Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Plant RABs: Role in Development and in Abiotic and Biotic Stress Responses

Author(s): Manas K. Tripathy*, Renu Deswal and Sudhir K. Sopory

Volume 22, Issue 1, 2021

Published on: 14 January, 2021

Page: [26 - 40] Pages: 15

DOI: 10.2174/1389202922666210114102743

Price: $65

Abstract

Endosomal trafficking plays an integral role in various eukaryotic cellular activities and is vital for higher-order functions in multicellular organisms. RAB GTPases are important proteins that influence various aspects of membrane traffic, which consequently influence many cellular functions and responses. Compared to yeast and mammals, plants have evolved a unique set of plant-specific RABs that play a significant role in their development. RABs form the largest family of small guanosine triphosphate (GTP)-binding proteins, and are divided into eight sub-families named RAB1, RAB2, RAB5, RAB6, RAB7, RAB8, RAB11 and RAB18. Recent studies on different species suggest that RAB proteins play crucial roles in intracellular trafficking and cytokinesis, in autophagy, plant microbe interactions and in biotic and abiotic stress responses. This review recaptures and summarizes the roles of RABs in plant cell functions and in enhancing plant survival under stress conditions.

Keywords: Abiotic stress, biotic stress, GTP binding protein, RAB, Guanosine triphosphate, vesicle trafficking.

Graphical Abstract
[1]
Bos, J.L. Ras.GTPases. Oxford University Press; Hall, A., Ed.; Oxford, 2000, pp. 67-88.
[2]
Rojas, A.M.; Fuentes, G.; Rausell, A.; Valencia, A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J. Cell Biol., 2012, 196(2), 189-201.
[http://dx.doi.org/10.1083/jcb.201103008] [PMID: 22270915]
[3]
Moore, M.S. Ran and nuclear transport. J. Biol. Chem., 1998, 273(36), 22857-22860.
[http://dx.doi.org/10.1074/jbc.273.36.22857] [PMID: 9722501]
[4]
Zheng, Z.L.; Yang, Z. The Rop GTPase: an emerging signaling switch in plants. Plant Mol. Biol., 2000, 44(1), 1-9.
[http://dx.doi.org/10.1023/A:1006402628948] [PMID: 11094975]
[5]
Wennerberg, K.; Rossman, K.L.; Der, C.J. The Ras superfamily at a glance. J. Cell Sci., 2005, 118(Pt 5), 843-846.
[http://dx.doi.org/10.1242/jcs.01660] [PMID: 15731001]
[6]
Zerial, M.; McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 107-117.
[http://dx.doi.org/10.1038/35052055] [PMID: 11252952]
[7]
Grosshans, B.L.; Ortiz, D.; Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 11821-11827.
[http://dx.doi.org/10.1073/pnas.0601617103] [PMID: 16882731]
[8]
Nielsen, E.; Cheung, A.Y.; Ueda, T. The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol., 2008, 147(4), 1516-1526.
[http://dx.doi.org/10.1104/pp.108.121798] [PMID: 18678743]
[9]
Rutherford, S.; Moore, I. The Arabidopsis Rab GTPase family: another enigma variation. Curr. Opin. Plant Biol., 2002, 5(6), 518-528.
[http://dx.doi.org/10.1016/S1369-5266(02)00307-2] [PMID: 12393015]
[10]
Zhang, J.; Hill, D.R.; Sylvester, A.W. Diversification of the RAB guanosine triphosphatase family in dicots and monocots. J. Integr. Plant Biol., 2007, 49, 1129-1141.
[http://dx.doi.org/10.1111/j.1672-9072.2007.00520.x]
[11]
Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408(6814), 796-815.
[http://dx.doi.org/10.1038/35048692] [PMID: 11130711]
[12]
Zhang, J.; Li, Y.; Liu, B.; Wang, L.; Zhang, L.; Hu, J.; Chen, J.; Zheng, H.; Lu, M. Characterization of the Populus Rab family genes and the function of PtRabE1b in salt tolerance. BMC Plant Biol., 2018, 18(1), 124.
[http://dx.doi.org/10.1186/s12870-018-1342-1] [PMID: 29914373]
[13]
Lazar, T.; Götte, M.; Gallwitz, D. Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell? Trends Biochem. Sci., 1997, 22(12), 468-472.
[http://dx.doi.org/10.1016/S0968-0004(97)01150-X] [PMID: 9433126]
[14]
Calero, M.; Collins, R.N. Saccharomyces cerevisiae Pra1p/Yip3p interacts with Yip1p and Rab proteins. Biochem. Biophys. Res. Commun., 2002, 290(2), 676-681.
[http://dx.doi.org/10.1006/bbrc.2001.6242] [PMID: 11785952]
[15]
Gallegos, M.E.; Balakrishnan, S.; Chandramouli, P.; Arora, S.; Azameera, A.; Babushekar, A.; Bargoma, E.; Bokhari, A.; Chava, S.K.; Das, P.; Desai, M.; Decena, D.; Saramma, S.D.; Dey, B.; Doss, A.L.; Gor, N.; Gudiputi, L.; Guo, C.; Hande, S.; Jensen, M.; Jones, S.; Jones, N.; Jorgens, D.; Karamchedu, P.; Kamrani, K.; Kolora, L.D.; Kristensen, L.; Kwan, K.; Lau, H.; Maharaj, P.; Mander, N.; Mangipudi, K.; Menakuru, H.; Mody, V.; Mohanty, S.; Mukkamala, S.; Mundra, S.A.; Nagaraju, S.; Narayanaswamy, R.; Ndungu-Case, C.; Noorbakhsh, M.; Patel, J.; Patel, P.; Pendem, S.V.; Ponakala, A.; Rath, M.; Robles, M.C.; Rokkam, D.; Roth, C.; Sasidharan, P.; Shah, S.; Tandon, S.; Suprai, J.; Truong, T.Q.; Uthayaruban, R.; Varma, A.; Ved, U.; Wang, Z.; Yu, Z. The C. elegans rab family: identification, classification and toolkit construction. PLoS One, 2012, 7(11), e49387.
[http://dx.doi.org/10.1371/journal.pone.0049387] [PMID: 23185324]
[16]
Pereira-Leal, J.B.; Seabra, M.C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol., 2001, 313(4), 889-901.
[http://dx.doi.org/10.1006/jmbi.2001.5072] [PMID: 11697911]
[17]
Agarwal, P.; Reddy, M.K.; Sopory, S.K.; Agarwal, P.K. Plant Rabs: Characterization, functional diversity, and role in stress tolerance. Plant Mol. Biol. Report., 2009, 27, 417-430.
[http://dx.doi.org/10.1007/s11105-009-0100-9]
[18]
Urano, D.; Jones, A.M. Heterotrimeric G protein-coupled signaling in plants. Annu. Rev. Plant Biol., 2014, 65, 365-384.
[http://dx.doi.org/10.1146/annurev-arplant-050213-040133] [PMID: 24313842]
[19]
Rehman, R.U.; Di Sansebastiano, G.P. Plant Rab GTPases in membrane trafficking and signaling. In: Plant Signaling: Understanding the Molecular Crosstalk; Hakeem, K.; Rehman, R.; Tahir, I., Eds.; Springer: New Delhi, India, 2014; pp. 51-73.
[http://dx.doi.org/10.1007/978-81-322-1542-4_3]
[20]
Ku, Y.S.; Sintaha, M.; Cheung, M.Y.; Lam, H.M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci., 2018, 19(10), E3206.
[http://dx.doi.org/10.3390/ijms19103206] [PMID: 30336563]
[21]
Madrid-Espinoza, J.; Salinas-Cornejo, J.; Ruiz-Lara, S. The RabGAP gene family in tomato (Solanum lycopersicum) and wild relatives: Identification, interaction networks, and transcriptional analysis during plant development and in response to salt stress. Genes (Basel), 2019, 10(9), E638.
[http://dx.doi.org/10.3390/genes10090638] [PMID: 31450820]
[22]
Warren, G.; Mellman, I. “Protein trafficking between membranes”.Cell; Lewin, B., Ed.; Sudbury: Jones & Bartlett, 2006, pp. 153-204.
[23]
Saito, C.; Ueda, T. Chapter 4: functions of RAB and SNARE proteins in plant life. Int. Rev. Cell Mol. Biol., 2009, 274, 183-233.
[http://dx.doi.org/10.1016/S1937-6448(08)02004-2] [PMID: 19349038]
[24]
Yorimitsu, T.; Sato, K.; Takeuchi, M. Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. Front. Plant Sci., 2014, 5, 411.
[http://dx.doi.org/10.3389/fpls.2014.00411] [PMID: 25191334]
[25]
Bischoff, F.; Molendijk, A.; Rajendrakumar, C.S.; Palme, K. GTP-binding proteins in plants. Cell. Mol. Life Sci., 1999, 55(2), 233-256.
[http://dx.doi.org/10.1007/s000180050287] [PMID: 10188584]
[26]
Takai, Y.; Sasaki, T.; Matozaki, T. Small GTP-binding proteins. Physiol. Rev., 2001, 81(1), 153-208.
[http://dx.doi.org/10.1152/physrev.2001.81.1.153] [PMID: 11152757]
[27]
Yang, Z. Small GTPases: versatile signaling switches in plants. Plant Cell, 2002, 14(Suppl.), S375-S388.
[http://dx.doi.org/10.1105/tpc.001065] [PMID: 12045289]
[28]
Vernoud, V.; Horton, A.C.; Yang, Z.; Nielsen, E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol., 2003, 131(3), 1191-1208.
[http://dx.doi.org/10.1104/pp.013052] [PMID: 12644670]
[29]
Lemichez, E.; Wu, Y.; Sanchez, J.P.; Mettouchi, A.; Mathur, J.; Chua, N.H. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev., 2001, 15(14), 1808-1816.
[http://dx.doi.org/10.1101/gad.900401] [PMID: 11459830]
[30]
Feiguelman, G.; Fu, Y.; Yalovsky, S. ROP GTPases structure-function and signaling pathways. Plant Physiol., 2018, 176(1), 57-79.
[http://dx.doi.org/10.1104/pp.17.01415] [PMID: 29150557]
[31]
Clarke, P.R.; Zhang, C. Ran GTPase: a master regulator of nuclear structure and function during the eukaryotic cell division cycle? Trends Cell Biol., 2001, 11(9), 366-371.
[http://dx.doi.org/10.1016/S0962-8924(01)02071-2] [PMID: 11514190]
[32]
Matozaki, T.; Nakanishi, H.; Takai, Y. Small G-protein networks: their crosstalk and signal cascades. Cell. Signal., 2000, 12(8), 515-524.
[http://dx.doi.org/10.1016/S0898-6568(00)00102-9] [PMID: 11027944]
[33]
Tripathy, M.K.; Reddy, M.K.; Deswal, R.; Sopory, S.K. Towards developing transgenic rice for salinity and drought tolerance: role of Rab7.Muralidharan K and Siddiq EA, eds. 2013. International dialogue on perception and prospects of designer rice; Society for advancement of rice research, Directorate of rice research, Hyderabad 500030, India, 2013, pp. 228-237.
[34]
Dirac-Svejstrup, A.B.; Sumizawa, T.; Pfeffer, S.R. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J., 1997, 16(3), 465-472.
[http://dx.doi.org/10.1093/emboj/16.3.465] [PMID: 9034329]
[35]
Sivars, U.; Aivazian, D.; Pfeffer, S.R. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature, 2003, 425(6960), 856-859.
[http://dx.doi.org/10.1038/nature02057] [PMID: 14574414]
[36]
Cai, H.; Reinisch, K.; Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell, 2007, 12(5), 671-682.
[http://dx.doi.org/10.1016/j.devcel.2007.04.005] [PMID: 17488620]
[37]
Markgraf, D.F.; Peplowska, K.; Ungermann, C. Rab cascades and tethering factors in the endomembrane system. FEBS Lett., 2007, 581(11), 2125-2130.
[http://dx.doi.org/10.1016/j.febslet.2007.01.090] [PMID: 17316615]
[38]
Novick, P.; Medkova, M.; Dong, G.; Hutagalung, A.; Reinisch, K.; Grosshans, B. Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis. Biochem. Soc. Trans., 2006, 34(Pt 5), 683-686.
[http://dx.doi.org/10.1042/BST0340683] [PMID: 17052174]
[39]
Benmerah, A. Endocytosis: signaling from endocytic membranes to the nucleus. Curr. Biol., 2004, 14(8), R314-R316.
[http://dx.doi.org/10.1016/j.cub.2004.03.053] [PMID: 15084302]
[40]
Horazdovsky, B. Endosomal protein traffic meets nuclear signal transduction head on. Dev. Cell, 2004, 6(2), 161-162.
[http://dx.doi.org/10.1016/S1534-5807(04)00035-8] [PMID: 14960269]
[41]
Miaczynska, M.; Christoforidis, S.; Giner, A.; Shevchenko, A.; Uttenweiler-Joseph, S.; Habermann, B.; Wilm, M.; Parton, R.G.; Zerial, M. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell, 2004, 116(3), 445-456.
[http://dx.doi.org/10.1016/S0092-8674(04)00117-5] [PMID: 15016378]
[42]
Park, Y.S.; Song, O.; Kwak, J.M.; Hong, S.W.; Lee, H.H.; Nam, H.G. Functional complementation of a yeast vesicular transport mutation ypt1-1 by a Brassica napus cDNA clone encoding a small GTP-binding protein. Plant Mol. Biol., 1994, 26(6), 1725-1735.
[http://dx.doi.org/10.1007/BF00019487] [PMID: 7858213]
[43]
Kim, W.Y.; Cheong, N.E.; Lee, D.C.; Lee, K.O.; Je, D.Y.; Bahk, J.D.; Cho, M.J.; Lee, S.Y. Isolation of an additional soybean cDNA encoding Ypt/Rab-related small GTP-binding protein and its functional comparison to Sypt using a yeast ypt1-1 mutant. Plant Mol. Biol., 1996, 31(4), 783-792.
[http://dx.doi.org/10.1007/BF00019466] [PMID: 8806409]
[44]
Batoko, H.; Zheng, H.Q.; Hawes, C.; Moore, I. A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell, 2000, 12(11), 2201-2218.
[PMID: 11090219]
[45]
Cheung, A.Y.; Chen, C.Y.; Glaven, R.H.; de Graaf, B.H.; Vidali, L.; Hepler, P.K.; Wu, H.M. Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell, 2002, 14(4), 945-962.
[http://dx.doi.org/10.1105/tpc.000836] [PMID: 11971147]
[46]
Bednarek, S.Y.; Reynolds, T.L.; Schroeder, M.; Grabowski, R.; Hengst, L.; Gallwitz, D.; Raikhel, N.V. A small GTP-binding protein from Arabidopsis thaliana functionally complements the yeast YPT6 null mutant. Plant Physiol., 1994, 104(2), 591-596.
[http://dx.doi.org/10.1104/pp.104.2.591] [PMID: 8159788]
[47]
Latijnhouwers, M.; Gillespie, T.; Boevink, P.; Kriechbaumer, V.; Hawes, C.; Carvalho, C.M. Localization and domain characterization of Arabidopsis golgin candidates. J. Exp. Bot., 2007, 58(15-16), 4373-4386.
[http://dx.doi.org/10.1093/jxb/erm304] [PMID: 18182439]
[48]
Speth, E.B.; Imboden, L.; Hauck, P.; He, S.Y. Subcellular localization and functional analysis of the Arabidopsis GTPase RabE. Plant Physiol., 2009, 149(4), 1824-1837.
[http://dx.doi.org/10.1104/pp.108.132092] [PMID: 19233904]
[49]
Zheng, H.; Camacho, L.; Wee, E.; Batoko, H.; Legen, J.; Leaver, C.J.; Malhó, R.; Hussey, P.J.; Moore, I. A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. Plant Cell, 2005, 17(7), 2020-2036.
[http://dx.doi.org/10.1105/tpc.105.031112] [PMID: 15972698]
[50]
Borg, S.; Brandstrup, B.; Jensen, T.J.; Poulsen, C. Identification of new protein species among 33 different small GTP-binding proteins encoded by cDNAs from Lotus japonicus, and expression of corresponding mRNAs in developing root nodules. Plant J., 1997, 11(2), 237-250.
[http://dx.doi.org/10.1046/j.1365-313X.1997.11020237.x] [PMID: 9076991]
[51]
Stenmark, H.; Olkkonen, V.M. The Rab GTPase family. Genome Biol., 2001, 2(5), S3007.
[http://dx.doi.org/10.1186/gb-2001-2-5-reviews3007] [PMID: 11387043]
[52]
Asaoka, R.; Uemura, T.; Ito, J.; Fujimoto, M.; Ito, E.; Ueda, T.; Nakano, A. Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J., 2013, 73(2), 240-249.
[http://dx.doi.org/10.1111/tpj.12023] [PMID: 22974509]
[53]
de Graaf, B.H.; Cheung, A.Y.; Andreyeva, T.; Levasseur, K.; Kieliszewski, M.; Wu, H.M. Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell, 2005, 17(9), 2564-2579.
[http://dx.doi.org/10.1105/tpc.105.033183] [PMID: 16100336]
[54]
Chow, C.M.; Neto, H.; Foucart, C.; Moore, I. Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell, 2008, 20(1), 101-123.
[http://dx.doi.org/10.1105/tpc.107.052001] [PMID: 18239134]
[55]
Preuss, M.L.; Serna, J.; Falbel, T.G.; Bednarek, S.Y.; Nielsen, E. The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell, 2004, 16(6), 1589-1603.
[http://dx.doi.org/10.1105/tpc.021634] [PMID: 15155878]
[56]
Preuss, M.L.; Schmitz, A.J.; Thole, J.M.; Bonner, H.K.; Otegui, M.S.; Nielsen, E. A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol., 2006, 172(7), 991-998.
[http://dx.doi.org/10.1083/jcb.200508116] [PMID: 16567499]
[57]
Inaba, T.; Nagano, Y.; Nagasaki, T.; Sasaki, Y. Distinct localization of two closely related Ypt3/Rab11 proteins on the trafficking pathway in higher plants. J. Biol. Chem., 2002, 277(11), 9183-9188.
[http://dx.doi.org/10.1074/jbc.M111491200] [PMID: 11756458]
[58]
Ueda, T.; Anai, T.; Tsukaya, H.; Hirata, A.; Uchimiya, H. Characterization and subcellular localization of a small GTP-binding protein (Ara-4) from Arabidopsis: conditional expression under control of the promoter of the gene for heat-shock protein HSP81-1. Mol. Gen. Genet., 1996, 250(5), 533-539. a
[PMID: 8676856]
[59]
Ueda, T.; Matsuda, N.; Anai, T.; Tsukaya, H.; Uchimiya, H.; Nakano, A. An Arabidopsis gene isolated by a novel method for detecting genetic interaction in yeast encodes the GDP dissociation inhibitor of Ara4 GTPase. Plant Cell, 1996, 8(11), 2079-2091. b
[PMID: 8953772]
[60]
Nahm, M.Y.; Kim, S.W.; Yun, D.; Lee, S.Y.; Cho, M.J.; Bahk, J.D. Molecular and biochemical analyses of OsRab7, a rice Rab7 homolog. Plant Cell Physiol., 2003, 44(12), 1341-1349.
[http://dx.doi.org/10.1093/pcp/pcg163] [PMID: 14701929]
[61]
Mazel, A.; Leshem, Y.; Tiwari, B.S.; Levine, A. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol., 2004, 134(1), 118-128.
[http://dx.doi.org/10.1104/pp.103.025379] [PMID: 14657401]
[62]
Saito, C.; Ueda, T.; Abe, H.; Wada, Y.; Kuroiwa, T.; Hisada, A.; Furuya, M.; Nakano, A. A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J., 2002, 29(3), 245-255.
[http://dx.doi.org/10.1046/j.0960-7412.2001.01189.x] [PMID: 11844103]
[63]
Carter, C.; Pan, S.; Zouhar, J.; Avila, E.L.; Girke, T.; Raikhel, N.V. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell, 2004, 16(12), 3285-3303.
[http://dx.doi.org/10.1105/tpc.104.027078] [PMID: 15539469]
[64]
Hara-Nishimura, I.; Shimada, T.; Hatano, K.; Takeuchi, Y.; Nishimura, M. Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell, 1998, 10(5), 825-836.
[PMID: 9596640]
[65]
Agarwal, P.K.; Agarwal, P.; Jain, P.; Jha, B.; Reddy, M.K.; Sopory, S.K. Constitutive overexpression of a stress-inducible small GTP-binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco. Plant Cell Rep., 2008, 27(1), 105-115.
[http://dx.doi.org/10.1007/s00299-007-0446-0] [PMID: 17899098]
[66]
Tripathy, M.K.; Tiwari, B.S.; Reddy, M.K.; Deswal, R.; Sopory, S.K. Ectopic expression of PgRab7 in rice plants (Oryza sativa L.) results in differential tolerance at the vegetative and seed setting stage during salinity and drought stress. Protoplasma, 2017, 254(1), 109-124.
[http://dx.doi.org/10.1007/s00709-015-0914-2] [PMID: 26666551]
[67]
Rho, S.H.; Heo, J.B.; Bang, W.Y.; Hwang, S.M.; Nahm, M.Y.; Kwon, H.J. The role of OsPRA1 in vacuolar trafficking by OsRab GTPases in plant system. Plant Sci., 2009, 177, 411-417.
[http://dx.doi.org/10.1016/j.plantsci.2009.07.003]
[68]
Heo, J.B.; Bang, W.Y.; Kim, S.W.; Hwang, S.M.; Son, Y.S.; Im, C.H.; Acharya, B.R.; Kim, C.W.; Kim, S.W.; Lee, B.H.; Bahk, J.D. OsPRA1 plays a significant role in targeting of OsRab7 into the tonoplast via the prevacuolar compartment during vacuolar trafficking in plant cells. Planta, 2010, 232(4), 861-871.
[http://dx.doi.org/10.1007/s00425-010-1226-6] [PMID: 20632185]
[69]
Bolte, S.; Schiene, K.; Dietz, K.J. Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. Plant Mol. Biol., 2000, 42(6), 923-936.
[http://dx.doi.org/10.1023/A:1006449715236] [PMID: 10890538]
[70]
Ueda, T.; Yamaguchi, M.; Uchimiya, H.; Nakano, A. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J., 2001, 20(17), 4730-4741.
[http://dx.doi.org/10.1093/emboj/20.17.4730] [PMID: 11532937]
[71]
Li, W.; Zou, W.; Zhao, D.; Yan, J.; Zhu, Z.; Lu, J.; Wang, X. C. elegans Rab GTPase activating protein TBC-2 promotes cell corpse degradation by regulating the small GTPase RAB-5. Development, 2009, 136(14), 2445-2455.
[http://dx.doi.org/10.1242/dev.035949] [PMID: 19542357]
[72]
Ueda, T.; Uemura, T.; Sato, M.H.; Nakano, A. Functional differentiation of endosomes in Arabidopsis cells. Plant J., 2004, 40(5), 783-789.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02249.x] [PMID: 15546360]
[73]
Ito, E.; Ebine, K.; Choi, S.W.; Ichinose, S.; Uemura, T.; Nakano, A.; Ueda, T. Integration of two RAB5 groups during endosomal transport in plants. eLife, 2018, 7, 7.
[http://dx.doi.org/10.7554/eLife.34064] [PMID: 29749929]
[74]
Minamino, N.; Ueda, T. RAB GTPases and their effectors in plant endosomal transport. Curr. Opin. Plant Biol., 2019, 52, 61-68.
[http://dx.doi.org/10.1016/j.pbi.2019.07.007] [PMID: 31454706]
[75]
Takano, J.; Miwa, K.; Yuan, L.; von Wirén, N.; Fujiwara, T. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc. Natl. Acad. Sci. USA, 2005, 102(34), 12276-12281.
[http://dx.doi.org/10.1073/pnas.0502060102] [PMID: 16103374]
[76]
Dhonukshe, P.; Baluska, F.; Schlicht, M.; Hlavacka, A.; Samaj, J.; Friml, J.; Gadella, T.W., Jr Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev. Cell, 2006, 10(1), 137-150.
[http://dx.doi.org/10.1016/j.devcel.2005.11.015] [PMID: 16399085]
[77]
Kotzer, A.M.; Brandizzi, F.; Neumann, U.; Paris, N.; Moore, I.; Hawes, C. AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J. Cell Sci., 2004, 117(Pt 26), 6377-6389.
[http://dx.doi.org/10.1242/jcs.01564] [PMID: 15561767]
[78]
Sohn, E.J.; Kim, E.S.; Zhao, M.; Kim, S.J.; Kim, H.; Kim, Y.W.; Lee, Y.J.; Hillmer, S.; Sohn, U.; Jiang, L.; Hwang, I. Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell, 2003, 15(5), 1057-1070.
[http://dx.doi.org/10.1105/tpc.009779] [PMID: 12724533]
[79]
Haas, T.J.; Sliwinski, M.K.; Martínez, D.E.; Preuss, M.; Ebine, K.; Ueda, T.; Nielsen, E.; Odorizzi, G.; Otegui, M.S. The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell, 2007, 19(4), 1295-1312.
[http://dx.doi.org/10.1105/tpc.106.049346] [PMID: 17468262]
[80]
Lütcke, A.; Parton, R.G.; Murphy, C.; Olkkonen, V.M.; Dupree, P.; Valencia, A.; Simons, K.; Zerial, M. Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J. Cell Sci., 1994, 107(Pt 12), 3437-3448.
[PMID: 7706395]
[81]
Ozeki, S.; Cheng, J.; Tauchi-Sato, K.; Hatano, N.; Taniguchi, H.; Fujimoto, T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci., 2005, 118(Pt 12), 2601-2611.
[http://dx.doi.org/10.1242/jcs.02401] [PMID: 15914536]
[82]
Vazquez-Martinez, R.; Cruz-Garcia, D.; Duran-Prado, M.; Peinado, J.R.; Castaño, J.P.; Malagon, M.M. Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic, 2007, 8(7), 867-882.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00570.x] [PMID: 17488286]
[83]
Segev, N. Ypt/rab gtpases: regulators of protein trafficking. Sci. STKE, 2001, 2001(100), re11.
[PMID: 11579231]
[84]
Qi, X.; Zheng, H. Functional analysis of small Rab GTPases in cytokinesis in Arabidopsis thaliana. Methods Mol. Biol., 2013, 1043, 103-112.
[http://dx.doi.org/10.1007/978-1-62703-532-3_11] [PMID: 23913040]
[85]
Yao, H.Y.; Xue, H.W. Signals and mechanisms affecting vesicular trafficking during root growth. Curr. Opin. Plant Biol., 2011, 14(5), 571-579.
[http://dx.doi.org/10.1016/j.pbi.2011.06.009] [PMID: 21764358]
[86]
Szumlanski, A.L.; Nielsen, E. The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell, 2009, 21(2), 526-544.
[http://dx.doi.org/10.1105/tpc.108.060277] [PMID: 19208902]
[87]
Peng, J.; Ilarslan, H.; Wurtele, E.S.; Bassham, D.C. AtRabD2b and AtRabD2c have overlapping functions in pollen development and pollen tube growth. BMC Plant Biol., 2011, 11, 25.
[http://dx.doi.org/10.1186/1471-2229-11-25] [PMID: 21269510]
[88]
Kato, N.; He, H.; Steger, A.P. A systems model of vesicle trafficking in Arabidopsis pollen tubes. Plant Physiol., 2010, 152(2), 590-601.
[http://dx.doi.org/10.1104/pp.109.148700] [PMID: 19933386]
[89]
El-Kasmi, F.; Pacher, T.; Strompen, G.; Stierhof, Y.D.; Müller, L.M.; Koncz, C.; Mayer, U.; Jürgens, G. Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgi-stack integrity. Plant J., 2011, 66(2), 268-279.
[http://dx.doi.org/10.1111/j.1365-313X.2011.04487.x] [PMID: 21205036]
[90]
Kusano, H.; Testerink, C.; Vermeer, J.E.; Tsuge, T.; Shimada, H.; Oka, A.; Munnik, T.; Aoyama, T. The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell, 2008, 20(2), 367-380.
[http://dx.doi.org/10.1105/tpc.107.056119] [PMID: 18281506]
[91]
Thole, J.M.; Vermeer, J.E.; Zhang, Y.; Gadella, T.W., Jr; Nielsen, E. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell, 2008, 20(2), 381-395.
[http://dx.doi.org/10.1105/tpc.107.054304] [PMID: 18281508]
[92]
Routier-Kierzkowska, A.L.; Weber, A.; Kochova, P.; Felekis, D.; Nelson, B.J.; Kuhlemeier, C.; Smith, R.S. Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol., 2012, 158(4), 1514-1522.
[http://dx.doi.org/10.1104/pp.111.191460] [PMID: 22353572]
[93]
Kirchhelle, C.; Chow, C.M.; Foucart, C.; Neto, H.; Stierhof, Y.D.; Kalde, M.; Walton, C.; Fricker, M.; Smith, R.S.; Jérusalem, A.; Irani, N.; Moore, I. The specification of geometric edges by a plant Rab GTPase is an essential cell-patterning principle during organogenesis in Arabidopsis. Dev. Cell, 2016, 36(4), 386-400.
[http://dx.doi.org/10.1016/j.devcel.2016.01.020] [PMID: 26906735]
[94]
Ambrose, C.; Allard, J.F.; Cytrynbaum, E.N.; Wasteneys, G.O. A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat. Commun., 2011, 2, 430.
[http://dx.doi.org/10.1038/ncomms1444] [PMID: 21847104]
[95]
Rahni, R.; Birnbaum, K.D. Plant cell shape: Trafficking gets edgy. Dev. Cell, 2016, 36(4), 353-354.
[http://dx.doi.org/10.1016/j.devcel.2016.02.005] [PMID: 26906728]
[96]
He, M.; Lan, M.; Zhang, B.; Zhou, Y.; Wang, Y.; Zhu, L.; Yuan, M.; Fu, Y. Rab-H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in Arabidopsis thaliana. J. Integr. Plant Biol., 2018, 60(11), 1051-1069.
[http://dx.doi.org/10.1111/jipb.12694] [PMID: 29975455]
[97]
Gutierrez, M.G.; Master, S.S.; Singh, S.B.; Taylor, G.A.; Colombo, M.I.; Deretic, V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004, 119(6), 753-766.
[http://dx.doi.org/10.1016/j.cell.2004.11.038] [PMID: 15607973]
[98]
Jäger, S.; Bucci, C.; Tanida, I.; Ueno, T.; Kominami, E.; Saftig, P.; Eskelinen, E.L. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci., 2004, 117(Pt 20), 4837-4848.
[http://dx.doi.org/10.1242/jcs.01370] [PMID: 15340014]
[99]
Rojo, E.; Gillmor, C.S.; Kovaleva, V.; Somerville, C.R.; Raikhel, N.V. VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis. Dev. Cell, 2001, 1(2), 303-310.
[http://dx.doi.org/10.1016/S1534-5807(01)00024-7] [PMID: 11702788]
[100]
Goh, T.; Uchida, W.; Arakawa, S.; Ito, E.; Dainobu, T.; Ebine, K.; Takeuchi, M.; Sato, K.; Ueda, T.; Nakano, A. VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell, 2007, 19(11), 3504-3515.
[http://dx.doi.org/10.1105/tpc.107.053876] [PMID: 18055610]
[101]
Kwon, S.I.; Cho, J.H.; Bae, K.; Jung, H.J.; Jin, H.C.; Park, O.K. Role of an Arabidopsis Rab GTPase RabG3b in pathogen response and leaf senescence. J. Plant Biol., 2009, 52, 79-87.
[http://dx.doi.org/10.1007/s12374-009-9011-4]
[102]
Falchi, R.; Cipriani, G.; Marrazzo, T.; Nonis, A.; Vizzotto, G.; Ruperti, B. Identification and differential expression dynamics of peach small GTPases encoding genes during fruit development and ripening. J. Exp. Bot., 2010, 61(10), 2829-2842.
[http://dx.doi.org/10.1093/jxb/erq116] [PMID: 20501747]
[103]
Wang, Y.; Ren, Y.; Liu, X.; Jiang, L.; Chen, L.; Han, X.; Jin, M.; Liu, S.; Liu, F.; Lv, J.; Zhou, K.; Su, N.; Bao, Y.; Wan, J. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J., 2010, 64(5), 812-824.
[http://dx.doi.org/10.1111/j.1365-313X.2010.04370.x] [PMID: 21105928]
[104]
Cheon, C.I.; Lee, N.G.; Siddique, A.B.; Bal, A.K.; Verma, D.P. Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J., 1993, 12(11), 4125-4135.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06096.x] [PMID: 8223429]
[105]
Catalano, C.M.; Czymmek, K.J.; Gann, J.G.; Sherrier, D.J. Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules. Planta, 2007, 225(3), 541-550.
[http://dx.doi.org/10.1007/s00425-006-0369-y] [PMID: 16944200]
[106]
Limpens, E.; Ivanov, S.; van Esse, W.; Voets, G.; Fedorova, E.; Bisseling, T. Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. Plant Cell, 2009, 21(9), 2811-2828.
[http://dx.doi.org/10.1105/tpc.108.064410] [PMID: 19734435]
[107]
Tomczynska, I.; Stumpe, M.; Mauch, F. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. Plant J., 2018, 95(2), 187-203.
[http://dx.doi.org/10.1111/tpj.13928] [PMID: 29671919]
[108]
Brandizzi, F. Rabs: targets in the plant-pathogen battlefield. Plant J., 2018, 95(2), 185-186.
[http://dx.doi.org/10.1111/tpj.13997] [PMID: 29971852]
[109]
Erbs, G.; Molinaro, A.; Dow, J.M.; Newman, M.A. Lipopolysaccharides and plant innate immunity. Subcell. Biochem., 2010, 53, 387-403.
[http://dx.doi.org/10.1007/978-90-481-9078-2_17] [PMID: 20593276]
[110]
Liu, F.; Guo, J.; Bai, P.; Duan, Y.; Wang, X.; Cheng, Y.; Feng, H.; Huang, L.; Kang, Z. Wheat TaRab7 GTPase is part of the signaling pathway in responses to stripe rust and abiotic stimuli. PLoS One, 2012, 7(5), e37146.
[http://dx.doi.org/10.1371/journal.pone.0037146] [PMID: 22629358]
[111]
Yang, X.; Ma, N.; Yang, L.; Zheng, Y.; Zhen, Z.; Li, Q.; Xie, M.; Li, J.; Zhang, K.Q.; Yang, J. Two Rab GTPases play different roles in conidiation, trap formation, stress resistance, and virulence in the nematode-trapping fungus Arthrobotrys oligospora. Appl. Microbiol. Biotechnol., 2018, 102(10), 4601-4613.
[http://dx.doi.org/10.1007/s00253-018-8929-1] [PMID: 29616315]
[112]
Inada, N.; Betsuyaku, S.; Shimada, T.L.; Ebine, K.; Ito, E.; Kutsuna, N.; Hasezawa, S.; Takano, Y.; Fukuda, H.; Nakano, A.; Ueda, T. Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface Between Plants and Obligate Biotrophic Pathogens. Plant Cell Physiol., 2016, 57(9), 1854-1864.
[http://dx.doi.org/10.1093/pcp/pcw107] [PMID: 27318282]
[113]
O’Mahony, P.J.; Oliver, M.J. Characterization of a desiccation-responsive small GTP-binding protein (Rab2) from the desiccation- tolerant grass Sporobolus stapfianus. Plant Mol. Biol., 1999, 39(4), 809-821.
[http://dx.doi.org/10.1023/A:1006183431854] [PMID: 10350094]
[114]
Ebine, K.; Fujimoto, M.; Okatani, Y.; Nishiyama, T.; Goh, T.; Ito, E.; Dainobu, T.; Nishitani, A.; Uemura, T.; Sato, M.H.; Thordal-Christensen, H.; Tsutsumi, N.; Nakano, A.; Ueda, T. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol., 2011, 13(7), 853-859.
[http://dx.doi.org/10.1038/ncb2270] [PMID: 21666683]
[115]
Yin, C.; Karim, S.; Zhang, H.; Aronsson, H. Arabidopsis RabF1 (ARA6) is involved in salt stress and dark-induced senescence (DIS). Int. J. Mol. Sci., 2017.
[116]
Liu, Z.L.; Luo, C.; Dong, L.; Van Toan, C.; Wei, P.X.; He, X.H. Molecular characterization and expression analysis of a GTP-binding protein (MiRab5) in Mangifera indica. Gene, 2014, 540(1), 86-91.
[http://dx.doi.org/10.1016/j.gene.2014.02.022] [PMID: 24560931]
[117]
Lawson, T.; Mayes, S.; Lycett, G.W.; Chin, C.F. Plant Rabs and the role in fruit ripening. Biotechnol. Genet. Eng. Rev., 2018, 34(2), 181-197.
[http://dx.doi.org/10.1080/02648725.2018.1482092] [PMID: 29902948]
[118]
Yang, A.; Zhang, W.H. A small GTPase, OsRab6a, is involved in the regulation of iron homeostasis in rice. Plant Cell Physiol., 2016, 57(6), 1271-1280.
[http://dx.doi.org/10.1093/pcp/pcw073] [PMID: 27257291]
[119]
George, S.; Parida, A. Over-expression of a Rab family GTPase from phreatophyte Prosopis juliflora confers tolerance to salt stress on transgenic tobacco. Mol. Biol. Rep., 2011, 38(3), 1669-1674.
[http://dx.doi.org/10.1007/s11033-010-0278-9] [PMID: 20862551]
[120]
Peng, X.; Ding, X.; Chang, T.; Wang, Z.; Liu, R.; Zeng, X.; Cai, Y.; Zhu, Y. Overexpression of a Vesicle Trafficking Gene, OsRab7, enhances salt tolerance in rice. Scientific World J., 2014, 2014, 483526.
[http://dx.doi.org/10.1155/2014/483526] [PMID: 24688390]
[121]
El-Esawi, M.A.; Alayafi, A.A. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes (Basel), 2019, 10(1), E56.
[http://dx.doi.org/10.3390/genes10010056] [PMID: 30658457]
[122]
Karim, S.; Alezzawi, M.; Garcia-Petit, C.; Solymosi, K.; Khan, N.Z.; Lindquist, E.; Dahl, P.; Hohmann, S.; Aronsson, H. A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis. Plant Mol. Biol., 2014, 84(6), 675-692.
[http://dx.doi.org/10.1007/s11103-013-0161-x] [PMID: 24337800]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy