Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

A Flash on Cell Therapy Strategies in Clinical Trials against SARS-CoV-2

Author(s): Mona Sadat Larijani, Amitis Ramezani, Mohammad Reza Aghasadeghi and Seyed Mehdi Sadat*

Volume 3, Issue 2, 2022

Published on: 22 January, 2021

Article ID: e220122190597 Pages: 10

DOI: 10.2174/2666796702666210122123559

Abstract

Background: Since December 2019, an outbreak of a novel coronavirus infection has been reported, drawing immediate attention from the World Health Organization. SARS-CoV-2, as the cause of COVID-19 with extra potency of transmission, has led to global concern. Currently, more than a thousand clinical trials have focused on achieving a protective or preventive approach against the virus, among which cell-based therapies seem to be significantly applicable.

Objective: We aimed to summarize cell-based therapy against COVID-19 and compare the applicable methods and possible outcomes.

Methods: The current clinical trials based on cell-based therapies are summarized according to the cell sorting applications. The possible approaches, advantages, and opinions are discussed.

Results and Conclusion: Cell-based therapy has already brought some hope. It needs to meet the following features: 1) The long-term protection data after treatment must be provided by stem cell investigators. 2) A design of multivalent antigens based on immunoinformatic prediction is suggested to engineer T-cell and dendritic cell-based therapies in order to deliver the most immunogenic conserved epitopes. 3) According to the sophisticated procedure, the preparation of the cells must be supported by authorities in order to decrease the cost and the time of the whole process.

Keywords: COVID-19, SARS-CoV-2, cell therapy, MSCs, coronavirus, coronaviridae.

Graphical Abstract
[2]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[4]
Bailey JR, Barnes E, Cox AL. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019; 156(2): 418-30.
[http://dx.doi.org/10.1053/j.gastro.2018.08.060] [PMID: 30268785]
[5]
Larijani MS, Ramezani A, Sadat SM. Updated Studies on the Development of HIV Therapeutic Vaccine. Curr HIV Res 2019; 17(2): 75-84.
[http://dx.doi.org/10.2174/1570162X17666190618160608] [PMID: 31210114]
[6]
Sofian M, Velayati AA, Banifazl M, et al. SARS-CoV-2, a virus with many faces: a series of cases with prolonged persistence of COVID-19 symptoms. Wien Med Wochenschr 2020; 171(1-2): 3-6.
[http://dx.doi.org/10.1007/s10354-020-00793-8] [PMID: 33315163]
[7]
Cao W, Dong C, Kim S, Hou D, Tai W, Du L. Biomechanical Characterization of SARS-CoV-2 Spike RBD and Human ACE2 Protein-Protein Interaction. bioRxiv 2020.
[8]
Liu DX, Yuan Q, Liao Y. Coronavirus envelope protein: a small membrane protein with multiple functions. Cell Mol Life Sci 2007; 64(16): 2043-8.
[http://dx.doi.org/10.1007/s00018-007-7103-1] [PMID: 17530462]
[9]
Amrun SN, Lee CY-P, Lee B, et al. Linear B-cell epitopes in the spike and nucleocapsid proteins as markers of SARS-CoV-2 exposure and disease severity. EBioMedicine 2020; 58: 102911.
[http://dx.doi.org/10.1016/j.ebiom.2020.102911] [PMID: 32711254]
[10]
Littler D R, Gully B S, Colson R N, Rossjohn J. Crystal Structure of the SARS-CoV-2 Non-structural Protein 9, Nsp9. iScience 2020; 23(7): 101258.
[11]
Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. bioRxiv 2020; 2020.01.22.915660.
[http://dx.doi.org/10.1101/2020.01.22.915660] [PMID: 32511294] [PMCID: PMC7217099]
[12]
Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020.
[13]
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005; 69(4): 635-64.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[14]
Bredenbeek PJ, Pachuk CJ, Noten AF, et al. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res 1990; 18(7): 1825-32.
[http://dx.doi.org/10.1093/nar/18.7.1825] [PMID: 2159623]
[15]
Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol 2005; 287: 1-30.
[http://dx.doi.org/10.1007/3-540-26765-4_1] [PMID: 15609507]
[16]
Lee HY, Nyon MP, Strych U. Vaccine Development Against Middle East Respiratory Syndrome. Curr Trop Med Rep 2016; 3(3): 80-6.
[http://dx.doi.org/10.1007/s40475-016-0084-0] [PMID: 32226714]
[17]
Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[18]
Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176: 104742-2.
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[19]
Ji F, Li L, Li Z, Jin Y, Liu W. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019. Stem Cells Transl Med 2020; 9(7): 813-4.
[http://dx.doi.org/10.1002/sctm.20-0083] [PMID: 32320535]
[20]
Torreele E. The rush to create a covid-19 vaccine may do more harm than good. BMJ 2020; 370: m3209.
[http://dx.doi.org/10.1136/bmj.m3209] [PMID: 32816760]
[21]
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38(1): 1-9.
[PMID: 32105090]
[22]
Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. World Health Organization (WHO) 2020.https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when
[23]
Dhama K, Sharun K, Tiwari R, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother 2020; 16(6): 1232-8.
[http://dx.doi.org/10.1080/21645515.2020.1735227] [PMID: 32186952]
[24]
Li H, Wang YM, Xu JY, Cao B. Potential antiviral therapeutics for 2019 Novel Coronavirus. Zhonghua Jie He He Hu Xi Za Zhi 2020; 43(0)
[PMID: 32023685]
[25]
Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol 2020; 92(5): 495-500.
[http://dx.doi.org/10.1002/jmv.25698] [PMID: 32022276]
[26]
Bhattacharya M, Sharma AR, Patra P, et al. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J Med Virol 2020; 92(6): 618-31.
[http://dx.doi.org/10.1002/jmv.25736] [PMID: 32108359]
[27]
Rakib A, Sami SA, Mimi NJ, et al. Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput Biol Med 2020; 124: 103967-7.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103967] [PMID: 32828069]
[28]
Banerjee S, Majumder K, Gutierrez G J, Gupta D, Mittal B. Immuno-informatics approach for multi-epitope vaccine designing against SARS-CoV-2. bioRxiv 2020; 2020.07.23.218529.
[http://dx.doi.org/10.1101/2020.07.23.218529] [PMID: 32743567] [PMCID: PMC7386484]
[29]
Turoňová B, Sikora M, Schürmann C, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 2020; 370(6513): 203-8.
[http://dx.doi.org/10.1126/science.abd5223] [PMID: 32817270]
[30]
Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020; 19(5): 305-6.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[31]
[32]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia Aging Dis. 2020; 216-28.
[33]
Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[34]
Gorman E, Shankar-Hari M, Hopkins P, et al. Repair of Acute Respiratory Distress Syndrome by Stromal Cell Administration in COVID-19 (REALIST-COVID-19): A structured summary of a study protocol for a randomised, controlled trial. Trials 2020; 21(1): 462.
[http://dx.doi.org/10.1186/s13063-020-04416-w] [PMID: 32493473]
[35]
Ye Q, Wang H, Xia X, et al. Safety and efficacy assessment of allogeneic human dental pulp stem cells to treat patients with severe COVID-19: structured summary of a study protocol for a randomized controlled trial (Phase I / II). Trials 2020; 21(1): 520.
[http://dx.doi.org/10.1186/s13063-020-04380-5] [PMID: 32532356]
[36]
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019; 4(1): 22.
[http://dx.doi.org/10.1038/s41536-019-0083-6] [PMID: 31815001]
[37]
Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995; 16(4): 557-64.
[PMID: 8528172]
[38]
Keene CH. The Health of Youth. Am J Public Health Nations Health 1929; 19(4): 455-5.
[http://dx.doi.org/10.2105/AJPH.19.4.455-a]
[39]
Wang L-T, Ting C-H, Yen M-L, et al. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation- mediated diseases: review of current clinical trials. J Biomed Sci 2016; 23(1): 76-6.
[http://dx.doi.org/10.1186/s12929-016-0289-5] [PMID: 27809910]
[40]
Weiss ARR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Front Immunol 2019; 10: 1191-1.
[http://dx.doi.org/10.3389/fimmu.2019.01191] [PMID: 31214172]
[41]
Gomzikova MO, James V, Rizvanov AA. Therapeutic Application of Mesenchymal Stem Cells Derived Extracellular Vesicles for Immunomodulation. Front Immunol 2019; 10(2663): 2663.
[http://dx.doi.org/10.3389/fimmu.2019.02663] [PMID: 31849929]
[42]
Antoniou KM, Karagiannis K, Tsitoura E, et al. Clinical applications of mesenchymal stem cells in chronic lung diseases. Biomed Rep 2018; 8(4): 314-8.
[http://dx.doi.org/10.3892/br.2018.1067] [PMID: 29556380]
[43]
chinese Clinical Trials 2020.http://www.chictr.org.cn/index.aspx
[44]
Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front Immunol 2017; 8(1124): 1124.
[http://dx.doi.org/10.3389/fimmu.2017.01124] [PMID: 28955340]
[45]
Cooley S, June CH, Schoenberger SP, Miller JS. Adoptive Therapy with T Cells/NK Cells. Biol Blood Marrow Transplant 2007; 13: 33-42.
[http://dx.doi.org/10.1016/j.bbmt.2006.10.008]
[46]
Burger MC, Zhang C, Harter PN, et al. CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Front Immunol 2019; 10(2683): 2683.
[http://dx.doi.org/10.3389/fimmu.2019.02683] [PMID: 31798595]
[47]
Larijani MS, Sadat SM, Bolhassani A, Pouriayevali MH, Bahramali G, Ramezani A. In Silico Design and Immunologic Evaluation of HIV-1 p24-Nef Fusion Protein to Approach a Therapeutic Vaccine Candidate. Curr HIV Res 2018; 16(5): 322-37.
[http://dx.doi.org/10.2174/1570162X17666190102151717] [PMID: 30605062]
[48]
Larijani MS, Pouriayevali MH, Sadat SM, Ramezani A. Production of Recombinant HIV-1 p24-Nef Protein in Two Forms as Potential Candidate Vaccines in Three Vehicles. Curr Drug Deliv 2020; 17(5): 387-95.
[http://dx.doi.org/10.2174/1567201817666200317121728] [PMID: 32183667]
[49]
Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 2013; 11(12): 836-48.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[50]
Munjal A, Khandia R, Dhama K, et al. Advances in Developing Therapies to Combat Zika Virus: Current Knowledge and Future Perspectives. Front Microbiol 2017; 8(1469): 1469.
[http://dx.doi.org/10.3389/fmicb.2017.01469] [PMID: 28824594]
[51]
Singh RK, Dhama K, Chakraborty S, et al. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019; 39(1): 26-55.
[http://dx.doi.org/10.1080/01652176.2019.1580827] [PMID: 31006350]
[52]
Dhama K, Karthik K, Khandia R, et al. Advances in Designing and Developing Vaccines, Drugs, and Therapies to Counter Ebola Virus. Front Immunol 2018; 9: 1803-3.
[http://dx.doi.org/10.3389/fimmu.2018.01803] [PMID: 30147687]
[53]
Yang Z-Y, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004; 428(6982): 561-4.
[http://dx.doi.org/10.1038/nature02463] [PMID: 15024391]
[54]
Li E, Yan F, Huang P, et al. Characterization of the Immune Response of MERS-CoV Vaccine Candidates Derived from Two Different Vectors in Mice. Viruses 2020; 12(1): 125.
[http://dx.doi.org/10.3390/v12010125] [PMID: 31968702]
[55]
Coronavirus SARS-CoV-2 infects cells of the intestine. Scince Daily 2020.https://www.sciencedaily.com/releases/2020/05/200504091438.htm
[56]
Bender E. Cell-based therapy: Cells on trial. Nature 2016; 540(7634): S106-8.
[http://dx.doi.org/10.1038/540S106a] [PMID: 28002399]
[57]
Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA. Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 2011; 29(6): 913-9.
[http://dx.doi.org/10.1002/stem.643] [PMID: 21506195]
[58]
Patel SA, Sherman L, Munoz J, Rameshwar P. Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz) 2008; 56(1): 1-8.
[http://dx.doi.org/10.1007/s00005-008-0001-x] [PMID: 18250975]
[59]
Chan JL, Tang KC, Patel AP, et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 2006; 107(12): 4817-24.
[http://dx.doi.org/10.1182/blood-2006-01-0057] [PMID: 16493000]
[60]
Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003; 100(14): 8407-11.
[http://dx.doi.org/10.1073/pnas.1432929100] [PMID: 12815096]
[61]
Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005; 33(2): 145-52.
[http://dx.doi.org/10.1165/rcmb.2004-0330OC] [PMID: 15891110]
[62]
Xu J, Woods CR, Mora AL, et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 2007; 293(1): L131-41.
[http://dx.doi.org/10.1152/ajplung.00431.2006] [PMID: 17416739]
[63]
Xu J, Qu J, Cao L, et al. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 2008; 214(4): 472-81.
[http://dx.doi.org/10.1002/path.2302] [PMID: 18213733]
[64]
McCarter SD, Mei SHJ, Lai PFH, et al. Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med 2007; 175(10): 1014-26.
[http://dx.doi.org/10.1164/rccm.200609-1370OC] [PMID: 17322110]
[65]
Liang Bing. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord. chinaXiv 2020.
[66]
Goyvaerts C, Breckpot K. The Journey of in vivo Virus Engineered Dendritic Cells From Bench to Bedside: A Bumpy Road. Front Immunol 2018; 9: 2052-2.
[http://dx.doi.org/10.3389/fimmu.2018.02052] [PMID: 30254636]
[67]
Pizzurro GA, Barrio MM. Dendritic cell-based vaccine efficacy: aiming for hot spots. Front Immunol 2015; 6: 91-1.
[http://dx.doi.org/10.3389/fimmu.2015.00091] [PMID: 25784913]
[68]
Sadat Larijani M, Sadat SM, Bolhassani A, Ramezani A. A Shot at Dendritic Cell-Based Vaccine Strategy against HIV-1. Journal of Medical Microbiology and Infectious Diseases 2020; 7(4): 89-92.
[http://dx.doi.org/10.29252/JoMMID.7.4.89]
[69]
Pollara G, Kwan A, Newton PJ, Handley ME, Chain BM, Katz DR. Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol 2005; 86(4): 187-204.
[http://dx.doi.org/10.1111/j.0959-9673.2005.00440.x] [PMID: 16045541]
[70]
Karda R, Counsell JR, Karbowniczek K, Caproni LJ, Tite JP, Waddington SN. Production of lentiviral vectors using novel, enzymatically produced, linear DNA. Gene Ther 2019; 26(3-4): 86-92.
[http://dx.doi.org/10.1038/s41434-018-0056-1] [PMID: 30643205]
[71]
Beignon AS, Mollier K, Liard C, et al. Lentiviral vector-based prime/boost vaccination against AIDS: pilot study shows protection against Simian immunodeficiency virus SIVmac251 challenge in macaques. J Virol 2009; 83(21): 10963-74.
[http://dx.doi.org/10.1128/JVI.01284-09] [PMID: 19706700]
[72]
Buffa V, Negri DRM, Leone P, et al. A single administration of lentiviral vectors expressing either full-length human immunodeficiency virus 1 (HIV-1)(HXB2) Rev/Env or codon-optimized HIV-1(JR-FL) gp120 generates durable immune responses in mice. J Gen Virol 2006; 87(Pt 6): 1625-34.
[http://dx.doi.org/10.1099/vir.0.81706-0] [PMID: 16690927]
[73]
Lemiale F, Asefa B, Ye D, Chen C, Korokhov N, Humeau L. An HIV-based lentiviral vector as HIV vaccine candidate: Immunogenic characterization. Vaccine 2010; 28(8): 1952-61.
[http://dx.doi.org/10.1016/j.vaccine.2009.10.089] [PMID: 20188251]
[74]
Norton TD, Miller EA. Recent Advances in Lentiviral Vaccines for HIV-1 Infection. Front Immunol 2016; 7: 243-3.
[PMID: 27446074]
[75]
Whiteside TL, Piazza P, Reiter A, et al. Production of a dendritic cell-based vaccine containing inactivated autologous virus for therapy of patients with chronic human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 2009; 16(2): 233-40.
[http://dx.doi.org/10.1128/CVI.00066-08] [PMID: 19038780]
[76]
Apostolopoulos V, Thalhammer T, Tzakos AG, Stojanovska L. Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv 2013; 2013
[http://dx.doi.org/10.1155/2013/869718] [PMID: 24228179]
[77]
Kalinski P, Muthuswamy R, Urban J. Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Rev Vaccines 2013; 12(3): 285-95.
[http://dx.doi.org/10.1586/erv.13.22] [PMID: 23496668]
[78]
Wagstaffe HR, Mooney JP, Riley EM, Goodier MR. Vaccinating for natural killer cell effector functions. Clin Transl Immunology 2018; 7(1): e1010-0.
[http://dx.doi.org/10.1002/cti2.1010] [PMID: 29484187]
[79]
Goodier M R, Rodriguez-Galan A, Lusa C, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. Journal of immunology (Baltimore, Md : 1950) 2016; 197(1): 313-25.
[80]
Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 2009; 457(7229): 557-61.
[http://dx.doi.org/10.1038/nature07665] [PMID: 19136945]
[81]
Slater H. FDA Accepts IND for NK Cell Therapy CYNK-001 to Treat Patients with COVID-19. Immuno Oncology, News 2020.https://www.cancernetwork.com/immuno-oncology/fda-accepts-ind-nk-cell-therapy-cynk-001-treat-patients-covid-19
[82]
Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020; 181(7): 1489-1501.e15.
[http://dx.doi.org/10.1016/j.cell.2020.05.015] [PMID: 32473127]
[83]
Chen Z, John Wherry E. T cell responses in patients with COVID-19. Nat Rev Immunol 2020; 20(9): 529-36.
[http://dx.doi.org/10.1038/s41577-020-0402-6] [PMID: 32728222]
[84]
Lovato A, de Filippis C. Clinical Presentation of COVID-19: A Systematic Review Focusing on Upper Airway Symptoms. Ear Nose Throat J 2020; 99(9): 569-76.
[http://dx.doi.org/10.1177/0145561320920762] [PMID: 32283980]
[85]
Tuttle KR. Impact of the COVID-19 pandemic on clinical research. Nat Rev Nephrol 2020; 16(10): 562-4.
[http://dx.doi.org/10.1038/s41581-020-00336-9] [PMID: 32760016]

© 2024 Bentham Science Publishers | Privacy Policy