Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Mini-Review Article

Nanotechnology-based Approaches for COVID-19: A Path Forward

Author(s): Suraj N. Mali* and Amit P. Pratap*

Volume 6, Issue 1, 2021

Published on: 05 January, 2021

Page: [17 - 22] Pages: 6

DOI: 10.2174/2405461505666210105153930

Price: $65

Abstract

Background: SARS-COV-2 causes a highly pathogenic disease called COVID-19. This disease leads to a variety of respiratory infections like pneumonia, cold, sneezing, etc. As this disease is being transmitted via airborne droplets, it is highly essential to use PPEs, including masks, gloves, etc. This virus interacts with the ACE2 receptor and further makes its entry into host cells leading to viral pathogenesis. This viral is reported to be originated from the Wuhan market, China. Despite on-going efforts to control the spread, a number of cases of COVID-19 are increasing on a daily basis.

Objective: This study aims to collect more information about aspects of nanotechnology-based applications towards COVID-19 management.

Methods: A systemic search has been carried out using PubMed, Google Scholar, CNKI, etc., for relevant studies.

Results and Conclusion: Nanotechnology-based various approaches like nanomedicines, surface coatings with nanoparticles, nanoparticle coated PPEs, and nanosensors could significantly reduce the healthcare burden by reducing the spread. The current review focuses on various approaches of nanotechnology during the pandemic COVID-19.

Keywords: COVID-19, SARS-CoV-2, nanotechnology, diagnosis, treatment, ACE2.

Graphical Abstract
[1]
(a)Mali S, Pratap A, Thorat B. The rise of new coronavirus infection-(COVID-19): a recent update. EJMO 2020; 4(1): 35-41.
[http://dx.doi.org/10.14744/ejmo.2020.22222] ; (b)Mali SN, Pratap AP. Targeting infectious coronavirus disease 2019 (COVID-19) with artificial intelligence (AI) applications: evidence based opinion. Infect Disord Drug Targets 2020; 20: 1.
[http://dx.doi.org/10.2174/1871526520666200622144857]
[2]
Suraj NMali, Bapu R Thorat, Atul R Chopade. A viewpoint on angiotensin-converting enzyme 2, anti-hypertensives and coronavirus disease 2019 (COVID-19). Infect Disord Drug Targets 2020; 20: 1.
[http://dx.doi.org/10.2174/1871526520666200511005546]
[3]
(a)Veljkovic V, Vergara-Alert J, Segalés J, Paessler S. Use of the informational spectrum methodology for rapid biological analysis of the novel coronavirus 2019-nCoV: prediction of potential receptor, natural reservoir, tropism and therapeutic/vaccine target. F1000 Res 2020; 9(52): 52.
[http://dx.doi.org/10.12688/f1000research.22149.3] [PMID: 32419926] ; (b)Mohamed AA, Mohamed N, Seham Mohamed, et al. SARS-CoV-2: the path of prevention and control. Infect Disord Drug Targets 2020; 20: 1.
[http://dx.doi.org/10.2174/1871526520666200520112848] ; (c)Sarin SK, Choudhury A, Lau GK, et al. APASL COVID Task Force, APASL COVID Liver Injury Spectrum Study (APCOLIS Study-NCT 04345640). Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; the APCOLIS study (APASL COVID-19 liver injury spectrum study). Hepatol Int 2020; 14(5): 690-700.
[http://dx.doi.org/10.1007/s12072-020-10072-8] [PMID: 32623632] ; (d)Ahmadinejad Z, Salahshour F, Dadras O, Rezae H, Alinaghi SA. Pleural effusion as a sign of coronavirus disease 2019 (COVID-19) pneumonia: a case report. Infect Disord Drug Targets 2020; 20: 1.
[http://dx.doi.org/10.2174/1871526520666200609125045]
[4]
Zhou P, Yang X-L, Wang X-G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in 2 humans and its potential bat origin. bioRxiv 2020. Available at: https://www.biorxiv.org/content/10.1101/2020.01.22.914952v2
[6]
Sah R, Rodriguez-Morales AJ, Jha R, et al. Complete genome sequence of a 2019 novel coronavirus (SARS-CoV-2) strain isolated in Nepal. Microbiol Resour Announc 2020; 9(11): e00169-20.
[7]
Nguyen T, Duong Bang D, Wolff A. 2019 Novel coronavirus disease (COVID-19): paving the road for rapid detection and point-of-care diagnostics. Micromachines (Basel) 2020; 11(3): 1-7.
[http://dx.doi.org/10.3390/mi11030306] [PMID: 32183357]
[8]
Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[9]
Park M, Cook AR, Lim JT, Sun Y, Dickens BL. A systematic review of COVID-19 epidemiology based on current evidence. J Clin Med 2020; 9(4): 967.
[http://dx.doi.org/10.3390/jcm9040967] [PMID: 32244365]
[10]
(a) Nanography. Coronavirus (2019-nCoV) continues to halt a big part of operations in the world. From manufacture to service sector a lot of domains in public health and economy have been affected. There are test, vaccine, and treatment researches all around world while time is ticking. However, answer might be in nanotechnology to find COVID-19 test, or to develop a vaccine for coronavirus. Below, we discussed the possible nanotechnological contribution to halt novel Coronavirus. Available at: https://nanografi.com/blog/covid19-and-nanotechnology/; (b)Koyama T, Weeraratne D, Snowdon JL, Parida L. Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment. Pathogens 2020; 9(5): 324.
[http://dx.doi.org/10.3390/pathogens9050324] [PMID: 32357545]
[11]
Vazquez-Munoz R, Lopez-Ribot JL. Nanotechnology as an alternative to reduce the spread of COVID-19. Challenges 2020; 11(2): 15.
[http://dx.doi.org/10.3390/challe11020015]
[12]
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: therapeutics and Vaccine Research. ACS nano 2020. Available at: https://health.economictimes.indiatimes.com/news/industry/russia-1st-nation-to-finish-human-trials-for-covid-19-vaccine/76938659
[13]
Weiss C, Carriere M, Fusco L, et al. Toward nanotechnology-enabled approaches against the covid-19 pandemic. ACS Nano 2020; 14(6): 6383-406.
[14]
Palestino G, García-Silva I, González-Ortega O, Rosales-Mendoza S. Can nanotechnology help in the fight against COVID-19? Expert Rev Anti Infect Ther 2020; 18(9): 849-64.
[http://dx.doi.org/10.1080/14787210.2020.1776115] [PMID: 32574081]
[15]
Chan WC. Nano Research for COVID-19. ACS Nano 2020; 14(4): 3719-3.
[16]
Scavone C, Brusco S, Bertini M, et al. Current pharmacological treatments for COVID-19: What’s next? Br J Pharmacol 2020; 177(21): 4813-24.
[17]
Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 2014; 9: 1025-37.
[http://dx.doi.org/10.2147/IJN.S38378] [PMID: 24591825]
[18]
Liu CX, Si DY, Xiao XF, He X, Li YZ. Drug metabolism and pharmacokinetics of nanodrugs from Chinese medicines and natural products. Curr Drug Metab 2012; 13(5): 659-66.
[http://dx.doi.org/10.2174/1389200211209050659] [PMID: 22475334]
[19]
Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. Pharm Therap 2017; 42(12): 742-55.
[PMID: 29234213]
[20]
Ravindran S, Suthar JK, Rokade R, et al. Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Curr Drug Metab 2018; 19(4): 327-34.
[http://dx.doi.org/10.2174/1389200219666180305154119] [PMID: 29512450]
[21]
He X, Xiong LH, Zhao Z, et al. AIE-based theranostic systems for detection and killing of pathogens. Theranostics 2019; 9(11): 3223-48.
[http://dx.doi.org/10.7150/thno.31844] [PMID: 31244951]
[22]
Mak WC, Cheung KY, Orban J, Lee CJ, Turner AP, Griffith M. Surface-engineered contact lens as an advanced theranostic platform for modulation and detection of viral infection. ACS Appl Mater Interfaces 2015; 7(45): 25487-94.
[http://dx.doi.org/10.1021/acsami.5b08644] [PMID: 26512953]
[23]
Rojas JJ, Thorne SH. Theranostic potential of oncolytic vaccinia virus. Theranostics 2012; 2(4): 363-73.
[http://dx.doi.org/10.7150/thno.3724] [PMID: 22509200]
[24]
Gazzi A, Fusco L, Orecchioni M, et al. Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. J Phys Materials 2020; 3(3): 034009.
[http://dx.doi.org/10.1088/2515-7639/ab9317]
[25]
Shin MD, Shukla S, Chung YH, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol 2020; 15(8): 646-55.
[http://dx.doi.org/10.1038/s41565-020-0737-y] [PMID: 32669664]
[26]
Wang Q, Lin T, Tang L, Johnson JE, Finn MG. Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Ed Engl 2002; 41(3): 459-62.
[http://dx.doi.org/10.1002/1521-3773(20020201)41:3<459:AID-ANIE459>3.0.CO;2-O] [PMID: 12491378]
[27]
Berardi A, Evans DJ, Baldelli Bombelli F, Lomonossoff GP. Stability of plant virus-based nanocarriers in gastrointestinal fluids. Nanoscale 2018; 10(4): 1667-79.
[http://dx.doi.org/10.1039/C7NR07182E] [PMID: 29231944]
[28]
Singh B. Biomimetic nanovaccines for COVID-19. App Sci Technol Annals 2020; 1(1): 176-82.
[http://dx.doi.org/10.3126/asta.v1i1.30303]
[29]
Gupta A, Kumar S, Kumar R, et al. COVID-19: Emergence of infectious diseases, nanotechnology aspects, challenges, and future perspectives. ChemistrySelect 2020; 5(25): 7521-33.
[http://dx.doi.org/10.1002/slct.202001709] [PMID: 32835089]
[30]
Kumar V, Choudhary AK, Kumar P, Sharma S. Nanotechnology: nanomedicine, nanotoxicity and future challenges. Nanosci Nanotechnol Asia 2019; 9(1): 64-78.
[http://dx.doi.org/10.2174/2210681208666180125143953]
[31]
(a)Li Y, Lin Z, Guo M, et al. Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. Int J Nanomedicine 2017; 12: 5733-43.
[http://dx.doi.org/10.2147/IJN.S140939] [PMID: 28848350] ; (b)Torrecilla J, Del Pozo-Rodríguez A, Solinís MÁ, et al. Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES). Colloids Surf B Biointerfaces 2016; 146: 808-17.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.026] [PMID: 27451369] ; (c)Gaikwad S, Ingle A, Gade A, et al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine 2013; 8: 4303-14.
[PMID: 24235828] ; (d)Paul AM, Shi Y, Acharya D, et al. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. J Gen Virol 2014; 95(Pt 8): 1712-22.
[http://dx.doi.org/10.1099/vir.0.066084-0] [PMID: 24828333]
[32]
Mahmoudi M. Emerging biomolecular testing to assess risk of mortality from COVID-19 Infection. Mol Pharm 2021; 18(2): 476-82.
[33]
Bertrand N, Grenier P, Mahmoudi M, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 2017; 8(1): 777.
[http://dx.doi.org/10.1038/s41467-017-00600-w] [PMID: 28974673]
[34]
Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 2012; 7(12): 779-86.
[http://dx.doi.org/10.1038/nnano.2012.207] [PMID: 23212421]
[35]
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111(9): 5610-37.
[http://dx.doi.org/10.1021/cr100440g] [PMID: 21688848]
[36]
Turker E, Arslan-Yildiz A. Recent advances in magnetic levitation: a biological approach from diagnostics to tissue engineering. ACS Biomater Sci Eng 2018; 4(3): 787-99.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00700]
[37]
GE S, Nemiroski A, Mirica KA, et al. Magnetic levitation in chemistry, materials science, and biochemistry. Angew Chem Int Ed 2019; 59(41): 17810-55.
[http://dx.doi.org/10.1002/anie.201903391]
[38]
Ashkarran AA, Dararatana N, Crespy D, Caracciolo G, Mahmoudi M. Mapping the heterogeneity of protein corona by ex vivo magnetic levitation. Nanoscale 2020; 12(4): 2374-83.
[http://dx.doi.org/10.1039/C9NR10367H] [PMID: 31960871]
[39]
Han H-S, Kim D-S. Magnetic Levitation. Netherlands: Springer 2016.
[http://dx.doi.org/10.1007/978-94-017-7524-3]
[40]
Mirica KA, Ilievski F, Ellerbee AK, Shevkoplyas SS, Whitesides GM. Using magnetic levitation for three dimensional self-assembly. Adv Mater 2011; 23(36): 4134-40.
[http://dx.doi.org/10.1002/adma.201101917] [PMID: 21830239]
[41]
Lockett MR, Mirica KA, Mace CR, Blackledge RD, Whitesides GM. Analyzing forensic evidence based on density with magnetic levitation. J Forensic Sci 2013; 58(1): 40-5.
[http://dx.doi.org/10.1111/j.1556-4029.2012.02221.x] [PMID: 22804094]
[42]
Whitesides GM, Kazlauskas RJ, Josephson L. Magnetic separations in biotechnology. Trends Biotechnol 1983; 1(5): 144-8.
[http://dx.doi.org/10.1016/0167-7799(83)90005-7]
[43]
Wang M, Fu A, Hu B, et al. Nanopore target sequencing for accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small 2020; 16(2): e2002169.
[44]
Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal Chem 2017; 89(10): 5428-35.
[http://dx.doi.org/10.1021/acs.analchem.7b00255] [PMID: 28394582]
[45]
Talebian S, Wallace GG, Schroeder A, Stellacci F, Conde J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat Nanotechnol 2020; 15(8): 618-21.
[http://dx.doi.org/10.1038/s41565-020-0751-0] [PMID: 32728083]
[46]
Yu L, Tong Y, Shen G, et al. Immunodepletion with Hypoxemia: A potential high risk subtype of Coronavirus disease 2019. MEDRxiv 2019; in press.
[47]
Bai C, Zhang H, Zeng L, Zhao X, Ma L. Inductive magnetic nanoparticle sensor based on microfluidic chip oil detection technology. Micromachines (Basel) 2020; 11(2): 183.
[http://dx.doi.org/10.3390/mi11020183] [PMID: 32050692]
[48]
Zhao Z, Cui H, Song W, Ru X, Zhou W, Yu X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. BioRxiv. Available at: https://www.biorxiv.org/content/10.1101/2020.02.22.961268v1
[49]
Rapid nano-gold tests can ease pressure on centralised testing for covid-19. Nano magazine-latest nanotechnology news 2020. Available at: https://nano-magazine.com/news/2020/3/26/rapid-nano-goldtests-can-ease-pressure-on-centralised-testing-for-covid-19
[50]
Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020; 14(5): 5268-77.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[51]
Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020; 14(4): 5135-42.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[52]
Yetisen AK, Qu H, Manbachi A, et al. Nanotechnology in Textiles. ACS Nano 2016; 10(3): 3042-68.
[http://dx.doi.org/10.1021/acsnano.5b08176] [PMID: 26918485]
[53]
Hernández-Martínez AR. The role of smart textiles to face the coronavirus: prospects and opportunities 2020. Available at: https://crimsonpublishers.com/tteft/pdf/TTEFT.000630.pdf
[54]
Jokanović V, Živković M, Zdravković N. A new approach to extraordinary efficient protection against COVID 19 based on nanotechnology. Stomatol Glas Srb 2020; 67(2): 100-9.
[http://dx.doi.org/10.2298/SGS2002100J]
[55]
Ahmed MK, Afifi M, Uskoković V. Protecting healthcare workers during COVID-19 pandemic with nanotechnology: A protocol for a new device from Egypt. J Infect Public Health 2020; 13(9): 1243-6.
[http://dx.doi.org/10.1016/j.jiph.2020.07.015] [PMID: 32798183]
[56]
Rai PK, Usmani Z, Thakur VK, Gupta VK, Mishra YK. Tackling COVID-19 pandemic through nanocoatings: Confront and exactitude. Curr Res Green Sust Chem 2020; 3100011
[57]
Hodek J, Zajícová V, Lovětinská-Šlamborová I, Stibor I, Müllerová J, Weber J. Weber Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses. BMC Microbial 2016; 16: 56.
[58]
Mertens P, De Vos N, Martiny D, et al. LHUB-ULB SARS-CoV-2 Working Diagnostic Group. Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Front Med (Lausanne) 2020; 7: 225.
[http://dx.doi.org/10.3389/fmed.2020.00225] [PMID: 32574326]
[59]
Wen T, Huang C, Shi FJ, et al. Development of a lateral flow immunoassay strip for rapid detection of IgG antibody against SARS-CoV-2 virus. Analyst 2020; 145(15): 5345-52.
[60]
Huang C, Wen T, Shi FJ, Zeng XY, Jiao YJ. Rapid detection of IGM antibodies against the sars-cov-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega 2020; 5(21): 12550-6.
[http://dx.doi.org/10.1021/acsomega.0c01554] [PMID: 32542208]
[61]
Moitra P, Alafeef M, Dighe K, Frieman MB, Pan D. Selective naked-eye detection of sars-cov-2 mediated by n gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 2020; 14(6): 7617-27.
[http://dx.doi.org/10.1021/acsnano.0c03822] [PMID: 32437124]
[62]
Poole CP Jr, Owens FJ. Introduction to nanotechnology. Hoboken: John Wiley & Sons 2003.
[63]
Campos EVR, Pereira AES, de Oliveira JL, et al. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnology 2020; 18(1): 125.
[http://dx.doi.org/10.1186/s12951-020-00685-4] [PMID: 32891146]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy