A Comparative Study of Selected Drug Delivery Systems: Key Emphasis on Cocrystallization

Author(s): Braham Dutt, Manjusha Choudhary, Vikas Budhwar*

Journal Name: Drug Delivery Letters

Volume 11 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The low solubility of an active pharmaceutical ingredient particularly biopharmaceutics classification system (BCS) Class II drugs leads to a lower dissolution profile, which in result causes a reduction in the overall bioavailability of drugs. Numerous approaches like nanotechnology, solid dispersion technique, micronization techniques, etc were aimed by scientists in the past to resolve this issue, but still not enough to get the desired outcomes.

Key focus of this review is the study of the advantages and disadvantages of cocrystallization, nanotechnology and solid dispersions drug delivery techniques and the benefits of using cocrystallization techniques over the above-mentioned techniques.

Various parameters including pharmaceutical, pharmacological and toxicological effects related to these mentioned drug delivery systems have been compared. Their advantages and disadvantages have been elaborated.

For drug delivery purpose, the cocrystallization process has numerous advantages over nanotechnology and solid dispersions drug delivery techniques discussed in the text. Cocrystallization is a newer technique that can modify the physicochemical and pharmaceutical properties of active pharmaceutical ingredients (API) with low solubility, low stability or sensitivity toward environmental hazards like temperature, moisture or photostability issues. During cocrystallization, the drug and the coformer interact with each other non-covalently in a fixed stoichiometric ratio. The availability of a large number of coformers makes this technique to be favorable for the researchers in designing cocrystals of newer and older API’s.

Although solid dispersions and nanotechnology techniques are being utilized to a larger extent, still there are some drawbacks of these techniques like stability, toxicological factors and protection from environmental factors that need to be considered, while the cocrystallization process drastically modifies the various pharmaceutical parameters without altering the pharmacological properties of API’s. Here in this review, we performed a comparative analysis between nanotechnology, solid dispersion and cocrystallization techniques along with the importance of cocrystallization in the modification of drug profile and various applications in the pharmaceutical and allied industry.

Keywords: Cocrystallization, nanotechnology, solid dispersions, agrochemicals, chromophores, drug delivery systems.

[1]
Budhwar, V; Brahamdutt, Choudhary, M Nanotechnology: Applications in pharmaceutical drug delivery systems J. chem. pharm, 2016, 8(8), 259-265.
[2]
Dalvi, P.B.; Gerange, A.B.; Ingale, P.R. Solid Dispersion: Strategy To Enhance Solubility. J. Drug Deliv. Ther., 2015, 5(2), 20-28.
[http://dx.doi.org/10.22270/jddt.v5i2.1060]
[3]
Desiraju, G.R. Crystal and cocrystal. CrystEngComm, 2003, 2, 466-467.
[http://dx.doi.org/10.1039/b313552g]
[4]
Dunitz, J.D. Crystal and cocrystal: a second opinion. CrystEngComm, 2003, 4, 506.
[http://dx.doi.org/10.1039/b315687g]
[5]
Bond, A.D. What is a cocrystal? CrystEngComm, 2003, 9, 833-834.
[http://dx.doi.org/10.1039/b708112j]
[6]
Hoogsteen, K. The structure of crystals containing a hydrogen-bonded complex of 1-methylthymine and 9-methyladenine. Acta Crystallogr., 1959, 12, 822-823.
[http://dx.doi.org/10.1107/S0365110X59002389]
[7]
Hoogsteen, K. Crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallogr., 1963, 16, 907-916.
[http://dx.doi.org/10.1107/S0365110X63002437]
[8]
O’Brien, E.J. Crystal structures of two complexes containing guanine and cytosine derivatives. Acta Crystallogr., 1967, 23(1), 92-106.
[http://dx.doi.org/10.1107/S0365110X67002191] [PMID: 6072867]
[9]
Sivakova, S.; Rowan, S.J. Nucleobases as supramolecular motifs. Chem. Soc. Rev., 2005, 34(1), 9-21.
[http://dx.doi.org/10.1039/b304608g] [PMID: 15643486]
[10]
Etter, M.C. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem., 1991, 95, 4601-4610.
[http://dx.doi.org/10.1021/j100165a007]
[11]
Subramanian, S.; Zaworotko, M.J. Manifestations ofnoncovalent bonding in the solid-state. 6. H-4(cyclam) (4+) (cyclam=1,4,8,11-tetraazacyclo- tetra-decane) as a template for crystal engineering of network hydrogen- bonded solids. Can. J. Chem., 1995, 73, 414-424.
[http://dx.doi.org/10.1139/v95-054]
[12]
Lehn, J.M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices. Angew. Chem. Int. Ed. Engl., 1988, 27, 89-112.
[http://dx.doi.org/10.1002/anie.198800891]
[13]
Schmidt, GMJ Topochemistry. Part III. The crystal chemistry of some trans-cinnamic acids J. Chem. Soc, 2014, 1964
[14]
Steed, J.W.; Atwood, J.L. Supramolecular Chemistry. John Wiley & Sons, Ltd. , 2000.
[15]
Handbook of pharmaceutical salts. Serajuddin, A.T.; Pudipeddi, M.; Stahl, P.H.; Wermuth, C.G., Eds.; Wiley-VCH Weinheim, 2002, p. 138.
[16]
Trask, A.V.; Motherwell, W.D.; Jones, W. Physical stability enhancement of theophylline via cocrystallization. Int. J. Pharm., 2006, 320(1-2), 114-123.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.018] [PMID: 16769188]
[17]
Orl, A.; Michael, J.Z. Crystal engineering of the composition of pharmaceutical phases, do pharmaceutical co-crystals represent a new path to improve medicine? Chem. Commun., 2004, 5, 1889-1896.
[18]
Koji, S.; Noriyuki, T.; Ryusuke, T.; Yoshiki, H.; Katsuhide, T. Dissolution improvement and the mechanism of the improvement from co crystallization of poorly water-soluble compounds. Pharm. Res., 2006, 23, 1144-1156.
[19]
Morissette, S.L.; Almarsson, O.; Peterson, M.L.; Remenar, J.F.; Read, M.J.; Lemmo, A.V.; Ellis, S.; Cima, M.J.; Gardner, C.R. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev., 2004, 56(3), 275-300.
[http://dx.doi.org/10.1016/j.addr.2003.10.020] [PMID: 14962582]
[20]
Hickey, M.B.; Peterson, M.L.; Scoppettuolo, L.A.; Morrisette, S.L.; Vetter, A.; Guzmán, H.; Remenar, J.F.; Zhang, Z.; Tawa, M.D.; Haley, S.; Zaworotko, M.J.; Almarsson, O. Performance comparison of a co-crystal of carbamazepine with marketed product. Eur. J. Pharm. Biopharm., 2007, 67(1), 112-119.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.016] [PMID: 17292592]
[21]
Salole, E.G.; Al-Sarraj, F.A. Spiranolactone crystal forms. Drug Dev. Ind. Pharm., 1985, 11, 855-864.
[http://dx.doi.org/10.3109/03639048509057461]
[22]
Trask, A.V.; Motherwell, W.D.; Jones, W. Solvent-drop grinding: Green polymorph control of cocrystallization. Chem Comm , 2004, pp. 890-891.
[23]
Sachan, N.K.; Pushkar, S.; Solanki, S.S.; Bhatere, D.S. Enhancement of solubility of acyclovir by solid dispersion and inclusion complexation methods. World Appl. Sci. J., 2010, 11, 857-864.
[24]
Kale, D.P.; Zode, S.S.; Bansal, A.K. Challenges in Translational Development of Pharmaceutical Cocrystals. J. Pharm. Sci., 2016, 2, 1-14.
[PMID: 27914793]
[25]
Chiou, W.L.; Riegelman, S.; Foster, N.R.; Biffin, J.R. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci., 1971, 60(9), 1281-1302.
[http://dx.doi.org/10.1002/jps.2600600902] [PMID: 4935981]
[26]
Birnbaum, G.I.; Cygler, M.; Shugar, D. Conformational features of acyclonucleosides-Structure of acyclovir, an anti-herpes agent. Can. J. Chem., 1984, 62, 2646-2652.
[http://dx.doi.org/10.1139/v84-449]
[27]
Moore, M.D.; Wildfong, P.L.D. Aqueous solubility enhancement through engineering of binary solid composites: pharmaceutical applications. J. Pharm. Innov., 2009, 4, 36-49.
[http://dx.doi.org/10.1007/s12247-009-9053-7]
[28]
Kai, T.; Akiyama, Y.; Nomura, S.; Sato, M. Oral absorption improvement of poorly soluble drug using solid dispersion technique. Chem. Pharm. Bull. (Tokyo), 1996, 44(3), 568-571.
[http://dx.doi.org/10.1248/cpb.44.568] [PMID: 8882454]
[29]
Juppo, A.M.; Boissier, C.; Khoo, C. Evaluation of solid dispersion particles prepared with SEDS. Int. J. Pharm., 2003, 250(2), 385-401.
[http://dx.doi.org/10.1016/S0378-5173(02)00577-X] [PMID: 12527165]
[30]
Forster, A.; Hempenstall, J.; Rades, T. Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J. Pharm. Pharmacol., 2001, 53(3), 303-315.
[http://dx.doi.org/10.1211/0022357011775532] [PMID: 11291745]
[31]
Mirza, S.; Heinämäki, J.; Miroshnyk, I.; Yliruusi, J. Co-crystals: An emerging approach to improving properties of pharmaceutical solids. Eur. J. Pharm. Sci., 2008, 34, S16-S17.
[http://dx.doi.org/10.1016/j.ejps.2008.02.039]
[32]
Good, D.J.; Rodríguez-Hornedo, N. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des., 2009, 9, 2252-2264.
[http://dx.doi.org/10.1021/cg801039j]
[33]
Shimpi, M.R.; Childs, S.L.; Boström, D.; Velaga, S.P. New cocrystals of ezetimibe with L-proline and imidazole. CrystEngComm, 2014, 16(38), 8984-8993.
[http://dx.doi.org/10.1039/C4CE01127A]
[34]
Elbagerma, M.A. Analytical method development for structural studies of pharmaceutical and related materials in solution and solid state. An investigation of the solid forms and mechanisms of formation of cocrystal systems using vibrational spectroscopic and X-ray diffraction techniques , 2010.
[35]
Zegarac, M.; Lekšić, E.; Šket, P.; Plavec, J.; Bogdanović, M.D.; Bučar, D.K.; Meštrović, E. A sildenafil cocrystal based on acetylsalicylic acid exhibits an enhanced intrinsic dissolution rate. CrystEngComm, 2014, 16(1), 32-35.
[http://dx.doi.org/10.1039/C3CE42013B]
[36]
Wang, J.R.; Yu, X.; Zhou, C.; Lin, Y.; Chen, C.; Pan, G.; Mei, X. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide. Bioorg. Med. Chem. Lett., 2015, 25(5), 1036-1039.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.022] [PMID: 25630224]
[37]
Tutughamiarso, M.; Wagner, G.; Egert, E. Cocrystals of 5-fluorocytosine. I. Coformers with fixed hydrogen-bonding sites. Acta Crystallogr. B, 2012, 68(Pt 4), 431-443.
[http://dx.doi.org/10.1107/S010876811202561X] [PMID: 22810913]
[38]
Aher, S.; Dhumal, R.; Mahadik, K.; Paradkar, A.; York, P. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid. Eur. J. Pharm. Sci., 2010, 41(5), 597-602.
[http://dx.doi.org/10.1016/j.ejps.2010.08.012] [PMID: 20801215]
[39]
Mureşan-Pop, M.; Chiriac, L.B.; Martin, F.; Simon, S. Novel nutraceutical Myricetin composite of enhanced dissolution obtained by cocrystallization with acetamide. Compos., Part B Eng., 2016, 89, 60-66.
[http://dx.doi.org/10.1016/j.compositesb.2015.11.024]
[40]
Skořepová, E.; Hušák, M.; Čejka, J.; Zámostný, P.; Kratochvíl, B. Increasing dissolution of trospium chloride by cocrystallization with urea. J. Cryst. Growth, 2014, 399, 19-26.
[http://dx.doi.org/10.1016/j.jcrysgro.2014.04.018]
[41]
Padrela, L.; Rodrigues, M.A.; Tiago, J.; Velaga, S.P.; Matos, H.A.; de Azevedo, E.G. Tuning physicochemical properties of theophylline by cocrystallization using the supercritical fluid enhanced atomization technique. J. Supercrit. Fluids, 2014, 86, 129-136.
[http://dx.doi.org/10.1016/j.supflu.2013.12.011]
[42]
Cuadra, IA; Cabañas, A; Cheda, JA; Martínez-Casado, FJ; Pando, C Pharmaceutical co-crystals of the anti-inflammatory drug diflunisal and nicotinamide obtained using supercritical CO 2 as an antisolvent J. CO2 Util, 2016, 13, 29-37.
[43]
Chun, N.H.; Wang, I.C.; Lee, M.J.; Jung, Y.T.; Lee, S.; Kim, W.S.; Choi, G.J. Characteristics of indomethacin-saccharin (IMC-SAC) co-crystals prepared by an anti-solvent crystallization process. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt B), 854-861.
[http://dx.doi.org/10.1016/j.ejpb.2013.02.007] [PMID: 23454054]
[44]
Ober, C.A.; Montgomery, S.E.; Gupta, R.B. Formation of itraconazole/L-malic acid cocrystals by gas antisolvent cocrystallization. Powder Technol., 2013, 236, 122-131.
[http://dx.doi.org/10.1016/j.powtec.2012.04.058]
[45]
Lu, J.; Rohani, S. Synthesis and preliminary characterization of sulfamethazine-theophylline co-crystal. J. Pharm. Sci., 2010, 99(9), 4042-4047.
[http://dx.doi.org/10.1002/jps.22142] [PMID: 20665847]
[46]
Jayasankar, A.; Somwangthanaroj, A.; Shao, Z.J.; Rodríguez-Hornedo, N. Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm. Res., 2006, 23(10), 2381-2392.
[http://dx.doi.org/10.1007/s11095-006-9110-6] [PMID: 16988890]
[47]
McNamara, D.P.; Childs, S.L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M.S.; Mannion, R.; O’Donnell, E.; Park, A. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm. Res., 2006, 23(8), 1888-1897.
[http://dx.doi.org/10.1007/s11095-006-9032-3] [PMID: 16832611]
[48]
Aitipamula, S.; Wong, A.B.; Chow, P.S.; Tan, R.B. Pharmaceutical cocrystals of ethenzamide: structural, solubility and dissolution studies. CrystEngComm, 2012, 14(24), 8515-8524.
[http://dx.doi.org/10.1039/c2ce26325d]
[49]
Karki, S.; Friščić, T.; Fábián, L.; Jones, W. New solid forms of artemisinin obtained through cocrystallisation. CrystEngComm, 2010, 12(12), 4038-4041.
[http://dx.doi.org/10.1039/c0ce00428f]
[50]
Fowler, D.A.; Tian, J.; Barnes, C.; Teat, S.J.; Atwood, J.L. Cocrystallization of C-butyl pyrogallol [4] arene and C-propan-3-ol pyrogallol [4] arene with gabapentin. CrystEngComm, 2011, 13(5), 1446-1449.
[http://dx.doi.org/10.1039/C0CE00661K]
[51]
Tilborg, A.; Springuel, G.; Norberg, B.; Wouters, J.; Leyssens, T. On the influence of using a zwitterionic coformer for cocrystallization: structural focus on naproxen–proline cocrystals. CrystEngComm, 2013, 15(17), 3341-3350.
[http://dx.doi.org/10.1039/c3ce40084k]
[52]
Arhangelskis, M.; Lloyd, G.O.; Jones, W. Mechanochemical synthesis of pyrazine: dicarboxylic acid cocrystals and a study of dissociation by quantitative phase analysis. CrystEngComm, 2012, 14(16), 5203-5208.
[http://dx.doi.org/10.1039/c2ce25121c]
[53]
Heiden, S.; Tröbs, L.; Wenzel, K.J.; Emmerling, F. Mechanochemical synthesis and structural characterisation of a theophylline-benzoic acid cocrystal (1: 1). CrystEngComm, 2012, 14(16), 5128-5129.
[http://dx.doi.org/10.1039/c2ce25236h]
[54]
Nagavarma, B.V.N.; Yadav, H.S.; Ayaz, A.; Vasudha, L.S.; Kumar, S.G. Different techniques for preparation of polymeric nanoparticles Asian J Pharm. Clin. Res., 2012, 5(3), 16-20.
[55]
Mundada, A.S.; Avari, J.G.; Mehta, S.P.; Pandit, S.S. Recent Advances in Ophthalmic drug delivery system. Pharm. Rev., 2008, 6(1), 481.
[56]
Wagh, V.D.; Inamdar, B.; Samanta, M.K. Polymer Used in Ocular Dosage Form and Drug Delivery System, Asian. J. Pharm. Sci., 2008, 2(1), 12.
[57]
Shaikh, S.S.; Shivsharan, K.J.; Pawar, R.K.; Missal, N.S.; Mene, H.R.; More, B.A. Tamarind Seed Polysaccharide: A Versatile Pharmaceutical Excipient And Its Modification. Int. J. Pharm. Sci. Rev. Res., 2015, 33(1), 108.
[58]
Mudgil, M.; Gupta, N.; Nagpal, M.; Pawar, P. Nanotechnology: A new approach for ocular drug delivery system. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 105-110.
[59]
Fathalla, Z.M.; Khaled, A.K.; Hussein, A.K.; Alany, R.G.; Vangala, A. Formulation and corneal permeation of ketorolac-tromethamine loaded chitosan nanoparticles. Drug Dev. Ind. Pharm., 2015, 1, 2-9.
[PMID: 26407208]
[60]
Brahamdutt, M.C.; Kumar, S.; Bhatia, M.; Budhwar, V. Formulation and In-Vitro Evaluation Of Sustained Release Tropicamide Loaded Chitosan Nanoparticles for Ocular Drug Delivery. Int. Res. J. Pharm., 2016, 7(10), 27.
[http://dx.doi.org/10.7897/2230-8407.0710118]
[61]
Kaur, H.; Ahuja, M.; Kumar, S.; Dilbaghi, N. Carboxymethyl tamarind kernel polysaccharide nanoparticles for ophthalmic drug delivery. Int. J. Biol. Macromol., 2012, 50(3), 833-839.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.017] [PMID: 22138451]
[62]
Ries, C.P.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation: Method for preparation of drug loaded polymeric nanoparticles. Nanomedicine (Lond.), 2006, 2, 8-21.
[63]
Yadav, M.; Ahuja, M. Preparation and evaluation of gum cordia, an anionic polysaccharide for ophthalmic delivery. Carbohydr. Polym., 2010, 81(4), 871-877.
[http://dx.doi.org/10.1016/j.carbpol.2010.03.065]
[64]
de Campos, A.M.; Diebold, Y.; Carvalho, E.L.; Sánchez, A.; Alonso, M.J. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm. Res., 2004, 21(5), 803-810.
[http://dx.doi.org/10.1023/B:PHAM.0000026432.75781.cb] [PMID: 15180338]
[65]
Forough, M. FAHADI K. Biological and green synthesis of silver nanoparticles. Turkish J Eng Env Sci., 2011, 34(4), 281-287.
[http://dx.doi.org/10.3906/muh-1005-30]
[66]
Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull., 2011, 46(12), 2560-2566.
[http://dx.doi.org/10.1016/j.materresbull.2011.07.046]
[67]
Fu, L.; Fu, Z. Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram. Int., 2015, 41(2), 2492-2496.
[http://dx.doi.org/10.1016/j.ceramint.2014.10.069]
[68]
Nethravathi, P.C.; Shruthi, G.S.; Suresh, D.; Nagabhushana, H.; Sharma, S.C. Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceram. Int., 2015, 41(7), 8680-8687.
[http://dx.doi.org/10.1016/j.ceramint.2015.03.084]
[69]
Hoseini, S.J.; Darroudi, M.; Oskuee, R.K.; Gholami, L.; Zak, A.K. Honey-based synthesis of ZnO nanopowders and their cytotoxicity effects. Adv. Powder Technol., 2015, 26(3), 991-996.
[http://dx.doi.org/10.1016/j.apt.2015.04.003]
[70]
Asmathunisha, N.; Kathiresan, K. Rapid biosynthesis of antimicrobial silver and gold nanoparticles by in vitro callus and leaf extracts from Lycopersicon esculentum Mill. Int. J. Pharma Bio Sci., 2013, 4(1)
[http://dx.doi.org/10.1155/2015/829526]
[71]
Basavegowda, N.; Dhanya Kumar, G.; Tyliszczak, B.; Wzorek, Z.; Sobczak-Kupiec, A. One-step synthesis of highly-biocompatible spherical gold nanoparticles using Artocarpus heterophyllus Lam. (jackfruit) fruit extract and its effect on pathogens. Ann. Agric. Environ. Med., 2015, 22(1), 84-89.
[http://dx.doi.org/10.5604/12321966.1141374] [PMID: 25780834]
[72]
Geethalakshmi, R.; Sarada, D.V. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties. Int. J. Nanomedicine, 2012, 7, 5375-5384.
[http://dx.doi.org/10.2147/IJN.S36516] [PMID: 23091381]
[73]
Liny, P.; Divya, T.K.; Barasa, M.; Nagaraj, B.; Krishnamurthy, N.; Dinesh, R. Preparation of gold nanoparticles from Helianthus annuus (sun flower) flowers and evaluation of their antimicrobial activities. Int. J. Pharma Bio Sci., 2012, 3(1), 439-446.
[74]
Dash, S.S.; Majumdar, R.; Sikder, A.K.; Bag, B.G.; Patra, B.K. Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction. Appl. Nanosci., 2014, 4(4), 485-490.
[http://dx.doi.org/10.1007/s13204-013-0223-z]
[75]
Annamalai, A.; Babu, S.T.; Jose, N.A.; Sudha, D.; Lyza, C.V. Biosynthesis and characterization of silver and gold nanoparticles using aqueous leaf extraction of Phyllanthus amarus Schum & Thonn. World Appl. Sci. J., 2011, 13(8), 1833-1840.
[76]
Poopathi, S.; De Britto, L.J.; Praba, V.L.; Mani, C.; Praveen, M. Synthesis of silver nanoparticles from Azadirachta indica--a most effective method for mosquito control. Environ. Sci. Pollut. Res. Int., 2015, 22(4), 2956-2963.
[http://dx.doi.org/10.1007/s11356-014-3560-x] [PMID: 25226837]
[77]
Kalaiselvi, A.; Roopan, S.M.; Madhumitha, G.; Ramalingam, C.; Elango, G. Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 116-119.
[http://dx.doi.org/10.1016/j.saa.2014.07.010] [PMID: 25062057]
[78]
Zhou, G.J.; Li, S.H.; Zhang, Y.C.; Fu, Y.Z. Biosynthesis of CdS nanoparticles in banana peel extract. J. Nanosci. Nanotechnol., 2014, 14(6), 4437-4442.
[http://dx.doi.org/10.1166/jnn.2014.8259] [PMID: 24738409]
[79]
Singh, P.; Kim, Y.J.; Wang, C.; Mathiyalagan, R.; El-Agamy Farh, M.; Yang, D.C. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 811-816.
[http://dx.doi.org/10.3109/21691401.2015.1008514] [PMID: 25706249]
[80]
Elango, G.; Roopan, S.M. Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 139, 367-373.
[http://dx.doi.org/10.1016/j.saa.2014.12.066] [PMID: 25574657]
[81]
Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol., 2015, 31(6), 865-873.
[http://dx.doi.org/10.1007/s11274-015-1840-3] [PMID: 25761857]
[82]
Ashokkumar, S.; Ravi, S.; Kathiravan, V.; Velmurugan, S. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 34-39.
[http://dx.doi.org/10.1016/j.saa.2014.05.076] [PMID: 24997264]
[83]
Ahmad, Z.; Sharma, S.; Khuller, G.K. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int. J. Antimicrob. Agents, 2005, 26(4), 298-303.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.07.012] [PMID: 16154726]
[84]
Čalija, B.; Cekić, N.; Savić, S.; Daniels, R.; Marković, B.; Milić, J. pH-sensitive microparticles for oral drug delivery based on alginate/oligochitosan/Eudragit(®) L100-55 “sandwich” polyelectrolyte complex. Colloids Surf. B Biointerfaces, 2013, 110, 395-402.
[http://dx.doi.org/10.1016/j.colsurfb.2013.05.016] [PMID: 23751419]
[85]
Rastogi, R.; Sultana, Y.; Aqil, M.; Ali, A.; Kumar, S.; Chuttani, K.; Mishra, A.K. Alginate microspheres of isoniazid for oral sustained drug delivery. Int. J. Pharm., 2007, 334(1-2), 71-77.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.024] [PMID: 17113732]
[86]
Jayasree, A.; Sasidharan, S.; Koyakutty, M.; Nair, S.; Menon, D. Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging. Carbohydr. Polym., 2011, 85(1), 37-43.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.034]
[87]
Villa, R.; Cerroni, B.; Viganò, L.; Margheritelli, S.; Abolafio, G.; Oddo, L.; Paradossi, G.; Zaffaroni, N. Targeted doxorubicin delivery by chitosan-galactosylated modified polymer microbubbles to hepatocarcinoma cells. Colloids Surf. B Biointerfaces, 2013, 110, 434-442.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.022] [PMID: 23759384]
[88]
Yuan, Z.X.; Sun, X.; Gong, T.; Ding, H.; Fu, Y.; Zhang, Z.R. Randomly 50% N-acetylated low molecular weight chitosan as a novel renal targeting carrier. J. Drug Target., 2007, 15(4), 269-278.
[http://dx.doi.org/10.1080/10611860701289875] [PMID: 17487695]
[89]
Rekha, M.R.; Sharma, C.P. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J. Control. Release, 2009, 135(2), 144-151.
[http://dx.doi.org/10.1016/j.jconrel.2009.01.011] [PMID: 19331862]
[90]
Zeng, W.; Li, Q.; Wan, T.; Liu, C.; Pan, W.; Wu, Z.; Zhang, G.; Pan, J.; Qin, M.; Lin, Y.; Wu, C.; Xu, Y. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surf. B Biointerfaces, 2016, 141, 28-35.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.014] [PMID: 26820107]
[91]
Ruttala, H.B.; Ramasamy, T.; Gupta, B.; Choi, H.G.; Yong, C.S.; Kim, J.O. Multiple polysaccharide-drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting. Carbohydr. Polym., 2017, 173, 57-66.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.062] [PMID: 28732901]
[92]
Natesan, S.; Ponnusamy, C.; Sugumaran, A.; Chelladurai, S.; Shanmugam Palaniappan, S.; Palanichamy, R. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int. J. Biol. Macromol., 2017, 104(Pt B), 1853-1859.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.137] [PMID: 28359890]
[93]
Hou, X.; Zhou, H.; Wang, L.; Tang, J.; Chen, C.; Jiang, G.; Liu, Y. Multifunctional near-infrared dye-magnetic nanoparticles for bioimaging and cancer therapy. Cancer Lett., 2017, 390, 168-175.
[http://dx.doi.org/10.1016/j.canlet.2016.12.026] [PMID: 28040545]
[94]
Vigneshwaran, N.; Ashtaputre, N.M.; Varadarajan, P.V.; Nachane, R.P.; Paralikar, K.M.; Balasubramanya, R.H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. ‎. Mater. Lett., 2007, 61(6), 1413-1418.
[http://dx.doi.org/10.1016/j.matlet.2006.07.042]
[95]
Bhainsa, K.C.; D’Souza, S.F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B Biointerfaces, 2006, 47(2), 160-164.
[http://dx.doi.org/10.1016/j.colsurfb.2005.11.026] [PMID: 16420977]
[96]
Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Kottaisamy, M.; BarathmaniKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces, 2010, 77(2), 257-262.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.007] [PMID: 20197229]
[97]
Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M.I.; Sastry, M.; Kumar, R. Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J. Phys., 2004, 78, 101-105.
[98]
Balaji, D.S.; Basavaraja, S.; Deshpande, R.; Mahesh, D.B.; Prabhakar, B.K.; Venkataraman, A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B Biointerfaces, 2009, 68(1), 88-92.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.022] [PMID: 18995994]
[99]
Mohammed Fayaz, A.; Balaji, K.; Kalaichelvan, P.T.; Venkatesan, R. Fungal based synthesis of silver nanoparticles--an effect of temperature on the size of particles. Colloids Surf. B Biointerfaces, 2009, 74(1), 123-126.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.002] [PMID: 19674875]
[100]
Lengke, M.F.; Fleet, M.E.; Southam, G. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)--chloride complexes. Langmuir, 2006, 22(6), 2780-2787.
[http://dx.doi.org/10.1021/la052652c] [PMID: 16519482]
[101]
Lengke, M.F.; Ravel, B.; Fleet, M.E.; Wanger, G.; Gordon, R.A.; Southam, G. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ. Sci. Technol., 2006, 40(20), 6304-6309.
[http://dx.doi.org/10.1021/es061040r] [PMID: 17120557]
[102]
Husseiny, M.I.; El-Aziz, M.A.; Badr, Y.; Mahmoud, M.A. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 67(3-4), 1003-1006.
[http://dx.doi.org/10.1016/j.saa.2006.09.028] [PMID: 17084659]
[103]
Ahmad, A.; Senapati, S.; Khan, M.I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology, 2003, 14(7), 824.
[http://dx.doi.org/10.1088/0957-4484/14/7/323]
[104]
Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J. Biotechnol., 2007, 128(3), 648-653.
[http://dx.doi.org/10.1016/j.jbiotec.2006.11.014] [PMID: 17182148]
[105]
Sinha, A.; Khare, S.K. Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour. Technol., 2011, 102(5), 4281-4284.
[http://dx.doi.org/10.1016/j.biortech.2010.12.040] [PMID: 21216593]
[106]
Senapati, S.; Ahmad, A.; Khan, M.I.; Sastry, M.; Kumar, R. Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small, 2005, 1(5), 517-520.
[http://dx.doi.org/10.1002/smll.200400053] [PMID: 17193479]
[107]
Lloyd, J.R.; Yong, P.; Macaskie, L.E. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl. Environ. Microbiol., 1998, 64(11), 4607-4609.
[http://dx.doi.org/10.1128/AEM.64.11.4607-4609.1998] [PMID: 9797331]
[108]
Agnihotri, M.; Joshi, S.; Kumar, A.R.; Zinjarde, S.; Kulkarni, S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater. Lett., 2009, 63(15), 1231-1234.
[http://dx.doi.org/10.1016/j.matlet.2009.02.042]
[109]
Gericke, M.; Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy, 2006, 83(1-4), 132-140.
[http://dx.doi.org/10.1016/j.hydromet.2006.03.019]
[110]
Juibari, M.M.; Abbasalizadeh, S.; Jouzani, G.S.; Noruzi, M. Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater. Lett., 2011, 65(6), 1014-1017.
[http://dx.doi.org/10.1016/j.matlet.2010.12.056]
[111]
Bao, H.; Lu, Z.; Cui, X.; Qiao, Y.; Guo, J.; Anderson, J.M.; Li, C.M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater., 2010, 6(9), 3534-3541.
[http://dx.doi.org/10.1016/j.actbio.2010.03.030] [PMID: 20350621]
[112]
Jha, A.K.; Prasad, K. Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf. B Biointerfaces, 2010, 75(1), 330-334.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.005] [PMID: 19781922]
[113]
Lefèvre, C.T.; Abreu, F.; Schmidt, M.L.; Lins, U.; Frankel, R.B.; Hedlund, B.P.; Bazylinski, D.A. Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl. Environ. Microbiol., 2010, 76(11), 3740-3743.
[http://dx.doi.org/10.1128/AEM.03018-09] [PMID: 20382815]
[114]
Perez-Gonzalez, T.; Jimenez-Lopez, C.; Neal, A.L.; Rull-Perez, F.; Rodriguez-Navarro, A.; Fernandez-Vivas, A.; Iañez-Pareja, E. Magnetite biomineralization induced by Shewanella oneidensis. Geochim. Cosmochim. Acta, 2010, 74(3), 967-979.
[http://dx.doi.org/10.1016/j.gca.2009.10.035]
[115]
Bansal, V.; Poddar, P.; Ahmad, A.; Sastry, M. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc., 2006, 128(36), 11958-11963.
[http://dx.doi.org/10.1021/ja063011m] [PMID: 16953637]
[116]
Zhou, W.; He, W.; Zhang, X.; Yan, S.; Sun, X.; Tian, X.; Han, X. Biosynthesis of iron phosphate nanopowders. Powder Technol., 2009, 194(1-2), 106-108.
[http://dx.doi.org/10.1016/j.powtec.2009.03.034]
[117]
Bansal, V.; Rautaray, D.; Bharde, A.; Ahire, K.; Sanyal, A.; Ahmad, A.; Sastry, M. Fungus-mediated biosynthesis of silica and titania particles. J. Mater. Chem., 2005, 15(26), 2583-2589.
[http://dx.doi.org/10.1039/b503008k]
[118]
Jha, A.K.; Prasad, K.; Kulkarni, A.R. Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf. B Biointerfaces, 2009, 71(2), 226-229.
[http://dx.doi.org/10.1016/j.colsurfb.2009.02.007] [PMID: 19285838]
[119]
Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 90, 78-84.
[http://dx.doi.org/10.1016/j.saa.2012.01.006] [PMID: 22321514]
[120]
Bansal, V.; Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem., 2004, 14(22), 3303-3305.
[http://dx.doi.org/10.1039/b407904c]
[121]
Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc., 2002, 124(41), 12108-12109.
[http://dx.doi.org/10.1021/ja027296o] [PMID: 12371846]
[122]
Bai, H.J.; Zhang, Z.M.; Gong, J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol. Lett., 2006, 28(14), 1135-1139.
[http://dx.doi.org/10.1007/s10529-006-9063-1] [PMID: 16794769]
[123]
Bai, H.J.; Zhang, Z.M.; Guo, Y.; Yang, G.E. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf. B Biointerfaces, 2009, 70(1), 142-146.
[http://dx.doi.org/10.1016/j.colsurfb.2008.12.025] [PMID: 19167198]
[124]
Bai, H.J.; Zhang, Z.M. Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater. Lett., 2009, 63(9-10), 764-766.
[http://dx.doi.org/10.1016/j.matlet.2008.12.050] [PMID: 16794769]
[125]
Labrenz, M.; Druschel, G.K.; Thomsen-Ebert, T.; Gilbert, B.; Welch, S.A.; Kemner, K.M.; Logan, G.A.; Summons, R.E.; De Stasio, G.; Bond, P.L.; Lai, B.; Kelly, S.D.; Banfield, J.F. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 2000, 290(5497), 1744-1747.
[http://dx.doi.org/10.1126/science.290.5497.1744] [PMID: 11099408]
[126]
Lefèvre, C.T.; Abreu, F.; Lins, U.; Bazylinski, D.A. Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl. Environ. Microbiol., 2010, 76(10), 3220-3227.
[http://dx.doi.org/10.1128/AEM.00408-10] [PMID: 20363801]
[127]
Dizaj, R.R.T.; Gharib-Bibalan, F.; Mollania, N. Biological method for selenium nanoparticles synthesis assisted by α-amylase enzyme from Bacillus methylotrophicus. Int. Life Science Conf. and 12th Iran Biophysical Chemistry Conf, 2013. Available at: http://congress.tbzmed.ac.ir/Abstract/709
[128]
Kolar, F.R.; Gogi, C.L.; Khudavand, M.M.; Choudhari, M.S.; Patil, S.B. Phytochemical and antioxidant properties of some Cassia species. Nat. Prod. Res., 2018, 32(11), 1324-1328.
[http://dx.doi.org/10.1080/14786419.2017.1342085] [PMID: 28627252]
[129]
Eshwarappa, R.S.; Ramachandra, Y.L.; Subaramaihha, S.R.; Subbaiah, S.G.; Austin, R.S.; Dhananjaya, B.L. Antioxidant activities of leaf galls extracts of Terminalia chebula (Gaertn.) Retz. (Combretaceae). Acta Sci. Pol. Technol. Aliment., 2015, 14(2), 210.
[http://dx.doi.org/10.17306/J.AFS.2015.2.11] [PMID: 28068007]
[130]
Mbaebie, B.O.; Edeoga, H.O.; Afolayan, A.J. Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pac. J. Trop. Biomed., 2012, 2(2), 118-124.
[http://dx.doi.org/10.1016/S2221-1691(11)60204-9] [PMID: 23569880]
[131]
Verge, A.R.; Jean-Marie, R.; Philippe, D. Natural Phenolic Antioxidants as a Source of Biocompatibilizers for Immiscible Polymer Blends. ACS Sustain. Chem.& Eng., 2018, 6(10), 13349-13357.
[http://dx.doi.org/10.1021/acssuschemeng.8b02999]
[132]
Sellimi, S.; Younes, I.; Ayed, H.B.; Maalej, H.; Montero, V.; Rinaudo, M.; Dahia, M.; Mechichi, T.; Hajji, M.; Nasri, M. Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed. Int. J. Biol. Macromol., 2015, 72, 1358-1367.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.016] [PMID: 25453289]
[133]
Eshwarappa, R.S.; Iyer, S.; Subaramaihha, S.R.; Richard, S.A.; Dhananjaya, B.L. Antioxidant activities of ficus glomerata (moraceae) leaf gall extracts. Pharmacognosy Res., 2015, 7(1), 114-120.
[http://dx.doi.org/10.4103/0974-8490.147225] [PMID: 25598645]
[134]
Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater., 1999, 11, 253-256.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199903)11:3<253::AID-ADMA253>3.0.CO;2-7]
[135]
Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine (Lond.), 2007, 3(2), 168-171.
[http://dx.doi.org/10.1016/j.nano.2007.02.001] [PMID: 17468052]
[136]
Marshall, M.J.; Beliaev, A.S.; Dohnalkova, A.C.; Kennedy, D.W.; Shi, L.; Wang, Z.; Boyanov, M.I.; Lai, B.; Kemner, K.M.; McLean, J.S.; Reed, S.B.; Culley, D.E.; Bailey, V.L.; Simonson, C.J.; Saffarini, D.A.; Romine, M.F.; Zachara, J.M.; Fredrickson, J.K. c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol., 2006, 4(9)e268
[http://dx.doi.org/10.1371/journal.pbio.0040268] [PMID: 16875436]
[137]
Dameron, C.T.; Reese, R.N.; Mehra, R.K.; Kortan, A.R.; Carroll, P.J.; Steigerwald, M.L. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Lett Nat, 1989, 338, 596-597.
[http://dx.doi.org/10.1038/338596a0]
[138]
Vigneshwaran, N.; Kathe, A.A.; Varadarajan, P.V.; Nachane, R.P.; Balasubramanya, R.H. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. B Biointerfaces, 2006, 53(1), 55-59.
[http://dx.doi.org/10.1016/j.colsurfb.2006.07.014] [PMID: 16962745]
[139]
Mahmoud, A.A.; El-Feky, G.S.; Kamel, R.; Awad, G.E. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int. J. Pharm., 2011, 413(1-2), 229-236.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.031] [PMID: 21540097]
[140]
Gadad, A.P.; Chandra, P.S.; Dandagi, P.M.; Mastiholimath, V. Moxifloxacin loaded polymeric nanoparticles for sustain ocular drug delivery. Journal of Pharmaceutical Sciences and Nanotechnology, 2012, 5(2), 1727-1731.
[http://dx.doi.org/10.37285/ijpsn.2012.5.2.8]
[141]
Spireas, S.S.; Jarowski, C.I.; Rohera, B.D. Powdered solution technology: principles and mechanism. Pharm. Res., 1992, 9(10), 1351-1358.
[http://dx.doi.org/10.1023/A:1015877905988] [PMID: 1448438]
[142]
Tsinontides, S.C.; Rajniak, P.; Pham, D.; Hunke, W.A.; Placek, J.; Reynolds, S.D. Freeze drying--principles and practice for successful scale-up to manufacturing. Int. J. Pharm., 2004, 280(1-2), 1-16.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.018] [PMID: 15265542]
[143]
Vilhelmsen, T.; Eliasen, H.; Schaefer, T. Effect of a melt agglomeration process on agglomerates containing solid dispersions. Int. J. Pharm., 2005, 303(1-2), 132-142.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.012] [PMID: 16139973]
[144]
Liu, X.; Lu, M.; Guo, Z.; Huang, L.; Feng, X.; Wu, C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm. Res., 2012, 29(3), 806-817.
[http://dx.doi.org/10.1007/s11095-011-0605-4] [PMID: 22009589]
[145]
Nokhodchi, A.; Javadzadeh, Y.; Siahi-Shadbad, M.R.; Barzegar-Jalali, M. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. J. Pharm. Pharm. Sci., 2005, 8(1), 18-25.
[PMID: 15946594]
[146]
Shewach, D.S.; Kuchta, R.D. Introduction to cancer chemotherapeutics. Chem. Rev., 2009, 109(7), 2859-2861.
[http://dx.doi.org/10.1021/cr900208x] [PMID: 19583428]
[147]
Hilton, E.; Summers, M.P. The effect of wetting agents on the dissolution of indomethacin solid dispersion systems. Int. J. Pharm., 1986, 31, 157-164.
[http://dx.doi.org/10.1016/0378-5173(86)90226-7]
[148]
Harwood, R.J.; Johnson, J.L. Hydroxypropylmethylcellulose.Handbook of Pharmaceutical Excipients., Wade, A.; Weller, P.J., Eds.; American Pharmaceutical Association/The Pharmaceutical Press Washington, DC/London , 1994, pp. 229-232.
[149]
Kohri, N.; Yamayoshi, Y.; Xin, H.; Iseki, K.; Sato, N.; Todo, S.; Miyazaki, K. Improving the oral bioavailability of albendazole in rabbits by the solid dispersion technique. J. Pharm. Pharmacol., 1999, 51(2), 159-164.
[http://dx.doi.org/10.1211/0022357991772277] [PMID: 10217314]
[150]
Yuasa, H.; Ozeki, T.; Takahashi, H.; Kanaya, Y.; Ueno, M. Application of the solid dispersion method to the controlled release of medicine. Release mechanism of a slightly water soluble medicine and interaction between urbiprofen and hydroxypropyl cellulose in solid dispersion. Chem. Pharm. Bull. (Tokyo), 1994, 42, 354-358.
[http://dx.doi.org/10.1248/cpb.42.354]
[151]
Okimoto, K.; Miyake, M.; Ibuki, R.; Yasumura, M.; Ohnishi, N.; Nakai, T. Dissolution mechanism and rate of solid dispersion particles of nilvadipine with hydroxypropylmethylcellulose. Int. J. Pharm., 1997, 159, 85-93.
[http://dx.doi.org/10.1016/S0378-5173(97)00274-3]
[152]
Hasegawa, A.; Kawamura, R.; Nakagawa, H.; Sugimoto, I. Physical properties of solid dispersions of poorly water-soluble drugs with enteric coating agents. Chem. Pharm. Bull. (Tokyo), 1985, 33(8), 3429-3435.
[http://dx.doi.org/10.1248/cpb.33.3429] [PMID: 4085073]
[153]
Singh, S.; Baghel, R.S.; Yadav, L. A review on solid dispersions. Int J Pharm Life Sci., 2011, 2(9), 1078-1085.
[154]
Lee, J.C. Hydroxypropyl methylcellulose phthalate.Handbook of Pharmaceutical Excipients., Wade, A.; Weller, P.J., Eds.;. American Pharmaceutical Association/The Pharmaceutical Press Washington, DC/London, 1994, pp. 233-237.
[155]
Itai, S.; Nemoto, M.; Kouchiwa, S.; Murayama, H.; Nagai, T. Influence of wetting factors on the dissolution behavior of flufenamic acid. Chem. Pharm. Bull. (Tokyo), 1985, 33(12), 5464-5473.
[http://dx.doi.org/10.1248/cpb.33.5464] [PMID: 3833390]
[156]
Walking, W.D.; Wade, A.; Weller, P.J. Handbook of Pharmaceutical Excipients. American Pharmaceutical Association/The Pharmaceutical Press Washington, DC/London, 1994, pp. 392-399.
[157]
Asker, A.F.; Whitworth, C.W. Dissolution of acetylsalicylic acid from acetylsalicylic acid-polyethylene glycol 6000 coprecipitates. Pharmazie, 1975, 30(8), 530-531.
[PMID: 1178776]
[158]
Rasenack, N.; Hartenhauer, H.; Müller, B.W. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int. J. Pharm., 2003, 254(2), 137-145.
[http://dx.doi.org/10.1016/S0378-5173(03)00005-X] [PMID: 12623189]
[159]
Kalpana, P.; Manish, S.; Dinesh, S.K.; Surendra, J.K. Solid dispersion: Approaches, Technology involved, Unmet need & Challenges. Drug Inv Today, 2010, 2(7), 349-357.
[160]
Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today, 2007, 12(23-24), 1068-1075.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005] [PMID: 18061887]
[161]
Leuner, C.; Dressman, J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm., 2000, 50(1), 47-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00076-X] [PMID: 10840192]
[162]
Babu, P.S.; Chowdary, K.P.R. Enhancement of dissolution rate of celecoxib by solid dispersion in superdisintegrants. IDrugs, 2008, 45(7), 547-552.
[163]
Hume-Rotherly, W.; Raynor, G.V. The Structure of Metals and Alloys. Institute of Metals London, 1954.
[164]
Serajuddin, A. Solid dispersion technique. J. Pharm. Sci., 1999, 88(10), 891-900.
[PMID: 10514356]
[165]
Chiou, WL; Riegelman, S Pharmaceutical application of solid dispersion system J Pharm Sci , 1971, 60:1281-1302, 603-616.
[166]
Kerns, E.H.; Li, D. Drug-like properties: Concepts, structure, design and methods from ADME to toxicity optimization. Academic Press , 2008, p. 461.
[167]
Kalyanwat, R; Patel, S. Solid dispersion: A method for enhancing drug dissolution International Journal of Drug Formulation & Research., 2010, 1 pp.(iii), 1-14.
[168]
Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.; Muniyandi, J.; Hariharan, N.; Eom, S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces, 2009, 74(1), 328-335.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.048] [PMID: 19716685]
[169]
Song, K.C.; Lee, S.M.; Park, T.S.; Lee, B.S. Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J. Chem. Eng., 2009, 26, 153-155.
[http://dx.doi.org/10.1007/s11814-009-0024-y]
[170]
Tamuly, C.; Hazarika, M.; Borah, S.Ch.; Das, M.R.; Boruah, M.P. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach. Colloids Surf. B Biointerfaces, 2013, 102, 627-634.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.007] [PMID: 23107941]
[171]
Cruz, D.; Falé, P.L.; Mourato, A.; Vaz, P.D.; Serralheiro, M.L.; Lino, A.R. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf. B Biointerfaces, 2010, 81(1), 67-73.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.025] [PMID: 20655710]
[172]
Krishnaiah, Y.S.R. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J. Bioequivalence Bioavailab., 2010, 2(2), 28-36.
[http://dx.doi.org/10.4172/jbb.1000027]
[173]
Sathiyanarayanan, G.; Kiran, G.S.; Selvin, J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf. B Biointerfaces, 2013, 102, 13-20.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.032] [PMID: 23006551]
[174]
Suman, T.Y.; Radhika Rajasree, S.R.; Kanchana, A.; Elizabeth, S.B. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf. B Biointerfaces, 2013, 106, 74-78.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.037] [PMID: 23434694]
[175]
Mandal, S.; Phadtare, S.; Sastry, M. Interfacing biology with nanoparticles. Curr. Appl. Phys., 2005, 5, 118-127.
[http://dx.doi.org/10.1016/j.cap.2004.06.006]
[176]
Maria, B.S. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Appl. Nanosci., 2010.
[http://dx.doi.org/10.1007/s13204-014-0372-8]
[177]
Berry, C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol., 2012, 109(1), 1-10.
[http://dx.doi.org/10.1016/j.jip.2011.11.008] [PMID: 22137877]
[178]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine (Lond.), 2010, 6(1), 103-109.
[http://dx.doi.org/10.1016/j.nano.2009.04.006] [PMID: 19447203]
[179]
Liong, M.; Angelos, S.; Choi, E.; Patel, K.; Stoddart, J.F.; Zink, J.I. Mesostructured multifunctional nanoparticles for imaging and drug delivery. J. Mater. Chem., 2010, 19, 6251-6257.
[http://dx.doi.org/10.1039/b902462j]
[180]
Serajuddin, A.T.; Pudipeddi, M.; Stahl, P.H.; Wermuth, C.G. Handbook of pharmaceutical salts. Wiley-VCH Weinheim , 2002.
[181]
Trask, A.V.; Motherwell, W.D.; Jones, W. Solvent-drop grinding: Green polymorph control of cocrystallization. ChemComm , 2004, pp. 890-891.
[182]
Taylor, L.S.; Zografi, G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res., 1997, 14(12), 1691-1698.
[http://dx.doi.org/10.1023/A:1012167410376] [PMID: 9453055]
[183]
Tong, P.; Zografi, G. A study of amorphous molecular dispersions of indomethacin and its sodium salt. J. Pharm. Sci., 2001, 90(12), 1991-2004.
[http://dx.doi.org/10.1002/jps.1150] [PMID: 11745758]
[184]
Amaro, M.I.; Tajber, L.; Corrigan, O.I.; Healy, A.M. Optimisation of spray drying process conditions for sugar nanoporous microparticles (NPMPs) intended for inhalation. Int. J. Pharm., 2011, 421(1), 99-109.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.021] [PMID: 21963473]
[185]
Sekiguchi, K.; Obi, A.T. Studies on absorption of eutectic mixture: I: A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. (Tokyo), 1961, 9, 866-872.
[http://dx.doi.org/10.1248/cpb.9.866]
[186]
Emara, L.H.; Badr, R.M.; Elbary, A.A. Improving the dissolution and bioavailability of nifedipine using solid dispersions and solubilizers. Drug Dev. Ind. Pharm., 2002, 28(7), 795-807.
[http://dx.doi.org/10.1081/DDC-120005625] [PMID: 12236065]
[187]
Patel, B.B.; Patel, J.K.; Chakraborty, S.; Shukla, D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm. J., 2015, 23(4), 352-365.
[http://dx.doi.org/10.1016/j.jsps.2013.12.013] [PMID: 27134535]
[188]
Chaudhari, F.M.; Puttewar, T.Y.; Patil, R.Y. Solubility enhancement of aspirin by solid dispersion method. Int J Pharm Pharm Res., 2015, 5(1), 208-218.
[189]
Seo, B.; Kim, T.; Jeong, H. Extension of the hansen solubility parameter concept to the micronization of cyclotrimethylenetrinitramine crystals by supercritical anti-solvent process. J. Supercrit. Fluids, 2016, 111, 112-120.
[http://dx.doi.org/10.1016/j.supflu.2016.01.015]
[190]
Sathisaran, I.; Dalvi, S.V. Engineering Cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics, 2018, 10(3), 3-74.
[http://dx.doi.org/10.3390/pharmaceutics10030108] [PMID: 30065221]
[191]
Goud, N.R.; Suresh, K.; Nangia, A. Solubility and stability advantage of aceclofenac salts. Cryst. Growth Des., 2013, 13, 1590-1601.
[http://dx.doi.org/10.1021/cg301825u]
[192]
Maddileti, D.; Swapna, B.; Nangia, A. Tetramorphs of the antibiotic drug trimethoprim: characterization and stability. Cryst. Growth Des., 2015, 15, 1745-1756.
[http://dx.doi.org/10.1021/cg501772t]
[193]
Thomas, L.H.; Wales, C.; Wilson, C.C. Selective preparation of elusive and alternative single component polymorphic solid forms through multi-component crystallisation routes. Chem. Commun. (Camb.), 2016, 52(46), 7372-7375.
[http://dx.doi.org/10.1039/C6CC01027J] [PMID: 27079688]
[194]
Babu, N.J.; Cherukuvada, S.; Thakuria, R.; Nangia, A. Conformational and synthon polymorphism in furosemide (Lasix). Cryst. Growth Des., 2010, 10, 1979-1989.
[http://dx.doi.org/10.1021/cg100098z]
[195]
Karanam, M.; Dev, S.; Choudhury, A.R. New polymorphs of fluconazole: results from cocrystallization experiments. Cryst. Growth Des., 2011, 12, 240-252.
[http://dx.doi.org/10.1021/cg201005y]
[196]
Bond, A.D.; Boese, R.; Desiraju, G.R. On the polymorphism of aspirin: crystalline aspirin as intergrowths of two “polymorphic” domains. Angew. Chem. Int. Ed. Engl., 2007, 46(4), 618-622.
[http://dx.doi.org/10.1002/anie.200603373] [PMID: 17139692]
[197]
Bustamante, P.; Pena, M.A.; Barra, J.A. Partial solubility parameters of piroxicam and niflumic acid. Int. J. Pharm., 1998, 174, 141-150.
[http://dx.doi.org/10.1016/S0378-5173(98)00263-4]
[198]
Harris, K.D.; Tremayne, M.; Kariuki, B.M. Contemporary advances in the use of powder X-ray diffraction for structure determination. Angew. Chem. Int. Ed. Engl., 2001, 40(9), 1626-1651.
[http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1626::AID-ANIE16260>3.0.CO;2-7] [PMID: 11353468]
[199]
Tremayne, M. The impact of powder diffraction on the structural characterization of organic crystalline materials. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2004, 362(1825), 2691-2707.
[http://dx.doi.org/10.1098/rsta.2004.1457] [PMID: 15539365]
[200]
David, W.I.; Shankland, K. Structure determination from powder diffraction data. Acta Crystallogr. A, 2008, 64(Pt 1), 52-64.
[http://dx.doi.org/10.1107/S0108767307064252] [PMID: 18156673]
[201]
Edwards, H.P.; Klug, L.E. Alexander. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials., (2nd ed. ), Wiley-Interscience New York , (2nd ed. ), 1974.
[202]
Aitipamula, S.; Chow, P.S.; Tan, R.B. Conformational polymorphs of a muscle relaxant, metaxalone. Cryst. Growth Des., 2011, 11, 4101-4109.
[http://dx.doi.org/10.1021/cg200678e]
[203]
Sanphui, P.; Rajput, L.; Gopi, S.P.; Desiraju, G.R. New multi-component solid forms of anti-cancer drug Erlotinib: role of auxiliary interactions in determining a preferred conformation. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2016, 72(Pt 3), 291-300.
[http://dx.doi.org/10.1107/S2052520616003607] [PMID: 27240760]
[204]
Pindelska, E.; Sokal, A.; Kolodziejski, W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv. Drug Deliv. Rev., 2017, 117, 111-146.
[http://dx.doi.org/10.1016/j.addr.2017.09.014] [PMID: 28931472]
[205]
Aakeroy, C.B.; Salmon, D.J.; Smith, M.M.; Desper, J. Cyanophenyloximes: reliable and versatile for hydrogen bond directed supramolecular synthesis of cocrystals. Cryst. Growth Des., 2006, 6, 1033-1042.
[http://dx.doi.org/10.1021/cg0600492]
[206]
Terahertz Spectroscopy and Imaging. Peiponen, K.E.; Zeitler, J.A.; Kuwata-Gonokami, M., Eds.; Springer Heidelberg, 2013.
[http://dx.doi.org/10.1007/978-3-642-29564-5]
[207]
Baxter, J.B.; Guglietta, G.W. Terahertz spectroscopy. Anal. Chem., 2011, 83(12), 4342-4368.
[http://dx.doi.org/10.1021/ac200907z] [PMID: 21534575]
[208]
Shen, Y.C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int. J. Pharm., 2011, 417(1-2), 48-60.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.012] [PMID: 21237260]
[209]
Ajito, K.; Ueno, Y.; Song, H.J. Visualization of pharmaceutical drug molecules by terahertz chemical imaging. NTT Tech. Rev., 2012, 10(2), 1-6.
[210]
Smith, G.P.S.; Huff, G.S.; Gordon, K.C. Investigating crystallinity using low frequency Raman spectroscopy: applications in pharmaceutical analysis. Spectroscopy (Springf.), 2016, 31, 42-50.
[211]
Févotte, G. In situ Raman spectroscopy for in-line control of pharmaceutical crystallization and solids elaboration processes: a review. Chem. Eng. Res. Des., 2007, 85, 906-920.
[http://dx.doi.org/10.1205/cherd06229]
[212]
Aina, A.; Hargreaves, M.D.; Matousek, P.; Burley, J.C. Transmission Raman spectroscopy as a tool for quantifying polymorphic content of pharmaceutical formulations. Analyst (Lond.), 2010, 135(9), 2328-2333.
[http://dx.doi.org/10.1039/c0an00352b] [PMID: 20614090]
[213]
Griffen, J.A.; Owen, A.W.; Andrews, D.; Matousek, P. Recent advances in pharmaceutical analysis using transmission Raman spectroscopy. Spectroscopy (Springf.), 2017, 32, 37-43.
[214]
Stejskal, E.O.; Memory, J.D. High Resolution NMR in the Solid State: Fundamentals of CP/MAS., (1st ed. ), Oxford Univ. Press Oxford, (1st ed. ), 1994.
[215]
Duer, M.J. Introduction to Solid-state NMR Spectroscopy. Wiley-Blackwell , 2005.
[216]
Holzgrabe, U.; Wawer, I.; Diehl, B. NMR Spectroscopy in Pharmaceutical Analysis., (1st ed. ), Elsevier , (1st ed. ), 2008.
[217]
Kolodziejski, W.; Herold, J.; Kuras, M.; Wawrzycka-Gorczyca, I.; Koziol, A.E. Kinetics of 1H→13C NMR cross-polarization in polymorphs and solvates of the antipsychotic drug olanzapine. Solid State Nucl. Magn. Reson., 2011, 39(3-4), 41-46.
[http://dx.doi.org/10.1016/j.ssnmr.2010.12.003] [PMID: 21239147]
[218]
Wu, X.L.; Burns, S.T.; Zilm, K.W. Spectral editing in CPMAS NMR. Generating subspectra based on proton multiplicities. J. Magn. Reson. A, 1994, 111, 29-36.
[http://dx.doi.org/10.1006/jmra.1994.1222]
[219]
Sangill, R.; Rastrupandersen, N.; Bildsoe, H.; Jakobsen, H.J.; Nielsen, N.C. Optimized spectral editing of 13C MAS NMR spectra of rigid solids using cross-polarization method. J. Magn. Reson. A, 1994, 107, 67-78.
[http://dx.doi.org/10.1006/jmra.1994.1048]
[220]
Middleton, D.A.; Le Duff, C.S.; Berst, F.; Reid, D.G. A cross-polarization magic-angle spinning 13C NMR characterization of the stable solid-state forms of cimetidine. J. Pharm. Sci., 1997, 86(12), 1400-1402.
[http://dx.doi.org/10.1021/js970139g] [PMID: 9423154]
[221]
Hu, J.Z.; Harper, J.K.; Taylor, C.; Pugmire, R.J.; Grant, D.M. Modified spectral editing methods for (13)C CP/MAS experiments in solids. J. Magn. Reson., 2000, 142(2), 326-330.
[http://dx.doi.org/10.1006/jmre.1999.1933] [PMID: 10648150]
[222]
NMR Crystallography. Harris, R.K.; Wasylishen, R.E.; Duer, M.J., Eds.; Wiley Chichester , 2009.
[223]
Charpentier, T. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. Solid State Nucl. Magn. Reson., 2011, 40(1), 1-20.
[http://dx.doi.org/10.1016/j.ssnmr.2011.04.006] [PMID: 21612895]
[224]
Bühl, M.; Mourik, T. NMR spectroscopy: quantum-chemical calculations, WIREs Comput. Mol. Sci., 2011, 1, 634-647.
[http://dx.doi.org/10.1002/wcms.63]
[225]
Ashbrook, S.E.; McKay, D. Combining solid-state NMR spectroscopy with first-principles calculations - a guide to NMR crystallography. Chem. Commun. (Camb.), 2016, 52(45), 7186-7204.
[http://dx.doi.org/10.1039/C6CC02542K] [PMID: 27117884]
[226]
Haines, P.J. Thermal Methods of Analysis: Principles, Applications and Problems. Springer Science & Business Media , 2012.
[227]
Höhne, G.W.H.; Hemminger, W.; Flammersheim, H.J. Theoretical fundamentals of differential scanning calorimeters, Differential Scanning Calorimetry. Springer , 1996, pp. 21-40.
[http://dx.doi.org/10.1007/978-3-662-03302-9_3]
[228]
Gabbott, P. Principles and Applications of Thermal Analysis. John Wiley & Sons , 2008.
[http://dx.doi.org/10.1002/9780470697702]
[229]
Maheshwari, C. Tailoring Aqueous Solubility of a Highly Soluble Compound via Cocrystallization: Effect of Coformer Ionization, pHmax and Solute-solvent Interactions. CrystEngComm, 2012, 14, 4801-4811.
[http://dx.doi.org/10.1039/c2ce06615g]
[230]
Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev., 2007, 59(7), 617-630.
[http://dx.doi.org/10.1016/j.addr.2007.05.011] [PMID: 17597252]
[231]
Alhalaweh, A. Pharmaceutical Cocrystals of Nitrofurantoin: Screening, Characterization and Crystal Structure Analysis. CrystEngComm, 2012, 14, 5078-5088.
[http://dx.doi.org/10.1039/c2ce06602e]
[232]
Childs, S.L.; Kandi, P.; Lingireddy, S.R. Formulation of a danazol cocrystal with controlled supersaturation plays an essential role in improving bioavailability. Mol. Pharm., 2013, 10(8), 3112-3127.
[http://dx.doi.org/10.1021/mp400176y] [PMID: 23822591]
[233]
Jones, W.; Motherwell, W.D.S.; Trask, A.V. Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement. MRS Bull., 2006, 31, 875-879.
[http://dx.doi.org/10.1557/mrs2006.206]
[234]
Vishweshwar, P.; McMahon, J.A.; Bis, J.A.; Zaworotko, M.J. Pharmaceutical co-crystals. J. Pharm. Sci., 2006, 95(3), 499-516.
[http://dx.doi.org/10.1002/jps.20578] [PMID: 16444755]
[235]
Weyna, D.; Shattock, T.; Vishweshwar, P.; Zaworotko, M.J. Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs Slow Evaporation from Solution. Cryst. Growth Des., 2009, 9, 1106-1123.
[http://dx.doi.org/10.1021/cg800936d]
[236]
Aitipamula, S.; Chow, P.S.; Tan, R.B.H. Crystal Engineering of Tegafur Cocrystals: Structural Analysis and Physicochemical Properties. Cryst. Growth Des., 2014, 14, 6557-6559.
[http://dx.doi.org/10.1021/cg501469r]
[237]
Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm., 2013, 453(1), 101-125.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.043] [PMID: 23207015]
[238]
Perlovich, G.L.; Manin, A.N. Design of Pharmaceutical Cocrystals for Drug Solubility Improvement. Russ. J. Gen. Chem., 2014, 84, 407-414.
[http://dx.doi.org/10.1134/S107036321402042X]
[239]
Cherukuvada, S.; Nangia, A. Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem. Commun. (Camb.), 2014, 50(8), 906-923.
[http://dx.doi.org/10.1039/C3CC47521B] [PMID: 24322207]
[240]
Ojha, N.; Prabhakar, B. Advances in Solubility Enhancement Techniques. Cryst. Growth Des., 2013, 21, 351-358.
[241]
Law, D.; Wang, W.; Schmitt, E.A.; Qiu, Y.; Krill, S.L.; Fort, J.J. Properties of rapidly dissolving eutectic mixtures of poly(ethylene glycol) and fenofibrate: the eutectic microstructure. J. Pharm. Sci., 2003, 92(3), 505-515.
[http://dx.doi.org/10.1002/jps.10324] [PMID: 12587112]
[242]
Yong, C.S.; Oh, Y.K.; Jung, S.H.; Rhee, J.D.; Kim, H.D.; Kim, C.K.; Choi, H.G. Preparation of ibuprofen-loaded liquid suppository using eutectic mixture system with menthol. Eur. J. Pharm. Sci., 2004, 23(4-5), 347-353.
[http://dx.doi.org/10.1016/j.ejps.2004.08.008] [PMID: 15567287]
[243]
Sohn, Y.T.; Kim, S.H. Polymorphism and pseudopolymorphism of acyclovir. Arch. Pharm. Res., 2008, 31(2), 231-234.
[http://dx.doi.org/10.1007/s12272-001-1146-x] [PMID: 18365695]
[244]
Rahman, Z.; Agarabi, C.; Zidan, A.S.; Khan, S.R.; Khan, M.A. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech, 2011, 12(2), 693-704.
[http://dx.doi.org/10.1208/s12249-011-9603-4] [PMID: 21598082]
[245]
Kasim, N.A.; Whitehouse, M.; Ramachandran, C.; Bermejo, M.; Lennernäs, H.; Hussain, A.S.; Junginger, H.E.; Stavchansky, S.A.; Midha, K.K.; Shah, V.P.; Amidon, G.L. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharm., 2004, 1(1), 85-96.
[http://dx.doi.org/10.1021/mp034006h] [PMID: 15832504]
[246]
Jain, S. Mechanical properties of powders for compaction and tableting: an overview. Pharm. Sci. Technol. Today, 1999, 2(1), 20-31.
[http://dx.doi.org/10.1016/S1461-5347(98)00111-4] [PMID: 10234200]
[247]
Hiestand, E.N. Dispersion forces and plastic deformation in tablet bond. J. Pharm. Sci., 1985, 74(7), 768-770.
[http://dx.doi.org/10.1002/jps.2600740715] [PMID: 4032252]
[248]
Hiestand, E.N. Tablet bond. I. a theoretical model. Int. J. Pharm., 1991, 67, 217-229.
[http://dx.doi.org/10.1016/0378-5173(91)90205-3]
[249]
Hiestand, E.N.; Smith, D.P. Tablet bond. II. Experimental check of model. Int. J. Pharm., 1991, 67, 231-246.
[http://dx.doi.org/10.1016/0378-5173(91)90206-4]
[250]
Blagden, N.; Coles, S.J.; Berry, D.J. Pharmaceutical co-crystals - are we there yet? CrystEngComm, 2014, 16, 5753-5761.
[http://dx.doi.org/10.1039/C4CE00127C]
[251]
Sun, C.C.; Hou, H. Improving Mechanical Properties of Caffeine and Methyl Gallate Crystals by Cocrystallization. Cryst. Growth Des., 2008, 8, 1575-1579.
[http://dx.doi.org/10.1021/cg700843s]
[252]
López-Córdoba, A.; Deladino, L.; Agudelo-Mesa, L.; Martino, M. Yerba Mate Antioxidant Powders Obtained by cocrystallization: Stability during Storage. J. Food Eng., 2014, 124, 158-165.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.10.010]
[253]
Le-Theisse, JC Novel Compound Containing Vanillin and Ethyl Vanillin, and Preparation and Applications Thereof WO 2010046239 A1, 2010.
[254]
Zhong, W; Quiang, W; Zhi, XH; Ayami, F Xylitol/menthol cocrystallization Body and Preparation Method Thereof CN 103535579 A, 2014.
[255]
Porter, W.W.; Vaid, T.P. Doping of an Organic Molecular Semiconductor by Substitutional Cocrystallization with a Molecular N-Dopant. J. Mater. Chem., 2007, 17, 469-475.
[http://dx.doi.org/10.1039/B610806G]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 2
Year: 2021
Published on: 11 January, 2021
Page: [136 - 155]
Pages: 20
DOI: 10.2174/2210303111666210111142458
Price: $25

Article Metrics

PDF: 141
HTML: 2