Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

S-adenosyl-L-homocysteine Hydrolase: Its Inhibitory Activity Against Plasmodium falciparum and Development of Malaria Drugs

Author(s): Girish Chandra*, Samridhi Patel, Manoj Panchal and Durg Vijay Singh

Volume 21, Issue 7, 2021

Published on: 18 December, 2020

Page: [833 - 846] Pages: 14

DOI: 10.2174/1389557521666201218155321

Price: $65

Abstract

Parasite Plasmodium falciparum is continuously giving a challenge to human beings by changing itself against most of the antimalarial drugs and its consequences can be seen in the form of a huge number of deaths each year especially in the poor and developing country. Due to its drug resistance ability, new drugs are regularly needed to kill the organism. Many new drugs have been developed based on different mechanisms. One of the potential mechanisms is to hamper protein synthesis by blocking the gene expression.

S-Adenosyl-L-homocysteine (SAH) hydrolase is a NAD+ dependent tetrameric enzyme, which is responsible for the reversible hydrolysis of AdoHcy to adenosine and L-homocysteine, has been recognized as a new target for antimalarial agents since the parasite has a specific SAH hydrolase. The inhibition of SAH hydrolase causes the intracellular accumulation of S-Adenosyl-L-homocysteine, elevating the ratio of SAH to S-adenosylmethionine (SAM) and inhibiting SAM-dependent methyltransferase that catalyzes methylation of the capped structure at the 5′-terminus of mRNA, and other methylation reaction which is essential for parasite proliferation. In other words, S-Adenosyl-Lhomocysteine hydrolase regulates methyltransferase reactions. In this way, SAH hydrolase inhibitors can be used for the treatment of different diseases like malaria, cancer, viral infection, etc. by ultimately stopping the synthesis of protein. Many antiviral drugs have been synthesized and marketed which are based on the inhibition of SAH hydrolase.

This review summarises the development of SAH inhibitors developed over the last 20 years and their potentiality for the treatment of malaria.

Keywords: S-Adenosyl-L-homocysteine hydrolase, antimalarial compound, modified nucleoside, enzyme inhibitor, neplanocin, drug design.

Graphical Abstract
[1]
World malaria report; World health organization. 2019. 978-92-4- 156572-1.
[2]
Phillips, M.A.; Burrows, J.N.; Manyando, C.; Huijsduijnen, R.H-V.; Voorhis, W.C-V.; Wells, T.N.C. Malaria. Nat. Rev. Dis., 2017, 3, 1-24.
[3]
Barnett, D.S.; Guy, R.K. Antimalarials in development in 2014. Chem. Rev., 2014, 114(22), 11221-11241.
[http://dx.doi.org/10.1021/cr500543f] [PMID: 25340626]
[4]
Njoroge, M.; Njuguna, N.M.; Mutai, P.; Ongarora, D.S.B.; Smith, P.W.; Chibale, K. Recent approaches to chemical discovery and development against malaria and the neglected tropical diseases human African trypanosomiasis and schistosomiasis. Chem. Rev., 2014, 114(22), 11138-11163.
[http://dx.doi.org/10.1021/cr500098f] [PMID: 25014712]
[5]
Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: A novel class of antimalarial and anti-cancer agents. Chem. Soc. Rev., 2010, 39(2), 435-454.
[http://dx.doi.org/10.1039/B816679J] [PMID: 20111769]
[6]
World Health Organization. Global report on antimalarial drug efficacy and drug resistance: 2000-2010; World Health Organization: Geneva, 2011.
[7]
U. S. Food & Drugs Administrations: Advancing Health Through Innovation 2018 New Drug Therapy Approvals., 2018. https://www.fda.gov/media/120357/download [March 22, 2020];
[8]
Mayence, A.; Vanden Eynde, J.J.; Tafenoquine, A. 2018 novel FDA-approved prodrug for the radical cure of Plasmodium vivax malaria and prophylaxis of malaria. Pharmaceuticals (Basel), 2019, 12(3), 115.
[http://dx.doi.org/10.3390/ph12030115] [PMID: 31366060]
[9]
Jeong, L.S.; Tosh, D.K.; Kim, H.O.; Wang, T.; Hou, X.; Yun, H.S.; Kwon, Y.; Lee, S.K.; Choi, J.; Zhao, L.X. First synthesis of 4′-selenonucleosides showing unusual Southern conformation. Org. Lett., 2008, 10(2), 209-212.
[http://dx.doi.org/10.1021/ol7025558] [PMID: 18088134]
[10]
Merino, P. Chemical synthesis of nucleoside analogues; John Wiley & Sons, Inc., 2013.
[http://dx.doi.org/10.1002/9781118498088]
[11]
Chu, C.K. Recent advances in nucleosides: Chemistry and chemotherapy, 1st ed; Elsevier Science, 2002.
[12]
Lawton, P. Purine analogues as antiparasitic agents. Expert Opin. Ther. Pat., 2005, 15, 987-994.
[http://dx.doi.org/10.1517/13543776.15.8.987]
[13]
Singh, K.; Joshi, P.; Mahar, R.; Baranwal, P.; Shukla, S.K.; Tripathi, R.; Tripathi, R.P. Synthesis and antiplasmodial activity of purine-based C-nucleoside analogues. MedChemComm, 2018, 9(7), 1232-1238.
[http://dx.doi.org/10.1039/C8MD00098K] [PMID: 30109012]
[14]
Zheng, Z.; Tran, H-A.; Manivannan, S.; Wen, X.; Kaiser, M.; Brun, R.; Snyder, F.F.; Back, T.G. Novel nucleoside-based antimalarial compounds. Bioorg. Med. Chem. Lett., 2016, 26(12), 2861-2865.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.053] [PMID: 27156774]
[15]
Cassera, M.B.; Zhang, Y.; Hazleton, K.Z.; Schramm, V.L. Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr. Top. Med. Chem., 2011, 11(16), 2103-2115.
[http://dx.doi.org/10.2174/156802611796575948] [PMID: 21619511]
[16]
Herforth, C.; Wiesner, J.; Heidler, P.; Sanderbrand, S.; Van Calenbergh, S.; Jomaa, H.; Link, A. Antimalarial activity of N(6)-substituted adenosine derivatives. Part 3. Bioorg. Med. Chem., 2004, 12(4), 755-762.
[http://dx.doi.org/10.1016/j.bmc.2003.11.008] [PMID: 14759735]
[17]
Frame, I.J.; Deniskin, R.; Arora, A.; Akabas, M.H. Purine import into malaria parasites as a target for antimalarial drug development. Ann. N. Y. Acad. Sci., 2015, 1342, 19-28.
[http://dx.doi.org/10.1111/nyas.12568] [PMID: 25424653]
[18]
Noguchi, Y.; Yasuda, Y.; Tashiro, M.; Kataoka, T.; Kitamura, Y.; Kandeel, M.; Kitade, Y. Synthesis of carbocyclic pyrimidine nucleosides and their inhibitory activities against Plasmodium falciparum thymidylate kinase. Parasitol. Int., 2013, 62(4), 368-371.
[http://dx.doi.org/10.1016/j.parint.2013.03.009] [PMID: 23583697]
[19]
Nguyen, C.; Kasinathan, G.; Leal-Cortijo, I.; Musso-Buendia, A.; Kaiser, M.; Brun, R.; Ruiz-Pérez, L.M.; Johansson, N-G.; González-Pacanowska, D.; Gilbert, I.H. Deoxyuridine triphosphate nucleotidohydrolase as a potential antiparasitic drug target. J. Med. Chem., 2005, 48(19), 5942-5954.
[http://dx.doi.org/10.1021/jm050111e] [PMID: 16161998]
[20]
Nguyen, C.; Ruda, G.F.; Schipani, A.; Kasinathan, G.; Leal, I.; Musso-Buendia, A.; Kaiser, M.; Brun, R.; Ruiz-Pérez, L.M.; Sahlberg, B-L.; Johansson, N.G.; Gonzalez-Pacanowska, D.; Gilbert, I.H. Acyclic nucleoside analogues as inhibitors of Plasmodium falciparum dUTPase. J. Med. Chem., 2006, 49(14), 4183-4195.
[http://dx.doi.org/10.1021/jm060126s] [PMID: 16821778]
[21]
Chen, M.D.; Sinha, K.; Rule, G.S.; Ly, D.H. Interaction of α-thymidine inhibitors with thymidylate kinase from Plasmodium falciparum. Biochemistry, 2018, 57(19), 2868-2875.
[http://dx.doi.org/10.1021/acs.biochem.8b00162] [PMID: 29684273]
[22]
Kato, A.; Yasuda, Y.; Kitamura, Y.; Kandeel, M.; Kitade, Y. Carbocyclic thymidine derivatives efficiently inhibit Plasmodium falciparum thymidylate kinase (PfTMK). Parasitol. Int., 2012, 61(3), 501-503.
[http://dx.doi.org/10.1016/j.parint.2012.03.001] [PMID: 22425904]
[23]
Turner, M.A.; Yang, X.; Yin, D.; Kuczera, K.; Borchardt, R.T.; Howell, P.L. Structure and function of S-adenosylhomocysteine hydrolase. Cell Biochem. Biophys., 2000, 33(2), 101-125.
[http://dx.doi.org/10.1385/CBB:33:2:101] [PMID: 11325033]
[24]
Kusakabe, Y.; Ishihara, M.; Umeda, T.; Kuroda, D.; Nakanishi, M.; Kitade, Y.; Gouda, H.; Nakamura, K.T.; Tanaka, N. Structural insights into the reaction mechanism of S-adenosyl-L-homocysteine hydrolase. Sci. Rep., 2015, 5, 16641.
[http://dx.doi.org/10.1038/srep16641] [PMID: 26573329]
[25]
Cantoni, G.L. The centrality of s-adenosylhomocysteinase in the regulation of the biological utilization of S-Adenosylmethionine. Biological Methylation and Drug Design; Borchardt, R.T.; Creveling, C.R; Ueland, P.M., Ed.; Humana Press: Clifton, NJ, 1986, pp. 227-238.
[http://dx.doi.org/10.1007/978-1-4612-5012-8_19]
[26]
Ueland, P.M. Pharmacological and biochemical aspects of S-adenosylhomocysteine and S-adenosylhomocysteine hydrolase. Pharmacol. Rev., 1982, 34(3), 223-253.
[PMID: 6760211]
[27]
De Clercq, E. S-adenosylhomocysteine hydrolase inhibitors as broad-spectrum antiviral agents. Biochem. Pharmacol., 1987, 36(16), 2567-2575.
[http://dx.doi.org/10.1016/0006-2952(87)90533-8] [PMID: 3300656]
[28]
Wolfe, M.S.; Borchardt, R.T. S-adenosyl-L-homocysteine hydrolase as a target for antiviral chemotherapy. J. Med. Chem., 1991, 34(5), 1521-1530.
[http://dx.doi.org/10.1021/jm00109a001] [PMID: 2033576]
[29]
Jeong, L.S.; Yoo, S.J.; Lee, K.M.; Koo, M.J.; Choi, W.J.; Kim, H.O.; Moon, H.R.; Lee, M.Y.; Park, J.G.; Lee, S.K.; Chun, M.W. Design, synthesis, and biological evaluation of fluoroneplanocin A as the novel mechanism-based inhibitor of S-adenosylhomocysteine hydrolase. J. Med. Chem., 2003, 46(2), 201-203.
[http://dx.doi.org/10.1021/jm025557z] [PMID: 12519056]
[30]
Chandra, G.; Moon, Y.W.; Lee, Y.; Jang, J.Y.; Song, J.; Nayak, A.; Oh, K.; Mulamoottil, V.A.; Sahu, P.K.; Kim, G.; Chang, T.S.; Noh, M.; Lee, S.K.; Choi, S.; Jeong, L.S. Structure-activity relationships of neplanocin A analogues as S-adenosylhomocysteine hydrolase inhibitors and their antiviral and antitumor activities. J. Med. Chem., 2015, 58(12), 5108-5120.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00553] [PMID: 26010585]
[31]
De Clercq, E. Fifty years in search of selective antiviral drugs. J. Med. Chem., 2019, 62(16), 7322-7339.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00175] [PMID: 30939009]
[32]
Kim, G.; Yoon, J-S.; Jarhad, D.B.; Shin, Y.S.; Majik, M.S.; Mulamoottil, V.A.; Hou, X.; Qu, S.; Park, J.; Baik, M.H.; Jeong, L.S. Asymmetric synthesis of (−)-6′-β-fluoro-aristeromycin via stereoselective electrophilic fluorination. Org. Lett., 2017, 19(21), 5732-5735.
[http://dx.doi.org/10.1021/acs.orglett.7b02470] [PMID: 29028350]
[33]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[34]
Creedon, K.A.; Rathod, P.K.; Wellems, T.E. Plasmodium falciparum S-adenosylhomocysteine hydrolase. cDNA identification, predicted protein sequence, and expression in Escherichia coli. J. Biol. Chem., 1994, 269(23), 16364-16370.
[PMID: 8206944]
[35]
Singh, D.B.; Dwivedi, S. Structural insight into binding mode of inhibitor with SAHH of Plasmodium and human: Interaction of curcumin with anti-malarial drug targets. J. Chem. Biol., 2016, 9(4), 107-120.
[http://dx.doi.org/10.1007/s12154-016-0155-7] [PMID: 27698948]
[36]
Tanaka1, N.; Nakanishi, M.; Kusakabe, Y.; Shiraiwa1, K.; Yabe, S.; Ito, Y.; Kitade, Y.; Nakamura, K. T. Crystal structure of S-adenosyl-L-homocysteine hydrolase from the human malaria parasite Plasmodium falciparum. J. Mol. Biol., 2004, 343, 1007-1017.
[http://dx.doi.org/10.1016/j.jmb.2004.08.104]
[37]
Nakanishi, M.; Yabe, S.; Tanaka, N.; Ito, Y.; Nakamura, K.T.; Kitade, Y. Mutational analyses of Plasmodium falciparum and human S-adenosylhomocysteine hydrolases. Mol. Biochem. Parasitol., 2005, 143(2), 146-151.
[http://dx.doi.org/10.1016/j.molbiopara.2005.05.012] [PMID: 16005528]
[38]
Lee, K.M.; Choi, W.J.; Lee, Y.; Lee, H.J.; Zhao, L.X.; Lee, H.W.; Park, J.G.; Kim, H.O.; Hwang, K.Y.; Heo, Y.S.; Choi, S.; Jeong, L.S. X-ray crystal structure and binding mode analysis of human S-adenosylhomocysteine hydrolase complexed with novel mechanism-based inhibitors, haloneplanocin A analogues. J. Med. Chem., 2011, 54(4), 930-938.
[http://dx.doi.org/10.1021/jm1010836] [PMID: 21226494]
[39]
De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1(1), 13-25.
[http://dx.doi.org/10.1038/nrd703] [PMID: 12119605]
[40]
Hoshi, A.; Yoshida, M.; Iigo, M.; Tokuzen, R.; Fukukawa, K.; Ueda, T. Antitumor activity of derivatives of neplanocin A in vivo and in vitro. J. Pharmacobiodyn., 1986, 9(2), 202-206.
[http://dx.doi.org/10.1248/bpb1978.9.202] [PMID: 2423673]
[41]
Borchardt, R.T.; Keller, B.T.; Patel-Thombre, U. Neplanocin A. A potent inhibitor of S-adenosylhomocysteine hydrolase and of vaccinia virus multiplication in mouse L929 cells. J. Biol. Chem., 1984, 259(7), 4353-4358.
[PMID: 6707008]
[42]
Inaba, M.; Nagashima, K.; Tsukagoshi, S.; Sakurai, Y. Biochemical mode of cytotoxic action of neplanocin A in L1210 leukemic cells. Cancer Res., 1986, 46(3), 1063-1067.
[PMID: 3943084]
[43]
Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.004] [PMID: 29649496]
[44]
Choi, M.J.; Chandra, G.; Lee, H.W.; Hou, X.; Choi, W.J.; Phan, K.; Jacobson, K.A.; Jeong, L.S. Regio- and stereoselective synthesis of truncated 3′-aminocarbanucleosides and their binding affinity at the A3 adenosine receptor. Org. Biomol. Chem., 2011, 9(20), 6955-6962.
[http://dx.doi.org/10.1039/c1ob05853c] [PMID: 21860878]
[45]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29, 696-747.
[46]
Matuszewska, B.; Borchardt, R.T. The role of nicotinamide adenine dinucleotide in the inhibition of bovine liver S-adenosylhomocysteine hydrolase by neplanocin A. J. Biol. Chem., 1987, 262(1), 265-268.
[PMID: 3025205]
[47]
McCarthy, J.R.; Jarvi, E.T.; Mathews, D.P.; Edwards, M.L.; Prakash, N.J.; Bowlin, T.L.; Mehdi, S.; Sunkara, P.S.; Bey, P. 4′,5′-Unsaturated-5′-fluoroadenosine nucleosides: Potent mechanism-based inhibitors of S-adenosyl-L-homocysteine hydrolase. J. Am. Chem. Soc., 1989, 111, 1127-1128.
[http://dx.doi.org/10.1021/ja00185a052]
[48]
Wnuk, S.F.; Yuan, C-S.; Borchardt, R.T.; Balzarini, J.; De Clercq, E.; Robins, M.J. Nucleic acid related compounds. 84. Synthesis of 6′-(E and Z)-halohomovinyl derivatives of adenosine, inactivation of S-adenosyl-L-homocysteine hydrolase, and correlation of anticancer and antiviral potencies with enzyme inhibition. J. Med. Chem., 1994, 37(21), 3579-3587.
[http://dx.doi.org/10.1021/jm00047a015] [PMID: 7932585]
[49]
Shuto, S.; Minakawa, N.; Niizuma, S.; Kim, H-S.; Wataya, Y.; Matsuda, A. New neplanocin analogues. 12. Alternative synthesis and antimalarial effect of (6‘R)-6’-C-methylneplanocin A, a potent AdoHcy hydrolase inhibitor. J. Med. Chem., 2002, 45(3), 748-751.
[http://dx.doi.org/10.1021/jm010374i] [PMID: 11806727]
[50]
Kitade, Y.; Kojima, H.; Zulfiqur, F.; Kim, H-S.; Wataya, Y. Synthesis of 2-fluoronoraristeromycin and its inhibitory activity against Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase. Bioorg. Med. Chem. Lett., 2003, 13(22), 3963-3965.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.074] [PMID: 14592485]
[51]
Kitade, Y.; Kozaki, A.; Miwa, T.; Nakanishi, M. Synthesis of base modified noraristeromycin derivatives and their inhibitory activity against human and Plasmodium falciparum recombinant S-adenosyl-L-homocysteinehydrolase. Tetrahedron, 2002, 58, 1271-1277.
[http://dx.doi.org/10.1016/S0040-4020(01)01247-9]
[52]
Nakanishi, M.; Iwata, A.; Yatome, C.; Kitade, Y. Purification and properties of recombinant Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase. J. Biochem., 2001, 129(1), 101-105.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002819] [PMID: 11134963]
[53]
Takagi, C.; Sukeda, M.; Kim, H-S.; Wataya, Y.; Yabe, S.; Kitade, Y.; Matsuda, A.; Shuto, S. Synthesis of 5′-methylenearisteromycin and its 2-fluoro derivative with potent antimalarial activity due to inhibition of the parasite S-adenosylhomocysteine hydrolase. Org. Biomol. Chem., 2005, 3(7), 1245-1251.
[http://dx.doi.org/10.1039/B418829B] [PMID: 15785814]
[54]
Madhavan, G.V.B.; McGee, D.P.C.; Rydzewski, R.M.; Boehme, R.; Martin, J.C.; Prisbe, E.J. Synthesis and antiviral evaluation of 6′-substituted aristeromycins: Potential mechanism-based inhibitors of S-adenosylhomocysteine hydrolase. J. Med. Chem., 1988, 31(9), 1798-1804.
[http://dx.doi.org/10.1021/jm00117a021] [PMID: 2842505]
[55]
Ando, T.; Iwata, M.; Zulfiqar, F.; Miyamoto, T.; Nakanishi, M.; Kitade, Y. Synthesis of 2-modified aristeromycins and their analogs as potent inhibitors against Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase. Bioorg. Med. Chem., 2008, 16(7), 3809-3815.
[http://dx.doi.org/10.1016/j.bmc.2008.01.046] [PMID: 18295495]
[56]
Kojima, H.; Yamaguchi, T.; Kozaki, A.; Nakanishi, M.; Ueno, Y.; Kitade, Y. Synthesis of noraristeromycin analogues possessing SAH hydrolase inhibitory activity for the development of antimalarial agents. Nucleic Acids Res., 2002, 2, 141-142.
[http://dx.doi.org/10.1093/nass/2.1.141]
[57]
Bitonti, A.J.; Baumann, R.J.; Jarvi, E.T.; McCarthy, J.R.; McCann, P.P. Antimalarial activity of a 4′,5′-unsaturated 5′-fluoroadenosine mechanism-based inhibitor of S-adenosyl-L-homocysteine hydrolase. Biochem. Pharmacol., 1990, 40(3), 601-606.
[http://dx.doi.org/10.1016/0006-2952(90)90562-Y] [PMID: 2200410]
[58]
McCarthy, J.R.; Jarvi, E.T.; Matthews, D.P.; Edwards, M.L.; Prakash, N.J.; Bowlin, T.L.; Mehdi, S.; Sunkara, P.S.; Bey, P. 4′,5′-unsaturated 5′-fluoroadenosine nucleosides: Potent mechanism-based inhibitors of S- adenosyl-L-homocysteine hydrolase. J. Am. Chem. Soc., 1989, 111, 1127-1128.
[http://dx.doi.org/10.1021/ja00185a052]
[59]
Montgomery, J.A.; Clayton, S.J.; Thomas, H.J.; Shannon, W.M.; Arnett, G.; Bodner, A.J.; Kion, I-K.; Cantoni, G.L.; Chiang, P.K. Carbocyclic analogue of 3-deazaadenosine: A novel antiviral agent using S-adenosylhomocysteine hydrolase as a pharmacological target. J. Med. Chem., 1982, 25(6), 626-629.
[http://dx.doi.org/10.1021/jm00348a004] [PMID: 7097716]
[60]
Bujnicki, J.M.; Prigge, S.T.; Caridha, D.; Chiang, P.K. Structure, evolution, and inhibitor interaction of S-adenosyl-L-homocysteine hydrolase from Plasmodium falciparum. Proteins, 2003, 52(4), 624-632.
[http://dx.doi.org/10.1002/prot.10446] [PMID: 12910461]
[61]
Miranda, T.B.; Cortez, C.C.; Yoo, C.B.; Liang, G.; Abe, M.; Kelly, T.K.; Marquez, V.E.; Jones, P.A. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther., 2009, 8(6), 1579-1588.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0013] [PMID: 19509260]
[62]
Fujiwara, T.; Saitoh, H.; Inoue, A.; Kobayashi, M.; Okitsu, Y.; Katsuoka, Y.; Fukuhara, N.; Onishi, Y.; Ishizawa, K.; Ichinohasama, R.; Harigae, H. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J. Biol. Chem., 2014, 289(12), 8121-8134.
[http://dx.doi.org/10.1074/jbc.M114.548651] [PMID: 24492606]
[63]
Chiang, P.K.; Cantoni, G.L. Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem. Pharmacol., 1979, 28(12), 1897-1902.
[http://dx.doi.org/10.1016/0006-2952(79)90642-7] [PMID: 454462]
[64]
Sharma, A.; Anderson, T.D.; Sharakhov, I.V. Toxicological assays for testing effects of an epigenetic drug on development, fecundity and survivorship of malaria mosquitoes. J. Vis. Exp., 2015, 95(95), 52041.
[http://dx.doi.org/10.3791/52041] [PMID: 25650701]
[65]
Coetzee, N.; von Grüning, H.; Opperman, D.; van der Watt, M.; Reader, J.; Birkholtz, L-M. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci. Rep., 2020, 10(1), 2355.
[http://dx.doi.org/10.1038/s41598-020-59298-4] [PMID: 32047203]
[66]
Whaun, J.M.; Miura, G.A.; Brown, N.D.; Gordon, R.K.; Chiang, P.K. Antimalarial activity of neplanocin A with perturbations in the metabolism of purines, polyamines and S-adenosylmethionine. J. Pharmacol. Exp. Ther., 1986, 236(1), 277-283.
[PMID: 3510296]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy