Review Article

Potential Non-coding RNAs from Microorganisms and their Therapeutic Use in the Treatment of Different Human Cancers

Author(s): Raju Biswas, Dipanjana Ghosh, Bhramar Dutta, Urmi Halder, Prittam Goswami and Rajib Bandopadhyay*

Volume 21, Issue 3, 2021

Published on: 30 December, 2020

Page: [207 - 215] Pages: 9

DOI: 10.2174/1566523220999201230204814

Price: $65

Abstract

Cancer therapy describes the treatment of cancer, often with surgery, chemotherapy, and radiotherapy. Additionally, RNA interference (RNAi) is likely to be considered a new emerging, alternative therapeutic approach for silencing/targeting cancer-related genes. RNAi can exert antiproliferative and proapoptotic effects by targeting functional carcinogenic molecules or knocking down gene products of cancer-related genes. However, in contrast to conventional cancer therapies, RNAi based therapy seems to have fewer side effects. Transcription signal sequence and conserved sequence analysis-showed that microorganisms could be a potent source of non-coding RNAs. This review concluded that mapping of RNAi mechanism and RNAi based drug delivery approaches is expected to lead a better prospective of cancer therapy.

Keywords: Cancer therapy, RNA interference, carcinogenic, microorganisms, drugs delivery, RNAi based therapy.

Graphical Abstract
[1]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3(3): 3279-330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[2]
Chan HK, Ismail S. Side effects of chemotherapy among cancer patients in a Malaysian General Hospital: experiences, perceptions and informational needs from clinical pharmacists. Asian Pac J Cancer Prev 2014; 15(13): 5305-9.
[http://dx.doi.org/10.7314/APJCP.2014.15.13.5305] [PMID: 25040993]
[3]
Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front Pharmacol 2018; 9: 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[4]
Alfarouk KO, Stock CM, Taylor S, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int 2015; 15: 71.
[http://dx.doi.org/10.1186/s12935-015-0221-1] [PMID: 26180516]
[5]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[6]
Maduri S. Applicability of RNA interference in cancer therapy: Current status. Indian J Cancer 2015; 52(1): 11-21.
[http://dx.doi.org/10.4103/0019-509X.175598] [PMID: 26837960]
[7]
Mosallaei M, Simonian M, Ehtesham N, et al. Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther 2020; 27: 854-68.
[http://dx.doi.org/10.1038/s41417-020-0179-6] [PMID: 32418986]
[8]
Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta 2011; 1812(5): 592-601.
[http://dx.doi.org/10.1016/j.bbadis.2011.02.002] [PMID: 21315819]
[9]
Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC. Prospects of RNA interference therapy for cancer. Gene Ther 2006; 13(6): 464-77.
[http://dx.doi.org/10.1038/sj.gt.3302694] [PMID: 16341059]
[10]
Babu A, Munshi A, Ramesh R. Combinatorial therapeutic approaches with RNAi and anticancer drugs using nanodrug delivery systems. Drug Dev Ind Pharm 2017; 43(9): 1391-401.
[http://dx.doi.org/10.1080/03639045.2017.1313861] [PMID: 28523942]
[11]
Dang THY, Tyagi S, D’Cunha G, Bhave M, Crawford R, Ivanova EP. Computational prediction of microRNAs in marine bacteria of the genus Thalassospira. PLoS One 2019; 14(3): e0212996.
[http://dx.doi.org/10.1371/journal.pone.0212996] [PMID: 30861013]
[12]
Grüll MP, Peña-Castillo L, Mulligan ME, Lang AS. Genome-wide identification and characterization of small RNAs in Rhodobacter capsulatus and identification of small RNAs affected by loss of the response regulator CtrA. RNA Biol 2017; 14(7): 914-25.
[http://dx.doi.org/10.1080/15476286.2017.1306175] [PMID: 28296577]
[13]
Eisenhardt KMH, Reuscher CM, Klug G. PcrX, an sRNA derived from the 3′- UTR of the Rhodobacter sphaeroides puf operon modulates expression of puf genes encoding proteins of the bacterial photosynthetic apparatus. Mol Microbiol 2018; 110(3): 325-34.
[http://dx.doi.org/10.1111/mmi.14076] [PMID: 29995316]
[14]
Cousin FJ, Lynch DB, Chuat V, et al. A long and abundant non-coding RNA in Lactobacillus salivarius. Microb Genom 2017; 3(9): e000126.
[http://dx.doi.org/10.1099/mgen.0.000126] [PMID: 29114404]
[15]
Wels M, Bongers RS, Boekhorst J, et al. Large intergenic cruciform-like supermotifs in the Lactobacillus plantarum genome. J Bacteriol 2009; 191(10): 3420-3.
[http://dx.doi.org/10.1128/JB.01672-08] [PMID: 19286810]
[16]
Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res 2007; 35(3): 962-74.
[http://dx.doi.org/10.1093/nar/gkl1096] [PMID: 17259222]
[17]
Mujahid S, Bergholz TM, Oliver HF, Boor KJ, Wiedmann M. Exploration of the role of the non-coding RNA SbrE in L. monocytogenes stress response. Int J Mol Sci 2013; 14(5): 9685.
[http://dx.doi.org/10.3390/ijms14059685] [PMID: 23644892]
[18]
Meyer MM, Ames TD, Smith DP, et al. Identification of candidate structured RNAs in the marine organism ‘Candidatus Pelagibacter ubique’. BMC Genomics 2009; 10: 268.
[http://dx.doi.org/10.1186/1471-2164-10-268] [PMID: 19531245]
[19]
Woolfit M, Algama M, Keith JM, McGraw EA, Popovici J. Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis. PLoS One 2015; 10(3): e0118595.
[http://dx.doi.org/10.1371/journal.pone.0118595] [PMID: 25739023]
[20]
Vogel J, Wagner EGH. Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 2007; 10(3): 262-70.
[http://dx.doi.org/10.1016/j.mib.2007.06.001] [PMID: 17574901]
[21]
Henderson CA, Vincent HA, Stone CM, et al. Characterization of MicA interactions suggests a potential novel means of gene regulation by small non-coding RNAs. Nucleic Acids Res 2013; 41(5): 3386-97.
[http://dx.doi.org/10.1093/nar/gkt008] [PMID: 23361466]
[22]
Wu Z, Qin W, Wu S, Zhu G, Bao W, Wu S. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets. Biol Direct 2016; 11(1): 59.
[http://dx.doi.org/10.1186/s13062-016-0160-3] [PMID: 27809935]
[23]
Potts AH, Guo Y, Ahmer BMM, Romeo T. Role of CsrA in stress responses and metabolism important for Salmonella virulence revealed by integrated transcriptomics. PLoS One 2019; 14(1): e0211430.
[http://dx.doi.org/10.1371/journal.pone.0211430] [PMID: 30682134]
[24]
Boisset S, Geissmann T, Huntzinger E, et al. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 2007; 21(11): 1353-66.
[http://dx.doi.org/10.1101/gad.423507] [PMID: 17545468]
[25]
Chevalier C, Boisset S, Romilly C, et al. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation. PLoS Pathog 2010; 6(3): e1000809.
[http://dx.doi.org/10.1371/journal.ppat.1000809] [PMID: 20300607]
[26]
Bardill JP, Hammer BK. Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae. RNA Biol 2012; 9(4): 392-401.
[http://dx.doi.org/10.4161/rna.19975] [PMID: 22546941]
[27]
Stav S, Atilho RM, Mirihana Arachchilage G, Nguyen G, Higgs G, Breaker RR. Genome-wide discovery of structured noncoding RNAs in bacteria. BMC Microbiol 2019; 19(1): 66.
[http://dx.doi.org/10.1186/s12866-019-1433-7] [PMID: 30902049]
[28]
Lee H, Zhang Z, Krause HM. Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners? Trends Genet 2019; 35(12): 892-902.
[http://dx.doi.org/10.1016/j.tig.2019.09.006] [PMID: 31662190]
[29]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[30]
Li SC, Chan WC, Hu LY, Lai CH, Hsu CN, Lin WC. Identification of homologous microRNAs in 56 animal genomes. Genomics 2010; 96(1): 1-9.
[http://dx.doi.org/10.1016/j.ygeno.2010.03.009] [PMID: 20347954]
[31]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1: 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[32]
Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113(25): 6411-8.
[http://dx.doi.org/10.1182/blood-2008-07-170589] [PMID: 19211935]
[33]
He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447(7148): 1130-4.
[http://dx.doi.org/10.1038/nature05939] [PMID: 17554337]
[34]
Okada N, Lin CP, Ribeiro MC, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014; 28(5): 438-50.
[http://dx.doi.org/10.1101/gad.233585.113] [PMID: 24532687]
[35]
Zhang J, Du YY, Lin YF, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun 2008; 377(1): 136-40.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.089] [PMID: 18834857]
[36]
Liu B, Peng XC, Zheng XL, Wang J, Qin YW. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 2009; 66(2): 169-75.
[http://dx.doi.org/10.1016/j.lungcan.2009.01.010] [PMID: 19223090]
[37]
Guo C, Sah JF, Beard L, Willson JKV, Markowitz SD, Guda K. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 2008; 47(11): 939-46.
[http://dx.doi.org/10.1002/gcc.20596] [PMID: 18663744]
[38]
Jiang X, Huang H, Li Z, et al. Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 2012; 22(4): 524-35.
[http://dx.doi.org/10.1016/j.ccr.2012.08.028] [PMID: 23079661]
[39]
Rokah OH, Granot G, Ovcharenko A, et al. Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One 2012; 7(4): e35501.
[http://dx.doi.org/10.1371/journal.pone.0035501] [PMID: 22511990]
[40]
Ward A, Balwierz A, Zhang JD, et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 2013; 32(9): 1173-82.
[http://dx.doi.org/10.1038/onc.2012.128] [PMID: 22508479]
[41]
Romano G, Acunzo M, Garofalo M, et al. MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non-small-cell lung cancer through BIM down-regulation. Proc Natl Acad Sci USA 2012; 109(41): 16570-5.
[http://dx.doi.org/10.1073/pnas.1207917109] [PMID: 23012423]
[42]
Li Z, Cao Y, Jie Z, et al. miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer Lett 2012; 323(1): 41-7.
[http://dx.doi.org/10.1016/j.canlet.2012.03.029] [PMID: 22469786]
[43]
Lee HJ, Hong SH. Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing. FEMS Microbiol Lett 2012; 326(2): 131-6.
[http://dx.doi.org/10.1111/j.1574-6968.2011.02441.x] [PMID: 22092283]
[44]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[45]
Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 2004; 58: 303-28.
[http://dx.doi.org/10.1146/annurev.micro.58.030603.123841] [PMID: 15487940]
[46]
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res 2008; 36(Database issue): D149-53.
[http://dx.doi.org/10.1093/nar/gkm995] [PMID: 18158296]
[47]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): 55-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[48]
Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 2013; 29(5): 638-44.
[http://dx.doi.org/10.1093/bioinformatics/btt014] [PMID: 23325619]
[49]
Li Z, Zhang Z, Li Y, et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 2013; 121(8): 1422-31.
[http://dx.doi.org/10.1182/blood-2012-07-442004] [PMID: 23264595]
[50]
Berger AH, Imielinski M, Duke F, et al. Oncogenic RIT1 mutations in lung adenocarcinoma. Oncogene 2014; 33(35): 4418-23.
[http://dx.doi.org/10.1038/onc.2013.581] [PMID: 24469055]
[51]
Shen Z, Li Y, Fang Y, et al. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol Oncol 2020; 14(2): 387-406.
[http://dx.doi.org/10.1002/1878-0261.12626] [PMID: 31876369]
[52]
Singleton DC, Rouhi P, Zois CE, et al. Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis. Oncogene 2015; 34(36): 4713-22.
[http://dx.doi.org/10.1038/onc.2014.396] [PMID: 25486436]
[53]
Vanaja GR, Ramulu HG, Kalle AM. Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6. Cell Commun Signal 2018; 16(1): 20.
[http://dx.doi.org/10.1186/s12964-018-0231-4] [PMID: 29716651]
[54]
Sun MY, Zhang H, Tao J, Ni ZH, Wu QX, Tang QF. Expression and biological function of rhotekin in gastric cancer through regulating p53 pathway. Cancer Manag Res 2019; 11: 1069-80.
[http://dx.doi.org/10.2147/CMAR.S185345] [PMID: 30774435]
[55]
Zhang W, Liang Z, Li J. Inhibition of rhotekin exhibits antitumor effects in lung cancer cells. Oncol Rep 2016; 35(5): 2529-34.
[http://dx.doi.org/10.3892/or.2016.4634] [PMID: 26935528]
[56]
Timofeeva OA, Zhang X, Ressom HW, et al. Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. Int J Oncol 2009; 35(4): 751-60.
[PMID: 19724911]
[57]
Cai D, Choi PS, Gelbard M, Meyerson M. Identification and characterization of oncogenic SOS1 mutations in lung adenocarcinoma. Mol Cancer Res 2019; 17(4): 1002-12.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0316] [PMID: 30635434]
[58]
Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci 2016; 23(1): 53.
[http://dx.doi.org/10.1186/s12929-016-0269-9] [PMID: 27411336]
[59]
Fischer K, Pflugfelder GO. Putative breast cancer driver mutations in TBX3 cause impaired transcriptional repression. Front Oncol 2015; 5: 244.
[http://dx.doi.org/10.3389/fonc.2015.00244] [PMID: 26579496]
[60]
Fang Y, Yuan Y, Zhang LL, Lu JW, Feng JF, Hu SN. Downregulated GBX2 gene suppresses proliferation, invasion and angiogenesis of breast cancer cells through inhibiting the Wnt/β-catenin signaling pathway. Cancer Biomark 2018; 23(3): 405-18.
[http://dx.doi.org/10.3233/CBM-181466] [PMID: 30223390]
[61]
Gao AC, Lou W, Isaacs JT. Enhanced GBX2 expression stimulates growth of human prostate cancer cells via transcriptional up-regulation of the interleukin 6 gene. Clin Cancer Res 2000; 6(2): 493-7.
[PMID: 10690529]
[62]
Peracaula R, Cleary KR, Lorenzo J, de Llorens R, Frazier ML. Human pancreatic ribonuclease 1: expression and distribution in pancreatic adenocarcinoma. Cancer 2000; 89(6): 1252-8.
[http://dx.doi.org/10.1002/1097-0142(20000915)89:6<1252::AID-CNCR9>3.0.CO;2-C] [PMID: 11002220]
[63]
Karagiannis GS, Pastoriza JM, Wang Y, et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med 2017; 9(397): 1-15.
[http://dx.doi.org/10.1126/scitranslmed.aan0026] [PMID: 28679654]
[64]
Mongre RK, Jung S, Mishra CB, Lee BS, Kumari S, Lee MS. Prognostic and Clinicopathological Significance of SERTAD1 in Various Types of Cancer Risk: A Systematic Review and Retrospective Analysis. Cancers (Basel) 2019; 11(3): 337.
[http://dx.doi.org/10.3390/cancers11030337] [PMID: 30857225]
[65]
Kudryavtseva AV, Nyushko KM, Zaretsky AR, Shagin DA, Kaprin AD, Alekseev BY. Upregulation of Rarb, Rarg, and Rorc Genes in Clear Cell Renal Cell Carcinoma. Biomed Pharmacol J 2016; 9: 967-75.
[http://dx.doi.org/10.13005/bpj/1036]
[66]
Subramani R, Camacho FA, Levin CI, et al. FOXC1 plays a crucial role in the growth of pancreatic cancer. Oncogenesis 2018; 7(7): 52.
[http://dx.doi.org/10.1038/s41389-018-0061-7] [PMID: 29976975]
[67]
Elian FA, Yan E, Walter MA. FOXC1, the new player in the cancer sandbox. Oncotarget 2017; 9(8): 8165-78.
[http://dx.doi.org/10.18632/oncotarget.22742] [PMID: 29487724]
[68]
Sato N, Koinuma J, Fujita M, et al. Activation of WD repeat and high-mobility group box DNA binding protein 1 in pulmonary and esophageal carcinogenesis. Clin Cancer Res 2010; 16(1): 226-39.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1405] [PMID: 20028748]
[69]
Jaffer T, Ma D. The emerging role of chemokine receptor CXCR2 in cancer progression. Transl Cancer Res 2016; 5: 616-28.
[http://dx.doi.org/10.21037/tcr.2016.10.06]
[70]
Hershberg R, Altuvia S, Margalit H. A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res 2003; 31(7): 1813-20.
[http://dx.doi.org/10.1093/nar/gkg297] [PMID: 12654996]
[71]
Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet 2014; 15(6): 423-37.
[http://dx.doi.org/10.1038/nrg3722] [PMID: 24776770]
[72]
Raghavan R, Groisman EA, Ochman H. Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res 2011; 21(9): 1487-97.
[http://dx.doi.org/10.1101/gr.119370.110] [PMID: 21665928]
[73]
Lei LI. Hoi Shan Kwan. A novel computational approach for genome-wide prediction of small RNAs in bacteria. bioRxiv 2014; 1-24.
[http://dx.doi.org/10.1101/011668]
[74]
Argaman L, Elgrably-Weiss M, Hershko T, Vogel J, Altuvia S. RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq. Proc Natl Acad Sci USA 2012; 109(12): 4621-6.
[http://dx.doi.org/10.1073/pnas.1113113109] [PMID: 22393021]
[75]
Argaman L, Hershberg R, Vogel J, et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 2001; 11(12): 941-50.
[http://dx.doi.org/10.1016/S0960-9822(01)00270-6] [PMID: 11448770]
[76]
Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 2001; 15(13): 1637-51.
[http://dx.doi.org/10.1101/gad.901001] [PMID: 11445539]
[77]
Rivas E, Klein RJ, Jones TA, Eddy SR. Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol 2001; 11(17): 1369-73.
[http://dx.doi.org/10.1016/S0960-9822(01)00401-8] [PMID: 11553332]
[78]
Chen S, Lesnik EA, Hall TA, et al. A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. Biosystems 2002; 65(2-3): 157-77.
[http://dx.doi.org/10.1016/S0303-2647(02)00013-8] [PMID: 12069726]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy