Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Synthesis of Acid Free Benzaldehyde by Highly Selective Oxidation of Benzyl Alcohol Over Recyclable Supported Palladium Catalyst

Author(s): Annam Renita Antony, Sunitha Salla* and Shanthana Lakshmi Duraikannu

Volume 25, Issue 2, 2022

Published on: 29 December, 2020

Page: [284 - 291] Pages: 8

DOI: 10.2174/1386207323666201230091613

Price: $65

Abstract

Aim and Objectives:This research work deals with the highly selective oxidation of benzyl alcohol to benzaldehyde by palladium doped graphene oxide catalyst, which was synthesized by a modified Hummer’s method. The effect of reaction parameters like temperature, time and catalyst loading were studied. It was found that fine-tuning of reaction temperature and presence of a small amount of benzyl alcohol in a product prevented the undesirable formation of benzoic acid crystals, which form on auto-oxidation of benzaldehyde. Benzoic acid or substituted benzoic acid formation was hindered by the presence of < 2% benzyl alcohol at a reaction temperature of 50˚C, which was further supported by palladium doped graphene oxide catalyst.

Materials and Methods: Modified Hummer’s method was used for the synthesis of graphene oxide and palladium doped graphene oxide was synthesized by in-situ method in which graphene oxide dispersed in 20mL of distilled water was ultrasonicated for 2h. Palladium solution was added and it was further ultrasonicated for 30min for homogeneous deposition of palladium on a graphene oxide support. To this, 2 mL of sodium borohydride solution was added and stirred at room temperature for 4h. The resulting solution was centrifuged, and the residue was dried at 60°C for 12 h.

Results: The morphological characteristics and the functional groups of supported catalysts were characterized by X-ray diffraction, Field emission scanning spectroscopy, and Fourier transform infrared spectroscopy. The produced benzaldehyde was characterized by gas chromatography.

Conclusion: PdGO catalyst was prepared using sodium borohydride as a reducing agent by modified Hummer’s method and utilized for the oxidation of benzyl alcohol to benzaldehyde. A maximum conversion of 89% and selectivity of 99% were obtained and the catalyst could be reused up to five times without any compromise on conversion and selectivity.

Keywords: Acid-free benzaldehyde, selective oxidation, PdGO catalyst, reaction parameters, recycling, safety

Graphical Abstract
[1]
Cristina, D.P.; Ermelinda, F.; Michele, R. Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. J. Catal., 2008, 260, 384-386.
[http://dx.doi.org/10.1016/j.jcat.2008.10.003]
[2]
Ajaikumar, S.; Pandurangan, A. Reaction of benzaldehyde with various aliphatic glycols in the presence of hydrophobic Al-MCM- 41: A convenient synthesis of cyclic acetals. J. Mol. Catal. Chem., 2008, 290(1−2), 35-43.
[http://dx.doi.org/10.1016/j.molcata.2008.04.008]
[3]
Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag. Sci., 2011, 67(3), 341-351.
[http://dx.doi.org/10.1002/ps.2070] [PMID: 21308960]
[4]
Duschek, A.; Kirsch, S.F. 2-Iodoxybenzoic acid--a simple oxidant with a dazzling array of potential applications. Angew. Chem. Int. Ed. Engl., 2011, 50(7), 1524-1552.
[http://dx.doi.org/10.1002/anie.201000873] [PMID: 21271626]
[5]
Popp, F.D. Synthesis of Potential Anticancer Agents. VIII. Benzaldehyde mustard derivatives and related compounds. J. Med. Pharm. Chem., 1962, 5(3), 627-629.
[http://dx.doi.org/10.1021/jm01238a020]
[6]
Choudhary, V.R.; Chaudhari, P.A.; Narkhede, V.S. Solvent- free liquid phase oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using non-noble transition metal containing hydrotalcite-like solid catalysts; Catal Comm, 2003, pp. 171-175.
[7]
McGrath, D.V.; Grubbs, R.H.; Ziller, J.W. Aqueous ruthenium(II) complexes of functionalized olefins: the x-ray structure of Ru(H2O)2(.eta.1(O).eta.2(C,C¢)- OCOCH2CH=CH3)2. J. Am. Chem. Soc., 1991, 113, 3611-3613.
[http://dx.doi.org/10.1021/ja00009a069]
[8]
Knight, D.A.; Schull, T.L. Rhodium catalyzed allylic isomerization in water. Synth. Commun., 2003, 33, 827-831.
[http://dx.doi.org/10.1081/SCC-120016328]
[9]
Justinus, A.B.; Satrio, L.K. Doraiswamy. Production of benzaldehyde: a case study in a possible industrial application of phase-transfer catalysis. Chem. Eng. J., 2001, 82, 43-56.
[http://dx.doi.org/10.1016/S1385-8947(00)00351-X]
[10]
Othmer, K. Encyclopedia of Chemical Technology, 4th ed; Wiley: New York, 1992, Vol. 4 and 5, .
[11]
Choudhary, V.R.; Dumbre, D.K.; Narkhede, V.S.; Jana, S.K. Solvent-Free Selective Oxidation of Benzyl Alcohol to Benzaldehyde by molecular oxygen using non-noble transition metal containing hydrotalcite-like Catalysts. Catal. Commun., 2003, 4(4), 171-175.
[http://dx.doi.org/10.1016/S1566-7367(03)00027-X]
[12]
Hu, Z.; Zhao, Y.; Liu, J.; Wang, J.; Zhang, B.; Xiang, X. Ultrafine MnO2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol. J. Colloid Interface Sci., 2016, 483, 26-33.
[http://dx.doi.org/10.1016/j.jcis.2016.08.010] [PMID: 27544446]
[13]
Ponchami, S.; Gitashree, D.; Tallapareddy, M.R.; Ashwini, B.; Pranjal, B.; Pranjal, G.; Najrul, H.; Pinaki, S.; Manash, R.D. Synthesis, characterization and catalytic application of Au NPs-reduced graphene oxide composites material: an eco-friendly approach. Catal. Commun., 2013, 40, 139-144.
[http://dx.doi.org/10.1016/j.catcom.2013.06.021]
[14]
Bijudas, K.; Bashpa, P.; Bibin, V.P.; Nair, L.; Priya, A.P.; Aswathy, M.; Krishnendu, C.; Lisha, P. Selective synthesis of benzaldehydes by hypochlorite oxidation of benzyl alcohols under phase transfer catalysis. Bull. Chem. React. Eng. Catal., 2015, 10(1), 38-42.
[http://dx.doi.org/10.9767/bcrec.10.1.7189.38-42]
[15]
Wang, J.Q.; He, L.N.; Miao, C.X. Polyethylene glycol radical-initiated oxidation of benzylic alcohols in compressed carbon dioxide. Green Chem., 2009, 11, 1013-1017.
[http://dx.doi.org/10.1039/b900128j]
[16]
Wang, L.; Yi, W.B.; Cai, C. A green and highly selective oxidation of alcohols by fluorous silica gel-supported gold nanoparticles in aqueous H2O2 under base-free conditions. ChemSusChem, 2010, 3(11), 1280-1284.
[http://dx.doi.org/10.1002/cssc.201000170] [PMID: 20830725]
[17]
Yu, Y.Y.; Lu, B.; Wang, X.G.; Zhao, J.X.; Wang, X.Z.; Cai, Q.H. Highly selectiveoxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by biphasic catalysis. Chem. Eng. J., 2010, 162, 738-742.
[http://dx.doi.org/10.1016/j.cej.2010.05.057]
[18]
Cao, E.H.; Sankar, M. Firth. S; Lam, K.F.; Bethell, D; Knight, D.K.; Hutchings, G.J.; McMillan, P.F.; Gavriilidis, A. Reaction and Raman spectroscopic studies of alcohol oxidation on gold-palladium catalysts in micro structured reactors. Chem. Eng. J., 2011, 167, 734-743.
[http://dx.doi.org/10.1016/j.cej.2010.08.082]
[19]
Sheldon, R.A.; Kochi, J.K. Metal-Catalysed Oxidations of Organic. Compounds; Academic Press, 1981.
[20]
Meenakshisundaram, S. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discuss., 2010, 145, 341-356.
[http://dx.doi.org/10.1039/B908172K]
[21]
Meenakshisundaram, S.; Ewa, N.; Emma, C.; Damien, M.M.; David, W.K.; Donald, B.; Graham, J.H. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nat. Commun., 2014, 5, 3332.
[22]
Zhou, C.; Chen, Y.; Guo, Z.; Wang, X.; Yang, Y. Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide. Chem. Commun. (Camb.), 2011, 47(26), 7473-7475.
[http://dx.doi.org/10.1039/c1cc12264a] [PMID: 21629919]
[23]
Chen, H.; Tang, Q.H.; Chen, Y.T. Yan;Y.B.; Zhou, C.M., Guo, Z;Jia, X.L.; Yang, Y.H. Microwave-assisted synthesis of PtRu/CNT and PtSn/CNT catalysts and their applications in the aerobic oxidation of benzyl alcohol in base-free aqueous solutions. Catal. Sci. Technol., 2013, 3, 328-338.
[http://dx.doi.org/10.1039/C2CY20366A]
[24]
Dalal, M.K.; Upadhyay, M.; Ram, R. Oxidation of benzyl alcohol using polymer anchored Ru (III) complex as catalyst. J. Mol. Catal. Chem., 1999, 142, 325-332.
[http://dx.doi.org/10.1016/S1381-1169(98)00302-1]
[25]
Garcia-Suarez, J.; Tristany, M.; García, A.B.; Colliere, V.; Philippot, K. Carbon-supported Ru and Pd nanoparticles: efficient and recyclable catalysts for the aerobic oxidation of benzyl alcohol in water. Microporous Mesoporous Mater., 2012, 153, 155-162.
[http://dx.doi.org/10.1016/j.micromeso.2011.12.023]
[26]
Huang, X.M.; Wang, X.G.; Wang, X.S.; Wang, X.X.; Tan, M.W.; Ding, W.Z.; Lu, X.G. P123-stabilized Au–Ag alloy nanoparticles for kinetics of aerobic oxidation of benzyl alcohol in aqueous solution. J. Catal., 2013, 301, 217-226.
[http://dx.doi.org/10.1016/j.jcat.2013.02.011]
[27]
Beier, M.J.; Hansen, T.W.; Grunwaldt, T.W. Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria. J. Catal., 2009, 266, 320-330.
[http://dx.doi.org/10.1016/j.jcat.2009.06.022]
[28]
Chen, Y.T.; Zheng, H.J.; Guo, Z.; Zhou, C.M.; Wang, C.; Borgna, A.; Yang, Y.H. Pd catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: support composition and structure sensitivity. J. Catal., 2011, 283, 34-44.
[http://dx.doi.org/10.1016/j.jcat.2011.06.021]
[29]
Kuang, Y.; Islam, N.M.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.A. Selective aerobic oxidation of benzylic alcohols catalyzed by carbon-based catalysts: a nonmetallic oxidation system. Angew. Chem. Int. Ed. Engl., 2010, 49(2), 436-440.
[http://dx.doi.org/10.1002/anie.200904362] [PMID: 19998293]
[30]
Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev., 2015, 115(11), 4744-4822.
[http://dx.doi.org/10.1021/cr500304f] [PMID: 26012488]
[31]
Morimoto, N.; Kubo, T.; Nishina, Y. Tailoring the oxygen content of graphite and reduced graphene oxide for specific applications. Sci. Rep., 2016, 6, 21715.
[http://dx.doi.org/10.1038/srep21715] [PMID: 26911893]
[32]
Pham, V.P.; Jang, H.S.; Whang, D.; Choi, J.Y. Direct growth of graphene on rigid and flexible substrates: progress, applications, and challenges. Chem. Soc. Rev., 2017, 46(20), 6276-6300.
[http://dx.doi.org/10.1039/C7CS00224F] [PMID: 28857098]
[33]
Zhang, Y.; Fan, X.; Jian, J.; Yu, D.; Zhang, Z.; Dai, L. A general polymer-assisted strategy enables unexpected efficient metal-free oxygen –evolution catalysis on pure carbon nanotubes. Energy Environ. Sci., 2017, 10, 2312-2317.
[http://dx.doi.org/10.1039/C7EE01702B]
[34]
Zhiyong, W.; Jie, S.; Dan, W.; Yuan, P.; Jie-Xin, W.; Jian-Feng, C. Metal-free catalytic oxidation of benzylic alcohols for benzaldehyde. React. Chem. Eng., 2019, 4, 507-515.
[http://dx.doi.org/10.1039/C8RE00265G]
[35]
Vasant, R.C.; Anirban, D.; Prabhas, J.; Rani, J.; Balu, S.U. A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst. Green Chem., 2005, 7, 768-770.
[http://dx.doi.org/10.1039/b509003b]
[36]
Keresszegi, C.; Ferri, D.; Mallat, T.; Baiker, A. Unraveling the surface reactions during liquid-phase oxidation of benzyl alcohol on Pd/Al2O3: an in situ ATR-IR study. J. Phys. Chem. B, 2005, 109(2), 958-967.
[http://dx.doi.org/10.1021/jp0459864] [PMID: 16866465]
[37]
Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Orfao, J.J.M. Modification of thesurface chemistry of activated carbons. Carbon, 1999, 37, 1379-1389.
[http://dx.doi.org/10.1016/S0008-6223(98)00333-9]
[38]
Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl., 2009, 48(42), 7752-7777.
[http://dx.doi.org/10.1002/anie.200901678] [PMID: 19784976]
[39]
Figueiredo, J.L.; Pereira, M.F.R. The role of surface chemistry in catalysis with Carbons. Catal. Today, 2010, 150, 2-7.
[http://dx.doi.org/10.1016/j.cattod.2009.04.010]
[40]
Zhu, J.; Carabineiro, S.A.C.; Shan, D.; Faria, J.L.; Zhu, Y.; Figueiredo, J.L. Oxygen activation sites in gold and iron catalysts supported on carbon nitride and activated carbon. J. Catal., 2010, 274, 207-214.
[http://dx.doi.org/10.1016/j.jcat.2010.06.018]
[41]
Rodrigues, E.G.; Pereira, M.F.R.; Chen, X.; Delgado, J.J.; Orfao, J.J.M. Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation. J. Catal., 2011, 281, 119-127.
[http://dx.doi.org/10.1016/j.jcat.2011.04.008]
[42]
Rodrigues, E.G.; Delgado, J.J.; Chen, X.; Pereira, M.F.R.; Orfao, J.J.M. Selective oxidation of glycerol catalyzed by gold supported on multiwalled carbon nanotubes with different surface chemistries. Ind. Eng. Chem. Res., 2012, 51, 15884-15894.
[http://dx.doi.org/10.1021/ie302159m]
[43]
Besson, M.; Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today, 2000, 57, 127-141.
[http://dx.doi.org/10.1016/S0920-5861(99)00315-6]
[44]
Davis, S.E.; Ide, M.S.; Davis, R.J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem., 2013, 15, 17-45.
[http://dx.doi.org/10.1039/C2GC36441G]
[45]
Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev., 2004, 104(6), 3037-3058.
[http://dx.doi.org/10.1021/cr0200116] [PMID: 15186187]
[46]
Rodriguez-reinoso, F. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36, 159-175.
[http://dx.doi.org/10.1016/S0008-6223(97)00173-5]
[47]
Annam Renita, A. Pooja Paul Chowdhury; Parveen Sultana; Prayashi Phukan; Azmin Hannan. Utilization of waste eggshells for production of renewable catalyst for Transesterification. Int. J. Pharm. Pharm. Sci., 2016, 8(7), 1-4.
[48]
Salla, S. Nageswara Rao Ankem; Ponnusamy Senthil Kumar; A Annam Renita; Kavin Micheal. Enhanced photocatalytic activity of environment-friendly C/ZnFe2O4 nanocomposites: application in dye removal. Desalination Water Treat., 2019, 137, 395-402.
[http://dx.doi.org/10.5004/dwt.2019.23220]
[49]
Loh, K.P.; Bao, Q.; Ang, P.K.; Yang, J. The chemistry of graphene. J. Mater. Chem., 2010, 20, 2277-2289.
[http://dx.doi.org/10.1039/b920539j]
[50]
Su, C.; Acik, M.; Takai, K.; Lu, J.; Hao, S.J.; Zheng, Y.; Wu, P.; Bao, Q.; Enoki, T.; Chabal, Y.J.; Loh, K.P. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun., 2012, 3, 1298.
[http://dx.doi.org/10.1038/ncomms2315] [PMID: 23250428]
[51]
Ali, A.A.; Madkour, M.; Sagheer, F.A.; Zaki, M.I.; Abdel Nazeer, A. Low-temperature catalytic CO oxidation over non-noble, efficient chromia in reduced graphene oxide and graphene oxide nanocomposites. Catalysts, 2020, 10(1), 105.
[http://dx.doi.org/10.3390/catal10010105]
[52]
Sun, W.; Lu, X.; Tong, Y.; Zhang, Z.; Lei, J.; Nie, G.; Wang, C. Fabrication of highly dispersed palladium/graphene oxide nanocomposites and their catalytic properties for efficient hydrogenation of p-nitrophenol and hydrogen generation. Int. J. Hydrogen Energy, 2014, 39, 9080-9086.
[http://dx.doi.org/10.1016/j.ijhydene.2014.03.197]
[53]
Shao, L.; Huang, X.; Teschner, D.; Zhang, W. Gold supported on graphene oxide: An active and selective catalyst for phenylacetylene hydrogenations at low temperatures. ACS Catal., 2014, 4, 2369-2373.
[http://dx.doi.org/10.1021/cs5002724]
[54]
Chan-Thaw, C.E.; Villa, A.; Katekomol, P.; Su, D.; Thomas, A.; Prati, L. Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett., 2010, 10(2), 537-541.
[http://dx.doi.org/10.1021/nl904082k] [PMID: 20085344]
[55]
Chan-Thaw, C.E.; Villa, A.; Prati, L.; Thomas, A. Triazine-based polymers as nanostructured supports for the liquid-phase oxidation of alcohols. Chemistry, 2011, 17(3), 1052-1057.
[http://dx.doi.org/10.1002/chem.201000675] [PMID: 21226123]
[56]
Chan-Thaw, C.E.; Villa, A.; Veith, G.M.; Kailasam, K.; Adamczyk, L.A.; Unocic, R.R.; Prati, L.; Thomas, A. Influence of periodic nitrogen functionality on the selective oxidation of alcohols. Chem. Asian J., 2012, 7(2), 387-393.
[http://dx.doi.org/10.1002/asia.201100565] [PMID: 22213718]
[57]
Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc., 2004, 126(34), 10657-10666.
[http://dx.doi.org/10.1021/ja0488683] [PMID: 15327324]
[58]
Yasu-eda, T.; Se-ike, R.; Ikenaga, N.; Miyake, T.; Suzuki, T. Palladium-loaded oxidized diamond catalysis for the selective oxidation of alcohols. J. Mol. Catal. Chem., 2009, 306, 136-142.
[http://dx.doi.org/10.1016/j.molcata.2009.02.039]
[59]
Wu, G.; Wang, X.; Guan, N.; Li, L. Palladium on graphene as efficient catalyst for solvent-free aerobic oxidation of aromatic alcohols: Role of graphene support. Appl. Catal. B, 2013, 136–137, 177-185.
[http://dx.doi.org/10.1016/j.apcatb.2013.01.067]
[60]
Zu, Y.; Tang, J.; Zhu, W.; Zhang, M.; Liu, G.; Liu, Y.; Zhang, W.; Jia, M. Graphite oxide-supported CaO catalysts for transesterification of soybean oil with methanol. Bioresour. Technol., 2011, 102(19), 8939-8944.
[http://dx.doi.org/10.1016/j.biortech.2011.07.032] [PMID: 21824767]
[61]
Tang, Z.; Lei, Y.; Guo, B.; Zhang, L.; Jia, D. The use of Rhodamine-B decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer (Guildf.), 2012, 53, 673-680.
[http://dx.doi.org/10.1016/j.polymer.2011.11.056]
[62]
Bahareh, Z.; Hassan, H-M. A comparative study of silver-graphene oxide nanocomposites as are cyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect Bahareh. Appl. Surf. Sci., 2015, 2015(328), 536-547.
[63]
Sadegh, R.; Esmail, D.; Ziba, K.; Soraya, A.; Rafael, L. Surfactant-exfoliated highly dispersive PD-supported graphene oxide nanocomposite as a catalyst for aerobic aqueous oxidations of alcohols. ChemCatChem, 2015, 7, 1678-1683.
[http://dx.doi.org/10.1002/cctc.201500126]
[64]
Huayun, H.; Sujuan, Z.; Hongwei, H.; Yaoting, F.; Yu, Z. Fe(Cu)-containing coordination polymers: syntheses, crystal structures, and applications as benzyl alcohol oxidation catalysts. Eur. J. Inorg. Chem., 2006, 1, 1594-1600.
[65]
Geng, L.; Wu, S.; Zou, Y.; Jia, M.; Zhang, W.; Yan, W.; Liu, G. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol. J. Colloid Interface Sci., 2014, 421, 71-77.
[http://dx.doi.org/10.1016/j.jcis.2014.01.031] [PMID: 24594034]
[66]
Jin, L.; Feng, P.; Hao, Y.; Hongjuan, W. Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes. Chem. Eng. J., 2012, 204–206, 98-106.
[67]
Shi, P.; Su, R.; Zhu, S.; Zhu, M.; Li, D.; Xu, S. Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water. J. Hazard. Mater, 2012, 229-230, 331-339-331-339.
[http://dx.doi.org/10.1016/j.jhazmat.2012.06.007] [PMID: 22738772]
[68]
Moreno-Castilla, C.; Carrasco-Marın, F.; Parejo-Perez, C.; Ramon, M.V.L. Dehydration of methanol to dimethyl ether catalyzed by oxidized activated carbons with varying surface acidic character. Carbon, 2001, 39,, 869-875.
[http://dx.doi.org/10.1016/S0008-6223(00)00192-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy