saccharification yield in sorghum. Genome, 2013, 56(11), 659-665.
[http://dx.doi.org/10.1139/gen-2013-0134] [PMID: 24299105]
[83]
Shakoor, N.; Agnew, E.; Ziegler, G.; Lee, S.; Lizárraga, C.; Fahlgren, N.; Baxter, I.; Mockler, T.C. Genomewide association study reveals transient loci underlying the genetic architecture of biomass accumulation under cold stress in Sorghum. bioRxiv, 2019.
[http://dx.doi.org/10.1101/760025]
[84]
Wolabu, T.W.; Zhang, F.; Niu, L.; Kalve, S.; Bhatnagar-Mathur, P.; Muszynski, M.G.; Tadege, M. Three Flowering Locus T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytol., 2016, 210(3), 946-959.
[http://dx.doi.org/10.1111/nph.13834] [PMID: 26765652]
[85]
Lasky, J.R.; Upadhyaya, H.D.; Ramu, P.; Deshpande, S.; Hash, C.T.; Bonnette, J.; Juenger, T.E.; Hyma, K.; Acharya, C.; Mitchell, S.E. Genome-environment associations in sorghum landraces predict adaptive traits. Sci. Adv., 2015, 1(6), 1-14.
[http://dx.doi.org/10.1126/sciadv.1400218]
[86]
de Oliveira, A.A.; Pastina, M.M.; de Souza, V.F.; da Costa Parrella, R.A.; Noda, R.W.; Simeone, M.L.F.; Schaffert, R.E.; de Magalhães, J.V.; Damasceno, C.M.B.; Margarido, G.R.A. Genomic prediction applied to high-biomass sorghum for bioenergy production. Mol. Breed., 2018, 38(4), 49.
[http://dx.doi.org/10.1007/s11032-018-0802-5] [PMID: 29670457]
[87]
Boyles, R.E.; Brenton, Z.W.; Kresovich, S. Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. Plant J., 2019, 97(1), 19-39.
[http://dx.doi.org/10.1111/tpj.14113] [PMID: 30260043]
[88]
Vinayan, M. T.; Babu, R.; Jyothsna, T.; Zaidi, P, H.; Blümmel, M. A note on potential candidate genomic regions with implications for maize stover fodder quality. Field Crops Res., 2013, 153, 102-106.
[http://dx.doi.org/10.1016/j.fcr.2013.03.018]
[89]
Burghardt, L.T.; Young, N.D.; Tiffin, P. A guide to genome-wide association mapping in plants. Curr. Protoc. Plant Biol., 2017, 2(1), 22-38.
[http://dx.doi.org/10.1002/cppb.20041] [PMID: 31725973]
[90]
Wang, H.; Li, K.; Hu, X.; Liu, Z.; Wu, Y.; Huang, C. Genome-wide association analysis of forage quality in maize mature stalk. BMC Plant Biol., 2016, 16(1), 227.
[http://dx.doi.org/10.1186/s12870-016-0919-9] [PMID: 27769176]
[91]
Allwright, M.R.; Payne, A.; Emiliani, G.; Milner, S.; Viger, M.; Rouse, F.; Keurentjes, J.J.B.; Bérard, A.; Wildhagen, H.; Faivre-Rampant, P.; Polle, A.; Morgante, M.; Taylor, G. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). Biotechnol. Biofuels, 2016, 9(1), 195.
[http://dx.doi.org/10.1186/s13068-016-0603-1] [PMID: 27617034]
[92]
Liu, L.; Qu, C.; Wittkop, B.; Yi, B.; Xiao, Y.; He, Y.; Snowdon, R.J.; Li, J. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013, 8(12), e83052.
[http://dx.doi.org/10.1371/journal.pone.0083052] [PMID: 24386142]
[93]
Blümmel, M.; Deshpande, S.; Kholova, J.; Vadez, V. Introgression of Staygreen QLT’s for concomitant improvement of food and fodder traits in Sorghum bicolor. Field Crops Res., 2015, 180, 228-237.
[http://dx.doi.org/10.1016/j.fcr.2015.06.005]
[94]
Hayes, C.M.; Weers, B.D.; Thakran, M.; Burow, G.; Xin, Z.; Emendack, Y.; Burke, J.J.; Rooney, W.L.; Mullet, J.E. Discovery of a dhurrin QTL in sorghum: co-localization of dhurrin biosynthesis and a novel stay-green qtl. Crop Sci., 2016, 56(1), 104-112.
[http://dx.doi.org/10.2135/cropsci2015.06.0379]
[95]
Blümmel, M.; Steele, B.; Dale, B.E. Opportunities from second-generation biofuel technologies for upgrading lignocellulosic biomass for livestock feed. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour., 2014, 9(041), 1-8.
[http://dx.doi.org/10.1079/PAVSNNR20149041]
[96]
Bandara, Y.M.A.Y.; Tesso, T.T.; Zhang, K.; Wang, D.; Little, C.R. Charcoal rot and Fusarium stalk rot diseases influence sweet sorghum sugar attributes. Ind. Crops Prod., 2017, 2018(112), 188-195.
[http://dx.doi.org/10.1016/j.indcrop.2017.11.012]
[97]
Adeyanju, A.; Little, C.; Yu, J.; Tesso, T. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum. G3 Genes, Genomes, Genetics, 2015, 5(6), 1165-1175.
[98]
McKinley, B.A.; Casto, A.L.; Rooney, W.L.; Mullet, J.E. Developmental dynamics of stem starch accumulation in Sorghum bicolor. Plant Direct, 2018, 2(8)
[http://dx.doi.org/10.1002/pld3.74] [PMID: 31245742]
[99]
Tesfamariam, T.; Yoshinaga, H.; Deshpande, S.P.; Srinivasa Rao, P.; Sahrawat, K.L.; Ando, Y.; Nakahara, K.; Hash, C.T.; Subbarao, G.V. Biological nitrification inhibition in sorghum: the role of sorgoleone production. Plant Soil, 2014, 379(1-2), 325-335.
[http://dx.doi.org/10.1007/s11104-014-2075-z]
[100]
Cook, D.; Rimando, A.M.; Clemente, T.E.; Schröder, J.; Dayan, F.E.; Nanayakkara, N.P.; Pan, Z.; Noonan, B.P.; Fishbein, M.; Abe, I.; Duke, S.O.; Baerson, S.R. Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. Plant Cell, 2010, 22(3), 867-887.
[http://dx.doi.org/10.1105/tpc.109.072397] [PMID: 20348430]
[101]
Baerson, S.R.; Rimando, A.M.; Pan, Z. Probing allelochemical biosynthesis in sorghum root hairs. Plant Signal. Behav., 2008, 3(9), 667-670.
[http://dx.doi.org/10.4161/psb.3.9.5779] [PMID: 19704820]
[102]
Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem., 2009, 17(12), 4022-4034.
[http://dx.doi.org/10.1016/j.bmc.2009.01.046] [PMID: 19216080]
[103]
Magalhaes, J.V.; Liu, J.; Guimarães, C.T.; Lana, U.G.P.; Alves, V.M.C.; Wang, Y.H.; Schaffert, R.E.; Hoekenga, O.A.; Piñeros, M.A.; Shaff, J.E.; Klein, P.E.; Carneiro, N.P.; Coelho, C.M.; Trick, H.N.; Kochian, L.V. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet., 2007, 39(9), 1156-1161.
[http://dx.doi.org/10.1038/ng2074] [PMID: 17721535]
[104]
Murray, S.C.; Rooney, W.L.; Mitchell, S.E.; Sharma, A.; Klein, P.E.; Mullet, J.E.; Kresovich, S. Genetic improvement of sorghum as a biofuel feedstock: II. QTL for Stem and Leaf Structural Carbohydrates. Crop Sci., 2008, 48(6), 2180-2193.
[http://dx.doi.org/10.2135/cropsci2008.01.0068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy