Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis, Anti-Bacterial and Anti-Oxidant Activity of Azo-Oxazolone and Their Ring Opening Azo-Benzamide Derivatives

Author(s): Mzgin M. Ayoob*, Awaz J. Hussein, Mohammed K. Samad, Necmi Dege, Farouq E. Hawaiz, Shaaban K. Mohamed and Faiq H.S. Hussain

Volume 18, Issue 5, 2021

Published on: 18 December, 2020

Page: [493 - 505] Pages: 13

DOI: 10.2174/1570179417666201218163435

Price: $65

Abstract

This article describes the controlled synthesis and characterization of azo oxazolone scaffold compounds containing multifunctional groups such as carbonyl group, imine and carbon-carbon double bond. The reaction of the azo-oxazolone with aromatic amines led to the ring-opening of the azo-oxazolone into the corresponding azo-benzamide derivatives in a short time (average 10 min), resulting in high yield (>90%). All newly synthesized compounds were characterized by the common spectral analysis such as UV, IR, 1H-NMR, 13CNMR, Elemental analysis and MS spectrometry.

Objective: The aim of the study was to synthesize new bioactive azo-benzamides by using azo-oxazolone as a synthon utilizing its ring-opening function.

Materials and Methods: Azo-benzamide derivatives were prepared in very good yield via ring-opening reaction of azo-oxazolone with aromatic amines in the presence of acetic acid under reflux for few minutes.

Results and Discussion: Chemical structures of the newly synthesized compounds were characterized by UV, IR, 1H-NMR, 13C-NMR, Elemental analysis and MS spectrometry.

Conclusion: The new azo-oxazolone 4 and azo-benzamide compounds 5a, 5c, 5f, 5h, 5j were screened against Escherichia coli as G(-ve) and Staphylococcus aureus as G(+ve) using ciprofloxacin as a standard. All compounds showed high inhibition potency against E-Coli but low inhibition for S-aureus. Compounds 4, 5c, and 5J showed more reactivity against E-coli.

Others: Also, the compounds were tested for their anti-oxidant activity by both DPPH and FRAP methods. The results showed that some compounds possessed moderate anti-oxidant activity in comparison to ascorbic acid as control, typically the compounds bearing OCH3 and OCH2CH3 groups.

Keywords: Azo-oxazolone, azo-benzamide, antimicrobial, antioxidant, ring-opening reaction, MS spectrometry.

Graphical Abstract
[1]
Zhou, B.; Chen, W. The zwitterionic imidazolium salt: First used for synthesis of 4-arylidene-2-phenyl-5(4H)-oxazolones under solvent-free conditions. J. Chem., 2013, 2013, 10-15.
[http://dx.doi.org/10.1155/2013/280585]
[2]
Vasava, M.S.; Bhoi, M.N.; Rathwa, S.K.; Shetty, S.S.; Patel, R.D.; Rajani, D.P.; Rajani, S.D.; Patel, A.; Pandya, H.A.; Patel, H.D. Novel 1,4-dihydropyrano[2,3-c]pyrazole derivatives: Synthesis, characterization, biological evaluation and in silico study. J. Mol. Struct., 2019, 1181, 383-402.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.053]
[3]
Georgey, H.H.; Manhi, F.M.; Mahmoud, W.R.; Mohamed, N.A.; Berrino, E.; Supuran, C.T. 1,2,4-Trisubstituted imidazolinones with dual carbonic anhydrase and p38 mitogen-activated protein kinase inhibitory activity. Bioorg. Chem., 2019, 82, 109-116.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.037] [PMID: 30312865]
[4]
Abdellatif, K.R.A.; Fadaly, W.A.A. New 1,2-diaryl-4-substituted-benzylidene-5-4H-imidazolone derivatives: Design, synthesis and biological evaluation as potential anti-inflammatory and analgesic agents. Bioorg. Chem., 2017, 72, 123-129.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.002] [PMID: 28411407]
[5]
Murthy, P.K.; Mary, Y.S.; Mary, Y.S.; Panicker, C.Y.; Suneetha, V.; Armaković, S.; Armaković, S.J.; Van Alsenoy, C.; Suchetan, P.A. Synthesis, crystal structure analysis, spectral investigations, DFT computations and molecular dynamics and docking study of 4-benzyl-5-oxomorpholine-3-carbamide, a potential bioactive agent. J. Mol. Struct., 2017, 1134, 25-39.
[http://dx.doi.org/10.1016/j.molstruc.2016.12.037]
[6]
Haasbroek, P.P.; Oliver, D.W.; Carpy, A.J.M. Evidence of the structure of 4-(4′-acetoxybenzylidene)-2-methyl-5-oxazolone and its phenylpropenoic acid derivatives. J. Mol. Struct., 2003, 648, 61-67.
[http://dx.doi.org/10.1016/S0022-2860(02)00572-0]
[7]
Fearnley, S.P.; Market, E. Intramolecular Diels-Alder reactions of N-substituted oxazolones. Chem. Commun. (Camb.), 2002, 5(5), 438-439.
[http://dx.doi.org/10.1039/b110992h] [PMID: 12120530]
[8]
Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, O.; Köysal, Y.; Kiliç, E.; Işik, S.; Aktay, G.; Özalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751.
[http://dx.doi.org/10.1016/j.bmc.2007.06.006] [PMID: 17587585]
[9]
Dhingra, A.K.; Chopra, B.; Dass, R.; Mittal, S.K. Synthesis, antimicrobial and anti-inflammatory activities of some novel 5-substituted imidazolone analogs. Chin. Chem. Lett., 2016, 27, 707-710.
[http://dx.doi.org/10.1016/j.cclet.2016.01.049]
[10]
Hamidian, H.; Azizi, S. Synthesis of novel compounds containing morpholine and 5(4H)-oxazolone rings as potent tyrosinase inhibitors. Bioorg. Med. Chem., 2015, 23(21), 7089-7094.
[http://dx.doi.org/10.1016/j.bmc.2015.09.015] [PMID: 26462055]
[11]
Voosala, C.; Kilaru, P.S.; Dasari, U.K. A facile and efficient synthesis of 4-arylidene-2-phenyl-5(4h)-oxazolones and their antimicrobial evaluation against selected human and phytopathogens. J. Chin. Chem. Soc. (Taipei), 2016, 63, 909-916.
[http://dx.doi.org/10.1002/jccs.201600083]
[12]
Perron-Sierra, F.M.; Pierré, A.; Burbridge, M.; Guilbaud, N. Novel bicyclic oxazolone derivatives as anti-angiogenic agents. Bioorg. Med. Chem. Lett., 2002, 12(11), 1463-1466.
[http://dx.doi.org/10.1016/S0960-894X(02)00197-X] [PMID: 12031320]
[13]
Haress, N.G.; Govindarajan, M.R.I. AL-Wabli, M.S. Almutairi, M.A. Al-Alshaikh, A.A. Al-Saadi, M.I. Attia, Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and theoretical calculations of (2E)-2-[3-(1H-imidazol-1-yl)-1-phenylpropylidene]hydrazinecarboxamide: An anticonvulsant agent. J. Mol. Struct., 2016, 1118, 219-232.
[http://dx.doi.org/10.1016/j.molstruc.2016.04.026]
[14]
Khadse, S.C.; Chatpalliwar, V.A. Synthesis of benzamides by microwave assisted ring opening of less reactive dimethylaminobenzylidene oxazolone. Arab. J. Chem., 2017, 10, S859-S863.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.020]
[15]
Sudha, B.N. Synthesis, anti-oxidant and analgesic activity of N- (1- (4- benzamide derivatives. Int. J. Chemtech Res., 2019, 12, 15-25.
[http://dx.doi.org/10.20902/IJCTR.2019.120503]
[16]
Abu-Melha, S. Synthesis, antimicrobial evaluation and spectroscopic characterization of novel imidazolone, triazole and triazinone derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 898-905.
[http://dx.doi.org/10.1016/j.saa.2012.04.068] [PMID: 22796528]
[17]
Scala, A.; Piperno, A.; Micale, N.; Christ, F.; Debyser, Z. Synthesis and anti-hiv profile of a novel tetrahydroindazolylbenzamide derivative obtained by oxazolone chemistry. ACS Med. Chem. Lett., 2018, 10(4), 398-401.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00511] [PMID: 30996769]
[18]
Lamie, P.F.; Philoppes, J.N.; Rárová, L. Design, synthesis, and biological evaluation of novel 1,2-diaryl-4-substituted-benzylidene-5(4H)-imidazolone derivatives as cytotoxic agents and COX-2/LOX inhibitors. Arch. Pharm. (Weinheim), 2018, 351(3-4)e1700311
[http://dx.doi.org/10.1002/ardp.201700311] [PMID: 29400411]
[19]
Liao, W.; Hu, G.; Guo, Z.; Sun, D.; Zhang, L.; Bu, Y.; Li, Y.; Liu, Y.; Gong, P. Design and biological evaluation of novel 4-(2-fluorophenoxy)quinoline derivatives bearing an imidazolone moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2015, 23(15), 4410-4422.
[http://dx.doi.org/10.1016/j.bmc.2015.06.026] [PMID: 26169763]
[20]
Amareshwar, V.; Mishra, N.C.; Ila, H. 2-phenyl-4-bis(methylthio)methyleneoxazol-5-one: versatile template for diversity oriented synthesis of heterocycles. Org. Biomol. Chem., 2011, 9(16), 5793-5801.
[http://dx.doi.org/10.1039/c1ob05495c] [PMID: 21735009]
[21]
Hussein, A.J. Synthesis and Characterization of Some New Pyrazoline Compounds Derived from Azo- Benzaldehyde pp.(51-58). Zanco J. Pure Appl. Sci., 2015, 27, 51-58.
[22]
Mzgin, M. Ayoob, Farouq E. Hawaiz, Design, synthesis, and spectroscopic study of some new flavones containing two azo linkages. AIP Conf. Proc., 2017, 1888, 020017;
[http://dx.doi.org/10.1063/1.5004294]
[23]
Kaya, K.; Ocal, N.; Gunkara, O.T.; Guleli, M.; Cevikkalp, S.A. Synthesis of new 5-oxazolones: Their ring opening reactions to obtain new benzamide derivatives. Curr. Org. Synth., 2017, 14, 283.
[http://dx.doi.org/10.2174/1570179413666161031164124]
[24]
Samad, M.K.; Hawaiz, F.E. Synthesis, characterization, antioxidant power and acute toxicity of some new azo-benzamide and azo-imidazolone derivatives with in vivo and in vitro antimicrobial evaluation. Bioorg. Chem., 2019, 85, 431-444.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.014] [PMID: 30685693]
[25]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[26]
Maliyappa, M.R.; Keshavayya, J.; Mallikarjuna, N.M.; Krishna, P.M.; Shivakumara, N.; Sandeep, T.; Sailaja, K.; Nazrulla, M.A. Synthesis, characterization, pharmacological and computational studies of 4, 5, 6, 7-tetrahydro-1, 3-benzothiazole incorporated azo dyes. J. Mol. Struct., 2019, 1179, 630-641.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.041]
[27]
Name, A.; Iena, I.M.C.; Adina, C.; Mariana, N.Ş. Mariana, Antioxidant Capacity of Some New N- ( 2-bromo- phenyl ) -2-hydroxy-benzamide Derivatives. 6th IEEE Int. Conf. E-Health Bioeng. - EHB, 2017, pp. 121-124.,
[28]
Mehta, S.; Soni, N.; Satpathy, G.; Gupta, R.K. Evaluation of nutritional, phytochemical, antioxidant and antibacterial activity of dried plum (Prunus domestica). J. Pharmacogn. Phytochem., 2014, 3, 166-171.
[29]
Mohamed, S.K.A. Hussein, Ayoob, M.M.; Hawaiz, F. E.; Samad, M.K.; Hussain, F. Synthesis,spectroscopic investigation, anti-bacterial and antioxidant activites of some new azo-benzofuran derivatives. Egypt. J. Chem., 2020, 63(7), 2617-2629.
[http://dx.doi.org/10.21608/ejchem.2019.14844.1899]
[30]
Jiménez-Estrada, M.; Velázquez-Contreras, C.; Garibay-Escobar, A.; Sierras-Canchola, D.; Lapizco-Vázquez, R.; Ortiz-Sandoval, C.; Burgos-Hernández, A.; Robles-Zepeda, R.E. In vitro antioxidant and antiproliferative activities of plants of the ethnopharmacopeia from northwest of Mexico. BMC Complement. Altern. Med., 2013, 13, 12.
[http://dx.doi.org/10.1186/1472-6882-13-12] [PMID: 23305162]
[31]
Jin, R.Y.; Zeng, C.Y.; Liang, X.H.; Sun, X.H.; Liu, Y.F.; Wang, Y.Y.; Zhou, S. Design, synthesis, biological activities and DFT calculation of novel 1,2,4-triazole Schiff base derivatives. Bioorg. Chem., 2018, 80, 253-260.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.030] [PMID: 29966871]
[32]
Blanco-Lomas, M.; Funes-Ardoiz, I.; Campos, P.J.; Sampedro, D. Oxazolone-based photoswitches: Synthesis and properties. Eur. J. Org. Chem., 2013, 6611-6618.
[http://dx.doi.org/10.1002/ejoc.201300641]
[33]
Idhayadhulla, A.; Xia, L.; Lee, Y.R.; Kim, S.H.; Wee, Y.J.; Lee, C.S. Synthesis of novel and diverse mollugin analogues and their antibacterial and antioxidant activities. Bioorg. Chem., 2014, 52, 77-82.
[http://dx.doi.org/10.1016/j.bioorg.2013.11.008] [PMID: 24388865]
[34]
Ahmed, D.; Khan, M.M.; Saeed, R. Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum Leaves. Antioxidants, 2015, 4(2), 394-409.
[http://dx.doi.org/10.3390/antiox4020394] [PMID: 26783712]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy