Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Molecular Docking and Pharmacoinformatics Studies Reveal Potential Phytochemicals Against HCV NS5B Polymerase

Author(s): Hina Khalid and Usman Ali Ashfaq*

Volume 25, Issue 2, 2022

Published on: 28 December, 2020

Page: [335 - 346] Pages: 12

DOI: 10.2174/1386207323666201228160224

Price: $65

Abstract

Background: Hepatitis C Virus (HCV) is one of the serious health issues affecting onethird of the world’s population. The high variations of the HCV genome are ascribed to quick replication by NS5B polymerase and are thus the most attractive target for developing anti-HCV agents.

Objective: The current study aimed to discover novel phytochemicals that harbor the potential of NS5B polymerase inhibition.

Methods: In this computational study, a molecular docking approach was used to screen phytochemicals with the best binding and spatial affinity with NS5B at the Palm I region. The topranked compounds were then subjected to an in-silico pharmacokinetic and toxicological study.

Results: The virtual screening provided seven ‘hit compounds’ including Betanin, 3,5'- dihydroxythalifaboramine, Diarctigenin, 6'-desmethylthalifaboramine, Cephalotaxine, 5alpha-O- (3'-dimethylamino-3'-phenylpropionyl) taxinine M and IsoTetrandrine with minimum binding score compared to the reference drug, sofosbuvir (−14.7 kcal/mol). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) and thorough toxicological analysis revealed a favorable safety profile of these compounds.

Conclusion: The study demonstrates the identified phytochemicals. These may serve as potential antiviral compounds that can provide an alternative approach for amelioration of HCV.

Keywords: Hepatitis C, NS5B inhibitors, antiviral, molecular docking, phytochemicals, mammalian host cells.

« Previous
Graphical Abstract
[1]
Lavanchy, D. The global burden of hepatitis C. Liver Int., 2009, 29(Suppl. 1), 74-81.
[http://dx.doi.org/10.1111/j.1478-3231.2008.01934.x] [PMID: 19207969]
[2]
Thrift, A.P.; El-Serag, H.B.; Kanwal, F. Global epidemiology and burden of HCV infection and HCV-related disease. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(2), 122-132.
[http://dx.doi.org/10.1038/nrgastro.2016.176] [PMID: 27924080]
[3]
Sarrazin, C.; Zeuzem, S. Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology, 2010, 138(2), 447-462.
[http://dx.doi.org/10.1053/j.gastro.2009.11.055] [PMID: 20006612]
[4]
Behrens, S-E.; Tomei, L.; De Francesco, R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J., 1996, 15(1), 12-22.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00329.x] [PMID: 8598194]
[5]
Moradpour, D.; Brass, V.; Bieck, E.; Friebe, P.; Gosert, R.; Blum, H.E.; Bartenschlager, R.; Penin, F.; Lohmann, V. Membrane association of the RNA-dependent RNA polymerase is essential for hepatitis C virus RNA replication. J. Virol., 2004, 78(23), 13278-13284.
[http://dx.doi.org/10.1128/JVI.78.23.13278-13284.2004] [PMID: 15542678]
[6]
Barreca, M.L.; Iraci, N.; Manfroni, G.; Gaetani, R.; Guercini, C.; Sabatini, S.; Tabarrini, O.; Cecchetti, V. Accounting for target flexibility and water molecules by docking to ensembles of target structures: the HCV NS5B palm site I inhibitors case study. J. Chem. Inf. Model., 2014, 54(2), 481-497.
[http://dx.doi.org/10.1021/ci400367m] [PMID: 23952658]
[7]
Dillon, J.F.; Hepatitis, C. What is the best treatment? J. Viral Hepat., 2004, 11(Suppl. 1), 23-27.
[http://dx.doi.org/10.1111/j.1365-2893.2004.00573.x] [PMID: 15357860]
[8]
Ago, H.; Adachi, T.; Yoshida, A.; Yamamoto, M.; Habuka, N.; Yatsunami, K.; Miyano, M. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure, 1999, 7(11), 1417-1426.
[http://dx.doi.org/10.1016/S0969-2126(00)80031-3] [PMID: 10574802]
[9]
Bressanelli, S.; Tomei, L.; Rey, F.A.; De Francesco, R. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J. Virol., 2002, 76(7), 3482-3492.
[http://dx.doi.org/10.1128/JVI.76.7.3482-3492.2002] [PMID: 11884572]
[10]
Sofia, M.J.; Chang, W.; Furman, P.A.; Mosley, R.T.; Ross, B.S. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J. Med. Chem., 2012, 55(6), 2481-2531.
[http://dx.doi.org/10.1021/jm201384j] [PMID: 22185586]
[11]
Barreca, M.L.; Iraci, N.; Manfroni, G.; Cecchetti, V. Allosteric inhibition of the hepatitis C virus NS5B polymerase: in silico strategies for drug discovery and development. Future Med. Chem., 2011, 3(8), 1027-1055.
[http://dx.doi.org/10.4155/fmc.11.53] [PMID: 21707403]
[12]
Patil, V.M.; Gupta, S.; Samanta, S.; Masand, N. 3D QSAR kNN-MFA studies on thiouracil derivatives as hepatitis C virus inhibitors. Med. Chem. Res., 2011, 20, 1616-1621.
[http://dx.doi.org/10.1007/s00044-010-9435-x]
[13]
Wei, Y.; Li, J.; Qing, J.; Huang, M.; Wu, M.; Gao, F.; Li, D.; Hong, Z.; Kong, L.; Huang, W.; Lin, J. Discovery of novel hepatitis C virus NS5B polymerase inhibitors by combining random forest, multiple e-pharmacophore modeling and docking. PLoS One, 2016, 11(2)
[http://dx.doi.org/10.1371/journal.pone.0148181] [PMID: 26845440]
[14]
Georgiev, M.I. Natural products utilization; Springer, 2014.
[http://dx.doi.org/10.1007/s11101-014-9363-3]
[15]
Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv., 2014, 32(6), 1145-1156.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.006] [PMID: 24780153]
[16]
Rollinger, J.M.; Stuppner, H.; Langer, T. Virtual screening for the discovery of bioactive natural products. Natural compounds as drugs; Springer, 2008, 1, pp. 211-249.
[http://dx.doi.org/10.1007/978-3-7643-8117-2_6]
[17]
Calland, N.; Dubuisson, J.; Rouillé, Y.; Séron, K. Hepatitis C virus and natural compounds: a new antiviral approach? Viruses, 2012, 4(10), 2197-2217.
[http://dx.doi.org/10.3390/v4102197] [PMID: 23202460]
[18]
Gentles, R.G.; Sheriff, S.; Beno, B.R.; Wan, C.; Kish, K.; Ding, M.; Zheng, X.; Chupak, L.; Poss, M.A.; Witmer, M.R.; Morin, P.; Wang, Y.K.; Rigat, K.; Lemm, J.; Voss, S.; Liu, M.; Pelosi, L.; Roberts, S.B.; Gao, M.; Kadow, J.F. Investigation of the mode of binding of a novel series of N-benzyl-4-heteroaryl-1-(phenylsulfonyl)piperazine-2-carboxamides to the hepatitis C virus polymerase. Bioorg. Med. Chem. Lett., 2011, 21(8), 2212-2215.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.011] [PMID: 21441029]
[19]
Inc CCG. Molecular operating environment (MOE); Chemical Computing Group Inc: 1010 Sherbooke St. West, Suite# 910, Montreal, QC, Canada, H3A 2R7, 2016.
[20]
Ashfaq, U.A.; Mumtaz, A.; Qamar, T.U.; Fatima, T. ul Qamar T, Fatima T. MAPS Database: Medicinal plant activities, phytochemical and structural database. Bioinformation, 2013, 9(19), 993-995.
[http://dx.doi.org/10.6026/97320630009993] [PMID: 24391364]
[21]
Bolton, E.E.; Wang, Y.; Thiessen, P.A.; Bryant, S.H. PubChem: integrated platform of small molecules and biological activities. Annual reports in computational chemistry; Elsevier, 2008, pp. 217-241.
[http://dx.doi.org/10.1016/S1574-1400(08)00012-1]
[22]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[23]
Mumtaz, A.; Ashfaq, U.A.; Ul Qamar, M.T.; Anwar, F.; Gulzar, F.; Ali, M.A.; Saari, N.; Pervez, M.T. MPD3: a useful medicinal plants database for drug designing. Nat. Prod. Res., 2017, 31(11), 1228-1236.
[http://dx.doi.org/10.1080/14786419.2016.1233409] [PMID: 27681445]
[24]
Temesgen, Z; Talwani, R; Rizza, SA Sofosbuvir for the treatment of chronic hepatitis C virus infection. Drugs of Today (Barcelona, Spain: 1998), 2014, 50, 421-434.
[25]
Podvinec, M.; Schwede, T.; Peitsch, M. Docking for neglected diseases as community efforts. Computational Structural Biology: Methods and Applications; World Scientific, 2008, pp. 683-704.
[http://dx.doi.org/10.1142/9789812778789_0025]
[26]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[27]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[28]
Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35(6), 1067-1069.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[29]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[30]
Lesburg, C.A.; Cable, M.B.; Ferrari, E.; Hong, Z.; Mannarino, A.F.; Weber, P.C. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol., 1999, 6(10), 937-943.
[http://dx.doi.org/10.1038/13305] [PMID: 10504728]
[31]
Choi, K.H.; Groarke, J.M.; Young, D.C.; Kuhn, R.J.; Smith, J.L.; Pevear, D.C.; Rossmann, M.G. The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4425-4430.
[http://dx.doi.org/10.1073/pnas.0400660101] [PMID: 15070734]
[32]
Hansen, J.L.; Long, A.M.; Schultz, S.C. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure, 1997, 5(8), 1109-1122.
[http://dx.doi.org/10.1016/S0969-2126(97)00261-X] [PMID: 9309225]
[33]
Friebe, P.; Boudet, J.; Simorre, J-P.; Bartenschlager, R. Kissing-loop interaction in the 3′ end of the hepatitis C virus genome essential for RNA replication. J. Virol., 2005, 79(1), 380-392.
[http://dx.doi.org/10.1128/JVI.79.1.380-392.2005] [PMID: 15596831]
[34]
Ng, K.K.; Cherney, M.M.; Vázquez, A.L.; Machín, A.; Alonso, J.M.; Parra, F.; James, M.N. Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J. Biol. Chem., 2002, 277(2), 1381-1387.
[http://dx.doi.org/10.1074/jbc.M109261200] [PMID: 11677245]
[35]
Brautigam, C.A.; Steitz, T.A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Opin. Struct. Biol., 1998, 8(1), 54-63.
[http://dx.doi.org/10.1016/S0959-440X(98)80010-9] [PMID: 9519297]
[36]
Ai-hua, N. Recent advances in HCV NS5B RNA-dependent RNA polymerase inhibitors. J. Int. Pharmaceut. Res., 2012, (39), 89- 103.
[37]
Li, T.; Froeyen, M.; Herdewijn, P. Insight into ligand selectivity in HCV NS5B polymerase: molecular dynamics simulations, free energy decomposition and docking. J. Mol. Model., 2010, 16(1), 49-59.
[http://dx.doi.org/10.1007/s00894-009-0519-9] [PMID: 19466613]
[38]
Nutho, B.; Meeprasert, A.; Chulapa, M.; Kungwan, N.; Rungrotmongkol, T. Screening of hepatitis C NS5B polymerase inhibitors containing benzothiadiazine core: a steered molecular dynamics. J. Biomol. Struct. Dyn., 2017, 35(8), 1743-1757.
[http://dx.doi.org/10.1080/07391102.2016.1193444] [PMID: 27236925]
[39]
Tomei, L.; Altamura, S.; Bartholomew, L.; Bisbocci, M.; Bailey, C.; Bosserman, M.; Cellucci, A.; Forte, E.; Incitti, I.; Orsatti, L.; Koch, U.; De Francesco, R.; Olsen, D.B.; Carroll, S.S.; Migliaccio, G. Characterization of the inhibition of hepatitis C virus RNA replication by nonnucleosides. J. Virol., 2004, 78(2), 938-946.
[http://dx.doi.org/10.1128/JVI.78.2.938-946.2004] [PMID: 14694125]
[40]
Di Marco, S.; Volpari, C.; Tomei, L.; Altamura, S.; Harper, S.; Narjes, F.; Koch, U.; Rowley, M.; De Francesco, R.; Migliaccio, G.; Carfí, A. Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. J. Biol. Chem., 2005, 280(33), 29765-29770.
[http://dx.doi.org/10.1074/jbc.M505423200] [PMID: 15955819]
[41]
Kukolj, G.; McGibbon, G.A.; McKercher, G.; Marquis, M.; Lefèbvre, S.; Thauvette, L.; Gauthier, J.; Goulet, S.; Poupart, M-A.; Beaulieu, P.L. Binding site characterization and resistance to a class of non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase. J. Biol. Chem., 2005, 280(47), 39260-39267.
[http://dx.doi.org/10.1074/jbc.M506407200] [PMID: 16188890]
[42]
Tomei, L.; Altamura, S.; Bartholomew, L.; Biroccio, A.; Ceccacci, A.; Pacini, L.; Narjes, F.; Gennari, N.; Bisbocci, M.; Incitti, I.; Orsatti, L.; Harper, S.; Stansfield, I.; Rowley, M.; De Francesco, R.; Migliaccio, G. Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol., 2003, 77(24), 13225-13231.
[http://dx.doi.org/10.1128/JVI.77.24.13225-13231.2003] [PMID: 14645579]
[43]
Galani, B.R.; Sahuc, M-E.; Njayou, F.N.; Deloison, G.; Mkounga, P.; Feudjou, W.F.; Brodin, P.; Rouillé, Y.; Nkengfack, A.E.; Moundipa, P.F.; Séron, K. Plant extracts from Cameroonian medicinal plants strongly inhibit hepatitis C virus infection in vitro. Front. Microbiol., 2015, 6, 488.
[http://dx.doi.org/10.3389/fmicb.2015.00488] [PMID: 26029203]
[44]
Wagoner, J.; Negash, A.; Kane, O.J.; Martinez, L.E.; Nahmias, Y.; Bourne, N.; Owen, D.M.; Grove, J.; Brimacombe, C.; McKeating, J.A.; Pécheur, E.I.; Graf, T.N.; Oberlies, N.H.; Lohmann, V.; Cao, F.; Tavis, J.E.; Polyak, S.J. Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology, 2010, 51(6), 1912-1921.
[http://dx.doi.org/10.1002/hep.23587] [PMID: 20512985]
[45]
Polyak, S.J.; Morishima, C.; Shuhart, M.C.; Wang, C.C.; Liu, Y.; Lee, D.Y.W. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology, 2007, 132(5), 1925-1936.
[http://dx.doi.org/10.1053/j.gastro.2007.02.038] [PMID: 17484885]
[46]
Rajandran, T.; Prabhu, R.; Prabhu, M. Computer aided docking studies of indole derivatives as Hepatitis C NS5B polymerase inhibitor. Pharma Chem., 2015, 7, 33-43.
[47]
Rehman, S.; Ijaz, B.; Fatima, N.; Muhammad, S.A.; Riazuddin, S. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study. Biomed. Pharmacother., 2016, 83, 881-891.
[http://dx.doi.org/10.1016/j.biopha.2016.08.002] [PMID: 27513212]
[48]
Sundarrajan, S.; Kumari, S.; Lulu, S.; Arumugam, M. Identification of potent hepatitis C virus RdRp inhibitors by structure based drug designing. BMR Bioinformatics & Cheminformatics, 2014, 1, 1-14.
[49]
Mirza, M.U.; Ghori, N.U.; Ikram, N.; Adil, A.R.; Manzoor, S. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors. Drug Des. Devel. Ther., 2015, 9, 1825-1841.
[http://dx.doi.org/10.2147/DDDT.S75886] [PMID: 25848219]
[50]
Lin, J.; Sahakian, D.C.; de Morais, S.M.; Xu, J.J.; Polzer, R.J.; Winter, S.M. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr. Top. Med. Chem., 2003, 3(10), 1125-1154.
[http://dx.doi.org/10.2174/1568026033452096] [PMID: 12769713]
[51]
Vasanthanathan, P.; Taboureau, O.; Oostenbrink, C.; Vermeulen, N.P.; Olsen, L.; Jørgensen, F.S. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab. Dispos., 2009, 37(3), 658-664.
[http://dx.doi.org/10.1124/dmd.108.023507] [PMID: 19056915]
[52]
Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician, 2007, 76(3), 391-396.
[PMID: 17708140]
[53]
Gaur, R.; Cheema, H.S.; Kumar, Y.; Singh, S.P.; Yadav, D.K.; Darokar, M.P.; Khan, F.; Bhakuni, R.S. In vitro antimalarial activity and molecular modeling studies of novel artemisinin derivatives. RSC Advances, 2015, 5, 47959-47974.
[http://dx.doi.org/10.1039/C5RA07697H]
[54]
Ponnan, P.; Gupta, S.; Chopra, M.; Tandon, R.; Baghel, A.S.; Gupta, G.; Prasad, A.K.; Rastogi, R.C.; Bose, M.; Raj, H.G. 2D-QSAR, docking studies, and in silico ADMET prediction of polyphenolic acetates as substrates for protein acetyltransferase function of glutamine synthetase of Mycobacterium tuberculosis. ISRN Struct. Biol., 2013, Article ID 373516.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy