Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

A Mini Review on Surface-Enhanced Raman Scattering based Nanoclusters for Sensing and Imaging Applications

Author(s): Rajasekhar Chokkareddy, Suvardhan Kanchi* and Inamuddin

Volume 18, Issue 4, 2022

Published on: 01 January, 2021

Page: [430 - 439] Pages: 10

DOI: 10.2174/1573411017999210101162831

Price: $65

Abstract

Background: The invention of Surface Enhanced Raman Scattering by adsorbing molecules on nanostructured metal surfaces is a milestone in the development of spectroscopic and analytical techniques. Important experimental and theoretical efforts were geared towards understanding the Surface Enhanced Raman Scattering effect (SERS) and evaluating its significance in a wide range of fields in different types of ultrasensitive sensing applications.

Methods: Metal nanoclusters have been widely studied due to their unique structure and individual properties, which place them among single metal atoms and larger nanoparticles. In general, the nanoparticles with a size less than 2 nm are defined as nanoclusters (NCs) and they possess distinct optical properties. In addition, the excited electrons from absorption bands result in the emission of positive luminescence associated with the quantum size effect in which separate energy levels are produced.

Results: It is demonstrated that fluorescent-based SERS investigations of metal nanoparticles show more photostability, high compatibility, and good water solubility, which has resulted in high sensitivity, better imaging and sensing experience in biomedical applications

Conclusion: In the present review, we report recent trends in the synthesis of metal nanoclusters and their applications in biosensing and bio-imaging applications due to some benefits, including cost-effectiveness, easy synthesis routes and less consumption of sample volumes. Outcomes of this study confirm that SERS-based fluorescent nanoclusters could be one of the thrust research areas in biochemistry and biomedical engineering.

Keywords: Surface Enhanced Raman Scattering, nanoclusters, sensing and imaging, nanotechnology, biochemistry, biomedical engineering.

Graphical Abstract
[1]
Chokkareddy, R.; Bhajanthri, N.K.; Kabane, B.; Redhi, G.G. Bio-Sensing Performance of Magnetite Nanocomposite for Biomedical Applications.Nanomaterials: Biomedical; Environmental, and Engineering Applications, 2018, p. 165.
[2]
Zheng, J.; Nicovich, P.R.; Dickson, R.M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem., 2007, 58, 409-431.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104546] [PMID: 17105412]
[3]
Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P.D.; Calero, G.; Ackerson, C.J.; Whetten, R.L.; Grönbeck, H.; Häkkinen, H. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA, 2008, 105(27), 9157-9162.
[http://dx.doi.org/10.1073/pnas.0801001105] [PMID: 18599443]
[4]
Demchenko, A.P. Advanced Fluorescence Reporters in Chemistry and Biology II: molecular constructions, polymers and nanoparticles; Springer Science & Business Media, 2010, Vol. 9, p. 1.
[http://dx.doi.org/10.1007/978-3-642-04701-5_3]
[5]
Sabela, M.I.; Makhanya, T.; Kanchi, S.; Shahbaaz, M.; Idress, D.; Bisetty, K. One-pot biosynthesis of silver nanoparticles using Iboza Riparia and Ilex Mitis for cytotoxicity on human embryonic kidney cells. J. Photochem. Photobiol. B, 2018, 178, 560-567.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.12.010] [PMID: 29253815]
[6]
Mthembu, C.L.; Sabela, M.I.; Mlambo, M.; Madikizela, L.M.; Kanchi, S.; Gumede, H. Google Analytics and quick response for advancement of gold nanoparticle-based dual lateral flow immunoassay for malaria–Plasmodium lactate dehydrogenase (pLDH). Anal. Methods, 2017, 9(41), 5943-5951.
[http://dx.doi.org/10.1039/C7AY01645J]
[7]
Ozin, G.A.; Huber, H. Cryophotoclustering techniques for synthesizing very small, naked silver clusters Agn of known size (where n= 2-5). The molecular metal cluster-bulk metal particle interface. Inorg. Chem., 1978, 17(1), 155-163.
[http://dx.doi.org/10.1021/ic50179a029]
[8]
Jin, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale, 2010, 2(3), 343-362.
[http://dx.doi.org/10.1039/B9NR00160C] [PMID: 20644816]
[9]
Sun, T.; Seff, K. Silver clusters and chemistry in zeolites. Chem. Rev., 1994, 94(4), 857-870.
[http://dx.doi.org/10.1021/cr00028a001]
[10]
König, L.; Rabin, I.; Schulze, W.; Ertl, G. Chemiluminescence in the agglomeration of metal clusters. Science, 1996, 274(5291), 1353-1354.
[http://dx.doi.org/10.1126/science.274.5291.1353] [PMID: 8910270]
[11]
De Cremer, G.; Sels, B.F.; Hotta, J.; Roeffaers, M.B.; Bartholomeeusen, E.; Coutiño-Gonzalez, E.; Valtchev, V.; De Vos, D.E.; Vosch, T.; Hofkens, J. Optical encoding of silver zeolite microcarriers. Adv. Mater., 2010, 22(9), 957-960.
[http://dx.doi.org/10.1002/adma.200902937] [PMID: 20217819]
[12]
Vosch, T.; Antoku, Y.; Hsiang, J-C.; Richards, C.I.; Gonzalez, J.I.; Dickson, R.M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci. USA, 2007, 104(31), 12616-12621.
[http://dx.doi.org/10.1073/pnas.0610677104] [PMID: 17519337]
[13]
Kanchi, S.; Niranjan, T.; Sarawathi, K.; Venkatasubba Naidu, N. Determination of copper (II) in water, vegetables and alloys samples with polarography at DME using piperidine dithiocarbamate by catalytic hydrogen currents. Anal. Chem: An Indian J., 2011, 10(4),
[14]
Kunene, K.; Weber, M.; Sabela, M.; Voiry, D.; Kanchi, S.; Bisetty, K. Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. Sens. Actuators B Chem., 2020, 2020305127438
[http://dx.doi.org/10.1016/j.snb.2019.127438]
[15]
Kanchi, S.; Krishnamurthy, P.; Saraswathi, K.; Venkatasubba Naidu, N.N. ammonium morpholine dithiocarbamate complex studies with polarography at DME by catalytic hydrogen currents in various environmental samples. Chem. Technol. An Indian J., 2011, 6(1), 6-12.
[16]
Zheng, J.; Dickson, R.M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc., 2002, 124(47), 13982-13983.
[http://dx.doi.org/10.1021/ja028282l] [PMID: 12440882]
[17]
Shang, L.; Dong, S. Sensitive detection of cysteine based on fluorescent silver clusters. Biosens. Bioelectron., 2009, 24(6), 1569-1573.
[http://dx.doi.org/10.1016/j.bios.2008.08.006] [PMID: 18823770]
[18]
Kanchi, S.; Anuradha, P.; Kumar, B.N.; Gopalakrishnan, K.; Ravi, P. Quantification of Se (IV) and Co (II) in Macrobrachium lamarrei, fresh water prawns and their feeding materials. Arab. J. Chem., 2017, 2017, 1.
[19]
Richards, C.I.; Choi, S.; Hsiang, J-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.L.; Dickson, R.M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc., 2008, 130(15), 5038-5039.
[http://dx.doi.org/10.1021/ja8005644] [PMID: 18345630]
[20]
Díez, I.; Ras, R.H. Fluorescent silver nanoclusters. 2011, 3(5), 1963-1970.,
[http://dx.doi.org/10.1039/c1nr00006c]
[21]
Udaya Bhaskara Rao, T.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed. Engl., 2010, 49(23), 3925-3929.
[http://dx.doi.org/10.1002/anie.200907120] [PMID: 20408149]
[22]
Mrudula, K.; Rao, T.U.B.; Pradeep, T. Interfacial synthesis of luminescent 7 kDa silver clusters. J. Mater. Chem., 2009, 19(25), 4335-4342.
[http://dx.doi.org/10.1039/b900025a]
[23]
Yu, J.; Choi, S.; Richards, C.I.; Antoku, Y.; Dickson, R.M. Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem. Photobiol., 2008, 84(6), 1435-1439.
[http://dx.doi.org/10.1111/j.1751-1097.2008.00434.x] [PMID: 18764887]
[24]
Petty, J.T.; Zheng, J.; Hud, N.V.; Dickson, R.M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc., 2004, 126(16), 5207-5212.
[http://dx.doi.org/10.1021/ja031931o] [PMID: 15099104]
[25]
Nardi, E.P.; Evangelista, F.S.; Tormen, L.; Saint, T.D.; Curtius, A.J.; de Souza, S.S. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem., 2009, 112(3), 727-732.
[http://dx.doi.org/10.1016/j.foodchem.2008.06.010]
[26]
Lin, C-A.J.; Lee, C-H.; Hsieh, J-T.; Wang, H-H.; Li, J.K.; Shen, J-L. Synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J. Med. Biol. Eng., 2009, 29(6), 276-283.
[27]
Taniguchi, N. ARAKAWA, C.; KOBAYASHI, T. On the basic concept of’nano-technology’. Proceedings of the International Conference on Production Engineering, , pp. 1974-8.1974
[28]
Forshaw, M.; Stadler, R.; Crawley, D.; Nikolić, K. A short review of nanoelectronic architectures. Nanotechnology, 2004, 15(4), S220.
[http://dx.doi.org/10.1088/0957-4484/15/4/019]
[29]
Yeom, J.; Yeom, B.; Chan, H.; Smith, K.W.; Dominguez-Medina, S.; Bahng, J.H.; Zhao, G.; Chang, W.S.; Chang, S.J.; Chuvilin, A.; Melnikau, D.; Rogach, A.L.; Zhang, P.; Link, S.; Král, P.; Kotov, N.A. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater., 2015, 14(1), 66-72.
[http://dx.doi.org/10.1038/nmat4125] [PMID: 25401922]
[30]
Shin, D-M.; Han, H.J.; Kim, W-G.; Kim, E.; Kim, C.; Hong, S.W. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars. Energy Environ. Sci., 2015, 8(11), 3198-3203.
[http://dx.doi.org/10.1039/C5EE02611C]
[31]
Kim, T-H.; Cho, K-S.; Lee, E.K.; Lee, S.J.; Chae, J.; Kim, J.W. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics, 2011, 5(3), 176.
[http://dx.doi.org/10.1038/nphoton.2011.12]
[32]
Liu, G.; Swierczewska, M.; Lee, S.; Chen, X. Functional nanoparticles for molecular imaging guided gene delivery. Nano Today, 2010, 5(6), 524-539.
[http://dx.doi.org/10.1016/j.nantod.2010.10.005] [PMID: 22473061]
[33]
Hubbell, J.A.; Chilkoti, A. Chemistry. Nanomaterials for drug delivery. Science, 2012, 337(6092), 303-305.
[http://dx.doi.org/10.1126/science.1219657] [PMID: 22822138]
[34]
Wan, A.C.; Ying, J.Y. Nanomaterials for in situ cell delivery and tissue regeneration. Adv. Drug Deliv. Rev., 2010, 62(7-8), 731-740.
[http://dx.doi.org/10.1016/j.addr.2010.02.002] [PMID: 20156499]
[35]
Pitarke, J.; Silkin, V.; Chulkov, E.; Echenique, P. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys., 2006, 70(1), 1.
[http://dx.doi.org/10.1088/0034-4885/70/1/R01]
[36]
Szunerits, S.; Spadavecchia, J.; Boukherroub, R. Surface plasmon resonance: signal amplification using colloidal gold nanoparticles for enhanced sensitivity. Rev. Anal. Chem., 2014, 33(3), 153-164.
[http://dx.doi.org/10.1515/revac-2014-0011]
[37]
Fan, X.; Zheng, W.; Singh, D.J. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl., 2014, 3(6)e179
[http://dx.doi.org/10.1038/lsa.2014.60]
[38]
Ruemmele, J.A.; Hall, W.P.; Ruvuna, L.K.; Van Duyne, R.P. A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal. Chem., 2013, 85(9), 4560-4566.
[http://dx.doi.org/10.1021/ac400192f] [PMID: 23560643]
[39]
Oh, Y.; Kim, K.; Hwang, S.; Ahn, H.; Oh, J-W.; Choi, J-r. Recent advances of nanostructure implemented spectroscopic sensors-A brief overview. Appl. Spectrosc. Rev., 2016, 51(7-9), 656-668.
[http://dx.doi.org/10.1080/05704928.2016.1166437]
[40]
Fujiwara, K.; Watarai, H.; Itoh, H.; Nakahama, E.; Ogawa, N. Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy. Anal. Bioanal. Chem., 2006, 386(3), 639-644.
[http://dx.doi.org/10.1007/s00216-006-0559-2] [PMID: 16823566]
[41]
Hall, W.P.; Ngatia, S.N.; Van Duyne, R.P. LSPR biosensor signal enhancement using nanoparticle- antibody conjugates. J. Phys. Chem. C. Nanomater. Interfaces, 2011, 115(5), 1410-1414.
[http://dx.doi.org/10.1021/jp106912p] [PMID: 21660207]
[42]
Obare, S.O.; Hollowell, R.E.; Murphy, C.J. Sensing strategy for lithium ion based on gold nanoparticles. Langmuir, 2002, 18(26), 10407-10410.
[http://dx.doi.org/10.1021/la0260335]
[43]
Raman, C.V. A new radiation. Indian J. Phys., 1928, 1928, 2387-2398.
[44]
Khanna, R.; Stranz, D.; Donn, B. A spectroscopic study of intermediates in the condensation of refractory smokes: Matrix isolation experiments of SiO. J. Chem. Phys., 1981, 74(4), 2108-2115.
[http://dx.doi.org/10.1063/1.441393]
[45]
Chou, K-C. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys. Chem., 1988, 30(1), 3-48.
[http://dx.doi.org/10.1016/0301-4622(88)85002-6] [PMID: 3046672]
[46]
Palonpon, A.F.; Ando, J.; Yamakoshi, H.; Dodo, K.; Sodeoka, M.; Kawata, S.; Fujita, K. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc., 2013, 8(4), 677-692.
[http://dx.doi.org/10.1038/nprot.2013.030] [PMID: 23471112]
[47]
Kurouski, D.; Van Duyne, R.P. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal. Chem., 2015, 87(5), 2901-2906.
[http://dx.doi.org/10.1021/ac504405u] [PMID: 25635868]
[48]
Emory, S.R.; Nie, S. Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Anal. Chem., 1997, 69(14), 2631-2635.
[http://dx.doi.org/10.1021/ac9701647]
[49]
Talley, C.E.; Jusinski, L.; Hollars, C.W.; Lane, S.M.; Huser, T. Intracellular pH sensors based on surface-enhanced raman scattering. Anal. Chem., 2004, 76(23), 7064-7068.
[http://dx.doi.org/10.1021/ac049093j] [PMID: 15571360]
[50]
Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett., 2007, 7(9), 2819-2823.
[http://dx.doi.org/10.1021/nl071418z] [PMID: 17696561]
[51]
Wang, H.H.; Liu, C.Y.; Wu, S.B.; Liu, N.W.; Peng, C.Y.; Chan, T.H. Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Adv. Mater., 2006, 18(4), 491-495.
[http://dx.doi.org/10.1002/adma.200501875]
[52]
Kneipp, K.; Kneipp, H.; Kartha, V.B.; Manoharan, R.; Deinum, G.; Itzkan, I. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 1998, 57(6), R6281.
[http://dx.doi.org/10.1103/PhysRevE.57.R6281]
[53]
Yuan, H.; Fales, A.M.; Khoury, C.G.; Liu, J.; Vo-Dinh, T. Spectral characterization and intracellular detection of Surface‐Enhanced Raman Scattering (SERS)‐encoded plasmonic gold nanostars. J. Raman Spectrosc., 2013, 44(2), 234-239.
[http://dx.doi.org/10.1002/jrs.4172] [PMID: 24839346]
[54]
Kneipp, K.; Kneipp, H.; Manoharan, R.; Hanlon, E.B.; Itzkan, I.; Dasari, R.R. Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters. Appl. Spectrosc., 1998, 52(12), 1493-1497.
[http://dx.doi.org/10.1366/0003702981943059]
[55]
Li, M.; Cushing, S.K.; Zhang, J.; Lankford, J.; Aguilar, Z.P.; Ma, D.; Wu, N. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications. Nanotechnology, 2012, 23(11)115501
[http://dx.doi.org/10.1088/0957-4484/23/11/115501] [PMID: 22383452]
[56]
Van Duyne, R.; Hulteen, J.; Treichel, D. Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J. Chem. Phys., 1993, 99(3), 2101-2115.
[http://dx.doi.org/10.1063/1.465276]
[57]
Ibrahim, A.; Oldham, P.B.; Stokes, D.L.; Vo‐Dinh, T. Determination of Enhancement Factors for Surface‐Enhanced FT‐Raman Spectroscopy on Gold and Silver Surfaces. J. Raman Spectrosc., 1996, 27(12), 887-891.
[http://dx.doi.org/10.1002/(SICI)1097-4555(199612)27:12<887:AID-JRS46>3.0.CO;2-2]
[58]
Aouani, H.; Mahboub, O.; Bonod, N.; Devaux, E.; Popov, E.; Rigneault, H.; Ebbesen, T.W.; Wenger, J. Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett., 2011, 11(2), 637-644.
[http://dx.doi.org/10.1021/nl103738d] [PMID: 21247202]
[59]
Punj, D.; Mivelle, M.; Moparthi, S.B.; van Zanten, T.S.; Rigneault, H.; van Hulst, N.F.; García-Parajó, M.F.; Wenger, J. A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations. Nat. Nanotechnol., 2013, 8(7), 512-516.
[http://dx.doi.org/10.1038/nnano.2013.98] [PMID: 23748196]
[60]
Xie, F.; Pang, J.S.; Centeno, A.; Ryan, M.P.; Riley, D.J.; Alford, N.M. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res., 2013, 6(7), 496-510.
[http://dx.doi.org/10.1007/s12274-013-0327-5]
[61]
Sugawa, K.; Tamura, T.; Tahara, H.; Yamaguchi, D.; Akiyama, T.; Otsuki, J.; Kusaka, Y.; Fukuda, N.; Ushijima, H. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. ACS Nano, 2013, 7(11), 9997-10010.
[http://dx.doi.org/10.1021/nn403925d] [PMID: 24090528]
[62]
Live, L.S.; Bolduc, O.R.; Masson, J.F. Propagating surface plasmon resonance on microhole arrays. Anal. Chem., 2010, 82(9), 3780-3787.
[http://dx.doi.org/10.1021/ac100177j] [PMID: 20356057]
[63]
Strobbia, P.; Languirand, E.R.; Cullum, B.M. Recent advances in plasmonic nanostructures for sensing: A review. Opt. Eng., 2015, 54(10)100902
[http://dx.doi.org/10.1117/1.OE.54.10.100902]
[64]
Grillet, N.; Manchon, D.; Bertorelle, F.; Bonnet, C.; Broyer, M.; Cottancin, E.; Lermé, J.; Hillenkamp, M.; Pellarin, M. Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding. ACS Nano, 2011, 5(12), 9450-9462.
[http://dx.doi.org/10.1021/nn2041329] [PMID: 22087471]
[65]
Marinakos, S.M.; Chen, S.; Chilkoti, A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal. Chem., 2007, 79(14), 5278-5283.
[http://dx.doi.org/10.1021/ac0706527] [PMID: 17567106]
[66]
Nusz, G.J.; Marinakos, S.M.; Curry, A.C.; Dahlin, A.; Höök, F.; Wax, A.; Chilkoti, A. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal. Chem., 2008, 80(4), 984-989.
[http://dx.doi.org/10.1021/ac7017348] [PMID: 18197636]
[67]
Rosman, C.; Prasad, J.; Neiser, A.; Henkel, A.; Edgar, J.; Sönnichsen, C. Multiplexed plasmon sensor for rapid label-free analyte detection. Nano Lett., 2013, 13(7), 3243-3247.
[http://dx.doi.org/10.1021/nl401354f] [PMID: 23789876]
[68]
Aćimović, S.S.; Ortega, M.A.; Sanz, V.; Berthelot, J.; Garcia-Cordero, J.L.; Renger, J.; Maerkl, S.J.; Kreuzer, M.P.; Quidant, R. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett., 2014, 14(5), 2636-2641.
[http://dx.doi.org/10.1021/nl500574n] [PMID: 24730454]
[69]
Durr, N.J.; Larson, T.; Smith, D.K.; Korgel, B.A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett., 2007, 7(4), 941-945.
[http://dx.doi.org/10.1021/nl062962v] [PMID: 17335272]
[70]
Mirza, J.; Martens, I.; Grüßer, M.; Bizzotto, D.; Schuster, R.; Lipkowski, J. Gold nanorod arrays: excitation of transverse plasmon modes and surface-enhanced Raman applications. J. Phys. Chem. C, 2016, 120(29), 16246-16253.
[http://dx.doi.org/10.1021/acs.jpcc.6b02742]
[71]
Nehl, C.L.; Hafner, J.H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem., 2008, 18(21), 2415-2419.
[http://dx.doi.org/10.1039/b714950f]
[72]
Dondapati, S.K.; Sau, T.K.; Hrelescu, C.; Klar, T.A.; Stefani, F.D.; Feldmann, J. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano, 2010, 4(11), 6318-6322.
[http://dx.doi.org/10.1021/nn100760f] [PMID: 20942444]
[73]
Shiohara, A.; Novikov, S.M.; Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Liz-Marzán, L.M. Plasmon modes and hot spots in gold nanostar–satellite clusters. J. Phys. Chem. C, 2014, 119(20), 10836-10843.
[http://dx.doi.org/10.1021/jp509953f]
[74]
Choi, J.R.; Shin, D-M.; Song, H.; Lee, D.; Kim, K. Current achievements of nanoparticle applications in developing optical sensing and imaging techniques. Nano Converg., 2016, 3(1), 30.
[http://dx.doi.org/10.1186/s40580-016-0090-x] [PMID: 28191440]
[75]
Krupa, A.; Descamps, M.; Willart, J.-F.; Strach, B.; Wyska, E.b.; Jachowicz, R. High-energy ball milling as green process to vitrify tadalafil and improve bioavailability., 2016, 13(11), 3891-3902.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00688]
[76]
Li, S-F.; Zhang, X-M.; Yao, Z-J.; Yu, R.; Huang, F.; Wei, X-W. Enhanced chemiluminescence of the rhodamine 6g− cerium (iv) system by au− ag alloy nanoparticles. J. Phys. Chem. C, 2009, 113(35), 15586-15592.
[http://dx.doi.org/10.1021/jp900596f]
[77]
Kim, W-J.; Kim, S.; Kim, A.R.; Yoo, D.J. Direct detection system for Escherichia coli using Au–Ag alloy microchips. Ind. Eng. Chem. Res., 2013, 52(22), 7282-7288.
[http://dx.doi.org/10.1021/ie3022797]
[78]
Aslan, K.; Wu, M.; Lakowicz, J.R.; Geddes, C.D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc., 2007, 129(6), 1524-1525.
[http://dx.doi.org/10.1021/ja0680820] [PMID: 17283994]
[79]
Kwizera, E.A.; Chaffin, E.; Shen, X.; Chen, J.; Zou, Q.; Wu, Z.; Gai, Z.; Bhana, S.; O’Connor, R.; Wang, L.; Adhikari, H.; Mishra, S.R.; Wang, Y.; Huang, X. Size-and shape-controlled synthesis and properties of magnetic–plasmonic core–shell nanoparticles. J Phys Chem C Nanomater Interfaces, 2016, 120(19), 10530-10546.
[http://dx.doi.org/10.1021/acs.jpcc.6b00875] [PMID: 27239246]
[80]
Chung, E.; Gao, R.; Ko, J.; Choi, N.; Lim, D.W.; Lee, E.K.; Chang, S.I.; Choo, J. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel. Lab Chip, 2013, 13(2), 260-266.
[http://dx.doi.org/10.1039/C2LC41079F] [PMID: 23208150]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy