Bioactive Compound and Nanotechnology: A Novel Delivery Perspective for Diabetic Retinopathy

Author(s): Anima Debbarma, Probin Kr Roy*, Samia B. Barbhuiya, Jayita Das, Laldinchhana, Hauzel Lalhlenmawia

Journal Name: Current Bioactive Compounds

Volume 17 , Issue 8 , 2021


Article ID: e010621189484
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Diabetic retinopathy (DR) is one of the major complications of diabetes, and the consequences often lead to loss of vision. Currently, the treatments for DR are expensive, not easily available and the use of synthetic drugs leads to various toxic effects. Bioactive compound has been reported to be an alternative for the treatment of DR due to its ability to target multiple pathophysiological signaling pathways. However, bioactive compound suffers from some inherent physicochemical characteristics which restrict their use as therapeutic agents.

Objective: This review emphasizes an overview of the bioactive agents which are delivered as nano-formulation for safe and effective ocular delivery for the treatment of DR. Additional focus include site-specific ocular delivery with increased bioavailability to ensure highly efficacious treatment of DR.

Results: Utilization of various bioactive compounds such as polyphenols, flavonoids, tannins, etc., can counterbalance the damages that occur in the retinal tissues and thereby may ameliorate DR progression. Encapsulation of these bioactive compounds in a nanotechnology-based delivery system can improve bioavailability, reduce the toxic effect and achieve site-specific ocular delivery.

Conclusion: The pros and cons of bioactive compounds in treating DR and the use of nanotechnology to deliver bioactive compounds are discussed.

Keywords: Bioactive compounds, bioavailability of bioactive compound, diabetic retinopathy, nano-medicine, nanotechnology- based ocular delivery, targeted drug delivery.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 8
Year: 2021
Article ID: e010621189484
Pages: 13
DOI: 10.2174/1573407216999201224145751
Price: $95

Article Metrics

PDF: 55