Stability of Ketoprofen Methylester in Plasma of Different Species

Author(s): Steven X. Hu*, Kelsey Ernst, Charles P. Benner, Kenneth L. Feenstra

Journal Name: Current Drug Metabolism

Volume 22 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Pharmacokinetic and pharmacodynamic assessment of ester-containing drugs can be impacted by hydrolysis of the drugs in plasma samples post blood collection. The impact is different in the plasma of different species.

Objective: This study evaluated the stability of a prodrug, ketoprofen methylester (KME), in commercially purchased and freshly collected plasma of mouse, rat, dog, cat, pig, sheep, cattle and horse.

Methods: KME hydrolysis was determined following its incubation in commercially purchased and freshly collected plasma of those species. Different esterase inhibitors were evaluated for prevention of the hydrolysis in rat, dog and pig plasma.

Results: KME was rapidly hydrolyzed in both commercially purchased and freshly collected plasma of mouse, rat, and horse. The hydrolysis was initially quick and then limited in cat plasma. KME hydrolysis was minimum in commercially purchased plasma of dog, pig, sheep and cattle but substantial in freshly collected plasma of those species. Different esterase inhibitors showed different effects on the stability of KME in rat, dog and pig plasma.

Conclusion: These results indicate that plasma of different species has different hydrolytic activities to estercontaining drugs. The activities in commercially purchased and freshly collected plasma may be different and species-dependent. Esterase inhibitors have different effects on preventing hydrolysis of the ester-containing drugs in the plasma of different species.

Keywords: Ketoprofen methylester, plasma, stability, species, freshly collected, commercially purchased, esterase inhibition.

[1]
Rautio, J.; Meanwell, N.A.; Di, L.; Hageman, M.J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov., 2018, 17(8), 559-587.
[http://dx.doi.org/10.1038/nrd.2018.46] [PMID: 29700501]
[2]
Najjar, A.; Karaman, R. The prodrug approach in the era of drug design. Expert Opin. Drug Deliv., 2019, 16(1), 1-5.
[http://dx.doi.org/10.1080/17425247.2019.1553954] [PMID: 30558447]
[3]
Khan, M.O.F.; Park, K.K.; Lee, H.J. Antedrugs: an approach to safer drugs. Curr. Med. Chem., 2005, 12(19), 2227-2239.
[http://dx.doi.org/10.2174/0929867054864840] [PMID: 16178782]
[4]
Müller, C.E. Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem. Biodivers., 2009, 6(11), 2071-2083.
[http://dx.doi.org/10.1002/cbdv.200900114] [PMID: 19937841]
[5]
Lee, H.J.; Cooperwood, J.S.; You, Z.; Ko, D.H. Prodrug and antedrug: two diametrical approaches in designing safer drugs. Arch. Pharm. Res., 2002, 25(2), 111-136.
[http://dx.doi.org/10.1007/BF02976552] [PMID: 12009024]
[6]
Evans, W.E.; Relling, M.V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science, 1999, 286(5439), 487-491.
[http://dx.doi.org/10.1126/science.286.5439.487] [PMID: 10521338]
[7]
Cerny, M.A. Prevalence of non-cytochrome P450-mediated metabolism in food and drug administration-approved oral and intravenous drugs: 2006-2015. Drug Metab. Dispos., 2016, 44(8), 1246-1252.
[http://dx.doi.org/10.1124/dmd.116.070763] [PMID: 27084892]
[8]
Imai, T.; Hosokawa, M. Prodrug approach using carboxylesterase activity: catalytic properties and gene regulation of carboxylesterases in mammalian tissue. J. Pestic. Sci., 2010, 35, 229-239.
[http://dx.doi.org/10.1584/jpestics.R10-03]
[9]
Hosokawa, M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules, 2008, 13(2), 412-431.
[http://dx.doi.org/10.3390/molecules13020412] [PMID: 18305428]
[10]
Berry, L.M.; Wollenberg, L.; Zhao, Z. Esterase activities in the blood, liver and intestine of several preclinical species and humans. Drug Metab. Lett., 2009, 3(2), 70-77.
[http://dx.doi.org/10.2174/187231209788654081] [PMID: 19601867]
[11]
Li, B.; Sedlacek, M.; Manoharan, I.; Boopathy, R.; Duysen, E.G.; Masson, P.; Lockridge, O. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem. Pharmacol., 2005, 70(11), 1673-1684.
[http://dx.doi.org/10.1016/j.bcp.2005.09.002] [PMID: 16213467]
[12]
Nishimuta, H.; Houston, J.B.; Galetin, A. Hepatic, intestinal, renal, and plasma hydrolysis of prodrugs in human, cynomolgus monkey, dog, and rat: implications for In vitro in vivo extrapolation of clearance of prodrugs. Drug Metab. Dispos., 2014, 42(9), 1522-1531.
[http://dx.doi.org/10.1124/dmd.114.057372] [PMID: 24994071]
[13]
Zhang, W.; Xu, G.; McLeod, H.L. Comprehensive evaluation of carboxylesterase-2 expression in normal human tissues using tissue array analysis. Appl. Immunohistochem. Mol. Morphol., 2002, 10(4), 374-380.
[http://dx.doi.org/10.1097/00129039-200212000-00015] [PMID: 12607608]
[14]
Satoh, T.; Hosokawa, M. The mammalian carboxylesterases: from molecules to functions. Annu. Rev. Pharmacol. Toxicol., 1998, 38, 257-288.
[http://dx.doi.org/10.1146/annurev.pharmtox.38.1.257] [PMID: 9597156]
[15]
Di, L. The impact of carboxylesterases in drug metabolism and pharmacokinetics. Curr. Drug Metab., 2019, 20(2), 91-102.
[http://dx.doi.org/10.2174/1389200219666180821094502] [PMID: 30129408]
[16]
Prusakiewicz, J.J.; Ackermann, C.; Voorman, R. Comparison of skin esterase activities from different species. Pharm. Res., 2006, 23(7), 1517-1524.
[http://dx.doi.org/10.1007/s11095-006-0273-y] [PMID: 16779705]
[17]
Bahar, F.G.; Ohura, K.; Ogihara, T.; Imai, T. Species difference of esterase expression and hydrolase activity in plasma. J. Pharm. Sci., 2012, 101(10), 3979-3988.
[http://dx.doi.org/10.1002/jps.23258] [PMID: 22833171]
[18]
Fu, J.; Pacyniak, E.; Leed, M.G.D.; Sadgrove, M.P.; Marson, L.; Jay, M. Interspecies differences in the metabolism of a multi-ester prodrug by carboxylesterases. J. Pharm. Sci., 2016, 105(2), 989-995.
[http://dx.doi.org/10.1002/jps.24632] [PMID: 26344572]
[19]
Lindegardh, N.; Davies, G.R.; Tran, T.H.; Farrar, J.; Singhasivanon, P.; Day, N.P.J.; White, N.J. Rapid degradation of oseltamivir phosphate in clinical samples by plasma esterases. Antimicrob. Agents Chemother., 2006, 50(9), 3197-3199.
[http://dx.doi.org/10.1128/AAC.00500-06] [PMID: 16940130]
[20]
Chang, Q.; Chow, M.S.S.; Zuo, Z. Studies on the influence of esterase inhibitor to the pharmacokinetic profiles of oseltamivir and oseltamivir carboxylate in rats using an improved LC/MS/MS method. Biomed. Chromatogr., 2009, 23(8), 852-857.
[http://dx.doi.org/10.1002/bmc.1195] [PMID: 19353695]
[21]
Li, Z.; Zhang, J.; Zhang, Y.; Zuo, Z. Role of esterase mediated hydrolysis of simvastatin in human and rat blood and its impact on pharmacokinetic profiles of simvastatin and its active metabolite in rat. J. Pharm. Biomed. Anal., 2019, 168, 13-22.
[http://dx.doi.org/10.1016/j.jpba.2019.02.004] [PMID: 30776567]
[22]
Peng, H.; Brimijoin, S.; Hrabovska, A.; Krejci, E.; Blake, T.A.; Johnson, R.C.; Masson, P.; Lockridge, O. Monoclonal antibodies to human butyrylcholinesterase reactive with butyrylcholinesterase in animal plasma. Chem. Biol. Interact., 2016, 243, 82-90.
[http://dx.doi.org/10.1016/j.cbi.2015.11.011] [PMID: 26585590]
[23]
Kantor, T.G. Ketoprofen: a review of its pharmacologic and clinical properties. Pharmacotherapy, 1986, 6(3), 93-103.
[http://dx.doi.org/10.1002/j.1875-9114.1986.tb03459.x] [PMID: 3526298]
[24]
Donnelly, M.T.; Richardson, P.; Hawkey, C.J.; Courtauld, E.; Stack, W.A. Dose-dependent effects of ketoprofen on the human gastric mucosa in comparison with ibuprofen. Aliment. Pharmacol. Ther., 2000, 14(5), 543-549.
[http://dx.doi.org/10.1046/j.1365-2036.2000.00743.x] [PMID: 10792116]
[25]
Mozaffari, A.A.; Derakhshanfar, A.; Alinejad, A.; Morovati, M. A comparative study on the adverse effects of flunixin, ketoprofen and phenylbutazone in miniature donkeys: haematological, biochemical and pathological findings. N. Z. Vet. J., 2010, 58(5), 224-228.
[http://dx.doi.org/10.1080/00480169.2010.69295] [PMID: 20927172]
[26]
Shientag, L.J.; Wheeler, S.M.; Garlick, D.S.; Maranda, L.S. A therapeutic dose of ketoprofen causes acute gastrointestinal bleeding, erosions, and ulcers in rats. J. Am. Assoc. Lab. Anim. Sci., 2012, 51(6), 832-841.
[PMID: 23294892]
[27]
Dhokchawle, B.V.; Tauro, S.J.; Bhandari, A.B. Ester prodrugs of ketoprofen: synthesis, hydrolysis kinetics and pharmacological evaluation. Drug Res. (Stuttg.), 2016, 66(1), 46-50.
[PMID: 25894087]
[28]
Dhakane, V.D.; Thakare, V.N.; Dongare, S.B.; Bhale, P.S.; Mule, Y.B.; Bandgar, B.P.; Chavan, H.V. Preparation and pharmacological evaluation of novel orally active ester prodrugs of ketoprofen with non-ulcerogenic property. Chem. Biol. Drug Des., 2016, 87(6), 878-884.
[http://dx.doi.org/10.1111/cbdd.12719] [PMID: 26715009]
[29]
Ahmed, M.; Azam, F.; Gbaj, A.; Zetrini, A.E.; Abodlal, A.S.; Rghigh, A.; Elmahdi, E.; Hamza, A.; Salama, M.; Bensaber, S.M. Ester prodrugs of ketoprofen: synthesis, in vitro stability, in vivo biological evaluation and in silico comparative docking studies against COX-1 and COX-2. Curr. Drug Discov. Technol., 2016, 13(1), 41-57.
[http://dx.doi.org/10.2174/1570163813666160119092807] [PMID: 26785683]
[30]
Takashima-Hirano, M.; Shukuri, M.; Takashima, T.; Goto, M.; Wada, Y.; Watanabe, Y.; Onoe, H.; Doi, H.; Suzuki, M. General method for the (11)C-labeling of 2-arylpropionic acids and their esters: construction of a PET tracer library for a study of biological events involved in COXs expression. Chemistry, 2010, 16(14), 4250-4258.
[http://dx.doi.org/10.1002/chem.200903044] [PMID: 20222090]
[31]
Shukuri, M.; Takashima-Hirano, M.; Tokuda, K.; Takashima, T.; Matsumura, K.; Inoue, O.; Doi, H.; Suzuki, M.; Watanabe, Y.; Onoe, H. in vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C-ketoprofen methyl ester. J. Nucl. Med., 2011, 52(7), 1094-1101.
[http://dx.doi.org/10.2967/jnumed.110.084046] [PMID: 21680698]
[32]
Ohnishi, A.; Senda, M.; Yamane, T.; Sasaki, M.; Mikami, T.; Nishio, T.; Ikari, Y.; Nishida, H.; Shukuri, M.; Takashima, T.; Mawatari, A.; Doi, H.; Watanabe, Y.; Onoe, H. Human whole-body biodistribution and dosimetry of a new PET tracer, [(11)C]ketoprofen methyl ester, for imagings of neuroinflammation. Nucl. Med. Biol., 2014, 41(7), 594-599.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.04.008] [PMID: 24853403]
[33]
Ohnishi, A.; Senda, M.; Yamane, T.; Mikami, T.; Nishida, H.; Nishio, T.; Akamatsu, G.; Ikari, Y.; Kimoto, S.; Aita, K.; Sasaki, M.; Shinkawa, H.; Yamamoto, Y.; Shukuri, M.; Mawatari, A.; Doi, H.; Watanabe, Y.; Onoe, H. Exploratory human PET study of the effectiveness of (11)C-ketoprofen methyl ester, a potential biomarker of neuroinflammatory processes in Alzheimer’s disease. Nucl. Med. Biol., 2016, 43(7), 438-444.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.04.005] [PMID: 27183464]
[34]
Fukami, T.; Yokoi, T. The emerging role of human esterases. Drug Metab. Pharmacokinet., 2012, 27(5), 466-477.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RV-042] [PMID: 22813719]
[35]
Fukami, T.; Kariya, M.; Kurokawa, T.; Iida, A.; Nakajima, M. Comparison of substrate specificity among human arylacetamide deacetylase and carboxylesterases. Eur. J. Pharm. Sci., 2015, 78, 47-53.
[http://dx.doi.org/10.1016/j.ejps.2015.07.006] [PMID: 26164127]
[36]
Imai, T.; Taketani, M.; Shii, M.; Hosokawa, M.; Chiba, K. Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metab. Dispos., 2006, 34(10), 1734-1741.
[http://dx.doi.org/10.1124/dmd.106.009381] [PMID: 16837570]
[37]
Wang, D.; Zou, L.; Jin, Q.; Hou, J.; Ge, G.; Yang, L. Human carboxylesterases: a comprehensive review. Acta Pharm. Sin. B, 2018, 8(5), 699-712.
[http://dx.doi.org/10.1016/j.apsb.2018.05.005] [PMID: 30245959]
[38]
Zou, L.W.; Jin, Q.; Wang, D.D.; Qian, Q.K.; Hao, D.C.; Ge, G.B.; Yang, L. Carboxylesterase inhibitors: an update. Curr. Med. Chem., 2018, 25(14), 1627-1649.
[http://dx.doi.org/10.2174/0929867325666171204155558] [PMID: 29210644]
[39]
Oda, S.; Fukami, T.; Yokoi, T.; Nakajima, M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab. Pharmacokinet., 2015, 30(1), 30-51.
[http://dx.doi.org/10.1016/j.dmpk.2014.12.001] [PMID: 25760529]
[40]
Torres, J.L.; Rush, R.S.; Main, A.R. Physical and chemical characterization of a horse serum carboxylesterase. Arch. Biochem. Biophys., 1988, 267(1), 271-279.
[http://dx.doi.org/10.1016/0003-9861(88)90032-X] [PMID: 3196030]
[41]
Askar, K.A.; Kudi, A.C.; Moody, A.J. Comparative analysis of cholinesterase activities in food animals using modified Ellman and Michel assays. Can. J. Vet. Res., 2011, 75(4), 261-270.
[PMID: 22468023]
[42]
Farid, A.S.; Honkawa, K.; Fath, E.M.; Nonaka, N.; Horii, Y. Serum paraoxonase-1 as biomarker for improved diagnosis of fatty liver in dairy cows. BMC Vet. Res., 2013, 9, 73.
[http://dx.doi.org/10.1186/1746-6148-9-73] [PMID: 23578174]
[43]
Awad-Elkarim, A.; Means, G.E. The reactivity of p-nitrophenyl acetate with serum albumins. Comp. Biochem. Physiol. B, 1988, 91(2), 267-272.
[http://dx.doi.org/10.1016/0305-0491(88)90141-1] [PMID: 3197397]
[44]
Watanabe, H.; Tanase, S.; Nakajou, K.; Maruyama, T.; Kragh-Hansen, U.; Otagiri, M. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity. Biochem. J., 2000, 349(Pt 3), 813-819.
[http://dx.doi.org/10.1042/bj3490813] [PMID: 10903143]
[45]
Sakurai, Y.; Ma, S.F.; Watanabe, H.; Yamaotsu, N.; Hirono, S.; Kurono, Y.; Kragh-Hansen, U.; Otagiri, M. Esterase-like activity of serum albumin: characterization of its structural chemistry using p-nitrophenyl esters as substrates. Pharm. Res., 2004, 21(2), 285-292.
[http://dx.doi.org/10.1023/B:PHAM.0000016241.84630.06] [PMID: 15032310]
[46]
Wierdl, M.; Tsurkan, L.; Hyatt, J.L.; Edwards, C.C.; Hatfield, M.J.; Morton, C.L.; Houghton, P.J.; Danks, M.K.; Redinbo, M.R.; Potter, P.M. An improved human carboxylesterase for enzyme/prodrug therapy with CPT-11. Cancer Gene Ther., 2008, 15(3), 183-192.
[http://dx.doi.org/10.1038/sj.cgt.7701112] [PMID: 18188187]
[47]
Askar, K.A.; Kudi, A.C.; Moody, A.J. Comparison of two storage methods for the analysis of cholinesterase activities in food animals. Enzyme Res., 2011, 2010, 904249.
[PMID: 21318100]
[48]
Hobbiger, F.; Peck, A.W. Relative importance of the enzymic hydrolysis of suxamethonium in plasma and tissues: studies in cats. Br. J. Pharmacol., 1971, 43(2), 341-348.
[PMID: 4333803]
[49]
Yoshino, M.; Murakami, K. Analysis of the substrate inhibition of complete and partial types. Springerplus, 2015, 4, 292.
[http://dx.doi.org/10.1186/s40064-015-1082-8] [PMID: 26120509]
[50]
Hyatt, J.L.; Moak, T.; Hatfield, M.J.; Tsurkan, L.; Edwards, C.C.; Wierdl, M.; Danks, M.K.; Wadkins, R.M.; Potter, P.M. Selective inhibition of carboxylesterases by isatins, indole-2,3-diones. J. Med. Chem., 2007, 50(8), 1876-1885.
[http://dx.doi.org/10.1021/jm061471k] [PMID: 17378546]
[51]
Hatfield, M.J.; Potter, P.M. Carboxylesterase inhibitors. Expert Opin. Ther. Pat., 2011, 21(8), 1159-1171.
[http://dx.doi.org/10.1517/13543776.2011.586339] [PMID: 21609191]
[52]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[53]
Radchenko, E.V.; Makhaeva, G.F.; Boltneva, N.P.; Serebryakova, O.G.; Serkov, I.V.; Proshin, A.N.; Palyulin, V.A.; Zefirov, N.S. Molecular design of N, N-disubstituted 2-aminothiazolines as selective carboxylesterase inhibitors. Russ. Chem. Bull., 2016, 65, 570-575.
[http://dx.doi.org/10.1007/s11172-016-1339-6]
[54]
Ratnatilaka Na Bhuket, P.; Niwattisaiwong, N.; Limpikirati, P.; Khemawoot, P.; Towiwat, P.; Ongpipattanakul, B.; Rojsitthisak, P. Simultaneous determination of curcumin diethyl disuccinate and its active metabolite curcumin in rat plasma by LC-MS/MS: Application of esterase inhibitors in the stabilization of an ester-containing prodrug. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1033-1034, 301-310.
[http://dx.doi.org/10.1016/j.jchromb.2016.08.039] [PMID: 27595650]
[55]
Tsurkan, L.G.; Hatfield, M.J.; Edwards, C.C.; Hyatt, J.L.; Potter, P.M. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors. Chem. Biol. Interact., 2013, 203(1), 226-230.
[http://dx.doi.org/10.1016/j.cbi.2012.10.018] [PMID: 23123248]
[56]
Goncharov, N.V.; Terpilovskii, M.A.; Shmurak, V.I.; Belinskaya, D.A.; Avdonin, P.V. Comparative analysis of esterase and paraoxonase activities of different serum albumin species. J. Evol. Biochem. Physiol., 2017, 53, 271-281.
[http://dx.doi.org/10.1134/S0022093017040032]
[57]
Geerts, H.; Guillaumat, P.O.; Grantham, C.; Bode, W.; Anciaux, K.; Sachak, S. Brain levels and acetylcholinesterase inhibition with galantamine and donepezil in rats, mice, and rabbits. Brain Res., 2005, 1033(2), 186-193.
[http://dx.doi.org/10.1016/j.brainres.2004.11.042] [PMID: 15694923]
[58]
Türkan, F.; Taslimi, P.; Saltan, F.Z. Tannic acid as a natural antioxidant compound: Discovery of a potent metabolic enzyme inhibitor for a new therapeutic approach in diabetes and Alzheimer’s disease. J. Biochem. Mol. Toxicol., 2019, 33(8), e22340.
[http://dx.doi.org/10.1002/jbt.22340] [PMID: 30974029]
[59]
Huang, F.; Fu, Y. A review of clinical pharmacokinetics and pharmacodynamics of galantamine, a reversible acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease, in healthy subjects and patients. Curr. Clin. Pharmacol., 2010, 5(2), 115-124.
[http://dx.doi.org/10.2174/157488410791110805] [PMID: 20156150]
[60]
Mäkelä, P.M.; Truman, C.A.; Ford, J.M.; Roberts, C.J.C. Characteristics of plasma protein binding of tacrine hydrochloride: a new drug for Alzheimer’s disease. Eur. J. Clin. Pharmacol., 1994, 47(2), 151-155.
[http://dx.doi.org/10.1007/BF00194965] [PMID: 7859802]
[61]
Wiseman, A. Effect of inorganic fluoride on enzymes. In: Handbook of Experimental Pharmacology; Smith, F.A., Ed.; Springer-Verlag: Berlin Heidelberg New York, 1970; 20, pp. 48-97.
[http://dx.doi.org/10.1007/978-3-642-99973-4_2]
[62]
Tsujikawa, K.; Kuwayama, K.; Miyaguchi, H.; Kanamori, T.; Iwata, Y.T.; Inoue, H. In vitro stability and metabolism of salvinorin A in rat plasma. Xenobiotica, 2009, 39(5), 391-398.
[http://dx.doi.org/10.1080/00498250902769967] [PMID: 19280383]
[63]
Zhou, G.; Marathe, G.K.; Willard, B.; McIntyre, T.M. Intracellular erythrocyte platelet-activating factor acetylhydrolase I inactivates aspirin in blood. J. Biol. Chem., 2011, 286(40), 34820-34829.
[http://dx.doi.org/10.1074/jbc.M111.267161] [PMID: 21844189]
[64]
Wei, X.L.; Han, R.; Hu, X.; Quan, L.H.; Liu, C.Y.; Chang, Q.; Liao, Y.H. Stabilization of zeylenone in rat plasma by the presence of esterase inhibitors and its LC-MS/MS assay for pharmacokinetic study. Biomed. Chromatogr., 2013, 27(5), 636-640.
[http://dx.doi.org/10.1002/bmc.2838] [PMID: 23166039]
[65]
Mounter, L.A.; Alexander, H.C., III; Tuck, K.D.; Dien, L.T. The pH dependence and dissociation constants of esterases and proteases treated with diisopropyl fluorophosphate. J. Biol. Chem., 1957, 226(2), 867-872.
[PMID: 13438875]
[66]
Hotta, Y.; Ezaki, S.; Atomi, H.; Imanaka, T. Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl. Environ. Microbiol., 2002, 68(8), 3925-3931.
[http://dx.doi.org/10.1128/AEM.68.8.3925-3931.2002] [PMID: 12147492]
[67]
Ohara, K.; Unno, H.; Oshima, Y.; Hosoya, M.; Fujino, N.; Hirooka, K.; Takahashi, S.; Yamashita, S.; Kusunoki, M.; Nakayama, T. Structural insights into the low pH adaptation of a unique carboxylesterase from ferroplasma: altering the pH optima of two carboxylesterases. J. Biol. Chem., 2014, 289(35), 24499-24510.
[http://dx.doi.org/10.1074/jbc.M113.521856] [PMID: 25043762]
[68]
Blakley, B.R.; Yole, M.J. Species differences in normal brain cholinesterase activities of animals and birds. Vet. Hum. Toxicol., 2002, 44(3), 129-132.
[PMID: 12046961]
[69]
Carr, R.L.; Dail, M.B.; Chambers, H.W.; Chambers, J.E. Species differences in paraoxonase mediated hydrolysis of several organophosphorus insecticide metabolites. J. Toxicol., 2015, 2015, 470189.
[http://dx.doi.org/10.1155/2015/470189] [PMID: 25784934]
[70]
Bhuket, P.R.N.; Jithavech, P.; Ongpipattanakul, B.; Rojsitthisak, P. Interspecies differences in stability kinetics and plasma esterases involved in hydrolytic activation of curcumin diethyl disuccinate, a prodrug of curcumin. RSC Advances, 2019, 9, 4626-4634.
[http://dx.doi.org/10.1039/C8RA08594C]
[71]
Umehara, K.; Zollinger, M.; Kigondu, E.; Witschi, M.; Juif, C.; Huth, F.; Schiller, H.; Chibale, K.; Camenisch, G. Esterase phenotyping in human liver in vitro: specificity of carboxylesterase inhibitors. Xenobiotica, 2016, 46(10), 862-867.
[http://dx.doi.org/10.3109/00498254.2015.1133867] [PMID: 26887925]
[72]
Moser, V.C.; Padilla, S. Esterase metabolism of cholinesterase inhibitors using rat liver in vitro. Toxicology, 2011, 281(1-3), 56-62.
[http://dx.doi.org/10.1016/j.tox.2011.01.002] [PMID: 21237238]
[73]
Crow, J.A.; Bittles, V.; Herring, K.L.; Borazjani, A.; Potter, P.M.; Ross, M.K. Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon. Toxicol. Appl. Pharmacol., 2012, 258(1), 145-150.
[http://dx.doi.org/10.1016/j.taap.2011.10.017] [PMID: 22100607]
[74]
Lorke, D.E.; Petroianu, G.A. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J. Appl. Toxicol., 2019, 39(1), 101-116.
[http://dx.doi.org/10.1002/jat.3662] [PMID: 30027640]
[75]
Wadkins, R.M.; Hyatt, J.L.; Wei, X.; Yoon, K.J.P.; Wierdl, M.; Edwards, C.C.; Morton, C.L.; Obenauer, J.C.; Damodaran, K.; Beroza, P.; Danks, M.K.; Potter, P.M. Identification and characterization of novel benzil (diphenylethane-1,2-dione) analogues as inhibitors of mammalian carboxylesterases. J. Med. Chem., 2005, 48(8), 2906-2915.
[http://dx.doi.org/10.1021/jm049011j] [PMID: 15828829]
[76]
Shimizu, M.; Fukami, T.; Nakajima, M.; Yokoi, T. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase. Drug Metab. Dispos., 2014, 42(7), 1103-1109.
[http://dx.doi.org/10.1124/dmd.114.056994] [PMID: 24751575]
[77]
Skau, K.A.; Shipley, M.T. Phenylmethylsulfonyl fluoride inhibitory effects on acetylcholinesterase of brain and muscle. Neuropharmacology, 1999, 38(5), 691-698.
[http://dx.doi.org/10.1016/S0028-3908(98)00205-6] [PMID: 10340306]
[78]
Jokanović, M.; Kosanović, M.; Maksimović, M. Interaction of organophosphorus compounds with carboxylesterases in the rat. Arch. Toxicol., 1996, 70(7), 444-450.
[http://dx.doi.org/10.1007/s002040050297] [PMID: 8740539]
[79]
Duysen, E.G.; Cashman, J.R.; Schopfer, L.M.; Nachon, F.; Masson, P.; Lockridge, O. Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresyl saligenin phosphate, cyclosarin thiocholine, tabun thiocholine, and carbofuran. Chem. Biol. Interact., 2012, 195(3), 189-198.
[http://dx.doi.org/10.1016/j.cbi.2011.12.006] [PMID: 22209767]
[80]
Wang, J.J.; Cheng, W.X.; Ding, W.; Zhao, Z.M. The effect of the insecticide dichlorvos on esterase activity extracted from the psocids, Liposcelis bostrychophila and L. entomophila. J. Insect Sci., 2004, 4, 23.
[http://dx.doi.org/10.1673/031.004.2301] [PMID: 15861238]
[81]
Okoroiwu, H.U.; Iwara, I.A. Dichlorvos toxicity: a public health perspective. Interdiscip. Toxicol., 2018, 11(2), 129-137.
[http://dx.doi.org/10.2478/intox-2018-0009] [PMID: 31719784]
[82]
Fukami, T.; Takahashi, S.; Nakagawa, N.; Maruichi, T.; Nakajima, M.; Yokoi, T. In vitro evaluation of inhibitory effects of antidiabetic and antihyperlipidemic drugs on human carboxylesterase activities. Drug Metab. Dispos., 2010, 38(12), 2173-2178.
[http://dx.doi.org/10.1124/dmd.110.034454] [PMID: 20810539]
[83]
Lorke, D.E.; Hasan, M.Y.; Nurulain, S.M.; Shafiullah, M.; Kuča, K.; Petroianu, G.A. Pretreatment for acute exposure to diisopropylfluorophosphate: in vivo efficacy of various acetylcholinesterase inhibitors. J. Appl. Toxicol., 2011, 31(6), 515-523.
[http://dx.doi.org/10.1002/jat.1589] [PMID: 20981864]
[84]
Zheng, Q.; Chu, H.; Niu, R.; Sun, C. Theoretical studies of interaction models of human acetylcholine esterase with different inhibitors. Sci. China B Chem., 2009, 52, 1911-1916.
[http://dx.doi.org/10.1007/s11426-009-0281-y]
[85]
Sharma, P.; Tripathi, M.K.; Shrivastava, S.K. Cholinesterase as a target for drug development in Alzheimer’s disease. Methods Mol. Biol., 2020, 2089, 257-286.
[86]
Cheng, D.H.; Ren, H.; Tang, X.C. Huperzine A, a novel promising acetylcholinesterase inhibitor. Neuroreport, 1996, 8(1), 97-101.
[http://dx.doi.org/10.1097/00001756-199612200-00020] [PMID: 9051760]
[87]
Dulac, R.W.; Yang, T.J. Differential sodium fluoride sensitivity of alpha-naphthyl acetate esterase in human, bovine, canine, and murine monocytes and lymphocytes. Exp. Hematol., 1991, 19(1), 59-62.
[PMID: 1703494]
[88]
Rees, K.A.; Jones, N.S.; McLaughlin, P.A.; Osselton, M.D. The effect of sodium fluoride preservative and storage temperature on the stability of 6-acetylmorphine in horse blood, sheep vitreous and deer muscle. Forensic Sci. Int., 2012, 217(1-3), 189-195.
[http://dx.doi.org/10.1016/j.forsciint.2011.11.002] [PMID: 22185827]
[89]
Williams, F.M.; Wynne, H.; Woodhouse, K.W.; Rawlins, M.D. Plasma aspirin esterase: the influence of old age and frailty. Age Ageing, 1989, 18(1), 39-42.
[http://dx.doi.org/10.1093/ageing/18.1.39] [PMID: 2496585]
[90]
Abou-Hatab, K.; O’Mahony, M.S.; Patel, S.; Woodhouse, K. Relationship between age and plasma esterases. Age Ageing, 2001, 30(1), 41-45.
[http://dx.doi.org/10.1093/ageing/30.1.41] [PMID: 11322671]
[91]
Porro, B.; Di Minno, A.; Rocca, B.; Fiorelli, S.; Eligini, S.; Turnu, L.; Barbieri, S.; Parolari, A.; Tremoli, E.; Cavalca, V. Characterization of aspirin esterase activity in health and disease: in vitro and ex vivo studies. Biochem. Pharmacol., 2019, 163, 119-127.
[http://dx.doi.org/10.1016/j.bcp.2019.02.014] [PMID: 30771282]
[92]
Kumar, D.; Rizvi, S.I. Age-dependent paraoxonase 1 (PON1) activity and LDL oxidation in Wistar rats during their entire lifespan. ScientificWorldJournal, 2014, 2014, 538049.
[http://dx.doi.org/10.1155/2014/538049] [PMID: 24971380]
[93]
Allen, R.C.; Moore, D.J. Sex-associated quantitative differences in the plasma esterases of inbred mice. Endocrinology, 1966, 78(3), 655-658.
[http://dx.doi.org/10.1210/endo-78-3-655] [PMID: 5931644]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 3
Year: 2021
Published on: 17 December, 2020
Page: [215 - 223]
Pages: 9
DOI: 10.2174/1389200221666201217141025
Price: $65

Article Metrics

PDF: 37
HTML: 1