Metabolism and Pharmacological Mechanisms of Active Ingredients in Erigeron breviscapus

Author(s): Hua Fan*, Peng Lin, Qiang Kang, Zhi-Long Zhao, Ji Wang*, Jia-Yi Cheng*

Journal Name: Current Drug Metabolism

Volume 22 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Erigeron breviscapus (Vant.) Hand-Mazz. is a plant species in the Compositae family. More than ten types of compounds-such as flavonoids, caffeinate esters, and volatile oils-have been identified in Erigeron breviscapus; however, it remains unknown as to which compounds are associated with clinical efficacy. In recent years, flavonoids and phenolic acids have been considered as the main effective components of Erigeron breviscapus. The metabolism and mechanisms of these compounds in vivo have been extensively studied to improve our understanding of the drug.

Methods: In the present review, we summarize the relationships among these compounds, their metabolites, and their pharmacodynamics. Many methods have been implemented to improve the separation and bioavailability of these compounds from Erigeron breviscapus.

Results: In China, Erigeron breviscapus has been used for many years. In recent years, through the study of its metabolism and the mechanisms of its effective components, the effects of Erigeron breviscapus in the treatment of various diseases have been extensively studied. Findings have indicated that Erigeron breviscapus improves cardiovascular and cerebrovascular function and that one of its ingredients, scutellarin, has potential value in the treatment of Alzheimer's disease, cancer, diabetic vascular complications, and other conditions. In addition, phenolic acid compounds and their metabolites also play an important role in anti-oxidation, anti-inflammation, and improving blood lipids.

Conclusion: Erigeron breviscapus plays an important role in the prevention and treatment of cardiovascular/ cerebrovascular diseases, neuroprotection, and cancer through many different mechanisms of action. Further investigation of its efficacious components and metabolites may provide more possibilities for the clinical application of traditional Chinese medicine and the development of novel drugs.

Keywords: Erigeron breviscapus, flavonoids, phenolic acids, scutellarin, metabolism, pharmacological mechanism.

[1]
Guo, X.; Lin, S.; Wu, L.M.; Tian, X.H. Progress in the study of chemical constituents and pharmacological effects of Erigeron breviscapus. J. Zhongchengyao, 2009, 41, 393-402.
[2]
Yue, J.M.; Lin, Z.W.; Sun, H.D. A new caffeoyl conjugate from Erigeron breviscapus. Chin. Chem. Lett., 1997, 8, 225-228.
[3]
Zhang, W.D.; Ha, T.B.; Chen, W.S.; Kong, D.Y.; Li, H.T.; Wang, Y.H.; Fouraste, L. Structure and activity of phenolic acids in Erigeron breviscapus. Chung Kuo Yao Hsueh Tsa Chih, 2002, 37, 579-582.
[4]
Li, J.; Yu, D.Q. Study on chemical constituents of breviscapus. Chin. J. Chin. Mater. Med., 2011, 36, 1458-1462.
[5]
Wang, Y.F.; Hu, L.M.; Liu, Y.N.; Pan, X.P.; Pan, G.X.; Chang, Y.X.; Gao, X.M. A rapid method for qualitative and quantitative analysis of major constituents in Dengzhanxixin injection by LC-DAD-ESI-MSn. Chromatographia, 2010, 71, 845-853.
[http://dx.doi.org/10.1365/s10337-010-1540-y]
[6]
Xia, H.; Qiu, F.; Zhu, S.; Zhang, T.; Qu, G.; Yao, X. Isolation and identification of ten metabolites of breviscapine in rat urine. Biol. Pharm. Bull., 2007, 30(7), 1308-1316.
[http://dx.doi.org/10.1248/bpb.30.1308] [PMID: 17603172]
[7]
Liu, J.; Dou, G.; Dong, X.; Yuan, D.; Ji, X.; Wu, Z.; Meng, Z. An improved LC-MS/MS method for simultaneous determination of 1,5-dicaffeoylquinic acid and its active metabolites in human plasma and its application to a pharmacokinetic study in patients. Biomed. Chromatogr., 2010, 24(9), 935-940.
[http://dx.doi.org/10.1002/bmc.1388] [PMID: 20058327]
[8]
Qu, J.; Wang, Y.; Luo, G.; Wu, Z. Identification and determination of glucuronides and their aglycones in Erigeron breviscapus by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2001, 928(2), 155-162.
[http://dx.doi.org/10.1016/S0021-9673(01)01111-6] [PMID: 11587333]
[9]
Tao, Y.H.; Jiang, D.Y.; Xu, H.B.; Yang, X.L. Inhibitory effect of Erigeron breviscapus extract and its flavonoid components on GABA shunt enzymes. Phytomedicine, 2008, 15(1-2), 92-97.
[http://dx.doi.org/10.1016/j.phymed.2007.06.009] [PMID: 17689232]
[10]
Tian, Y.; Li, Q.; Zhou, X.; Pang, Q.; Xu, Y. A UHPLC-MS/MS method for simultaneous determination of twelve constituents from Erigeron breviscapus extract in rat plasma: application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1046, 1-12.
[http://dx.doi.org/10.1016/j.jchromb.2017.01.020] [PMID: 28126442]
[11]
Xia, H.; Qiu, F.; Zhu, S.; Zhang, T.; Qu, G.; Yao, X. Isolation and identification of ten metabolites of breviscapine in rat urine. Biol. Pharm. Bull., 2007, 30(7), 1308-1316.
[http://dx.doi.org/10.1248/bpb.30.1308] [PMID: 17603172]
[12]
Jiang, P.; Lu, Y.; Chen, D.F. Qualitative and quantitative analysis of multiple components for quality control of Deng-Zhan-Sheng-Mai capsules by UHPLC-MS/MS coupled with chemometrics. J. Sep. Sci., 2017, 40, 612-624.
[http://dx.doi.org/10.1002/jssc.201600744] [PMID: 27868379]
[13]
Ren, Q.; Xie, Y.Y.; Zou, S.; Wang, Y.M.; Liang, Q.L.; Luo, G.A. Qualitative and quantitative analysis of polyphenols in breviscapine. J. Pharm. Anal., 2013, 33, 1176-1184.
[14]
Xia, H.J.; Zhu, S.; Liang, J.M.; Chen, L.X.; Di, X.; Qiu, F. Identification of metabolites in plasma, bile, urine and feces of rats treated with breigeron. Chin. Tradit. Herbal Drugs, 2009, 40, 1362-1366.
[15]
Chen, X.; Cui, L.; Duan, X.; Ma, B.; Zhong, D. Pharmacokinetics and metabolism of the flavonoid scutellarin in humans after a single oral administration. Drug Metab. Dispos., 2006, 34(8), 1345-1352.
[http://dx.doi.org/10.1124/dmd.106.009779] [PMID: 16714374]
[16]
Ju, W.Z.; Chu, J.H.; Tan, R.X.; Xiong, N.N. Analysis of metabolites of breviscapine in gastrointestinal tract by UPLC-Ms/MS. Chin. J. Clin. Pharm. Ther., 2006, 11, 292.
[17]
Chen, S.; Li, M.; Li, Y.; Hu, H.; Li, Y.; Huang, Y.; Zheng, L.; Lu, Y.; Hu, J.; Lan, Y.; Wang, A.; Li, Y.; Gong, Z.; Wang, Y. A UPLC-ESI-MS/MS method for simultaneous quantitation of chlorogenic acid, scutellarin, and scutellarein in rat plasma: application to a comparative pharmacokinetic study in Sham-operated and MCAO rats after oral administration of Erigeron breviscapus extract. Molecules, 2018, 23(7), 1808.
[http://dx.doi.org/10.3390/molecules23071808] [PMID: 30037063]
[18]
Gao, H.M.; Wang, Z.M.; Tian, J. [Pharmacokinetics and metabolites of scutellarin in normal and model rats]. Yao Xue Xue Bao, 2005, 40(11), 1024-1027.
[PMID: 16499088]
[19]
Zhang, Y.; Yu, S.D.; Zhong, D.F.; Xu, H.Y.; Chen, X.Y. Study on the differences of breviscapine and its metabolites in different drug administration pathways in rats. Acta Pharmacol. Sin., 2008, 53, 1358-1364.
[20]
Xing, J.F.; You, H.S.; Dong, Y.L.; Lu, J.; Chen, S.Y.; Zhu, H.F.; Dong, Q.; Wang, M.Y.; Dong, W.H. Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces. Acta Pharmacol. Sin., 2011, 32(5), 655-663.
[http://dx.doi.org/10.1038/aps.2011.11] [PMID: 21516133]
[21]
Ma, X.H.; Ma, Y.; Tang, J.F.; He, Y.L.; Liu, Y.C.; Ma, X.J.; Shen, Y.; Cui, G.H.; Lin, H.X.; Rong, Q.X.; Guo, J.; Huang, L.Q. The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules, 2015, 20, 16235-16254.
[http://dx.doi.org/10.33 90/molecules200916235]
[22]
Wen, L.L.; Guo, J.X.; Li, J.; Huang, L.S.; Ping, Q.N. Distribution of liposornal breviscapine in brain following intravenous injection in rats. Int. I Pharm., 2005, 306, 99.
[http://dx.doi.org/10.1016/j.ijpharm.2005.09.012]
[23]
Cai, X.L. Absorption, distribution and excretion of 3H - breviscapine in vivo. Chin. Tradit. Herbal Drugs, 1981, 11, 26.
[24]
Yue, J.M.; Lin, Z.W.; Wang, D.Z.; Sun, H.D. A sesquiterpene and other constituents from Erigeron breviscapus. Phytochemistry, 1994, 36, 717.
[http://dx.doi.org/10.1016/S0031-9422(00)89803-9]
[25]
Liu, G.; Tang, G.; Liang, W.; Wang, Z.; Xu, W.; Fan, G.; Wang, Y.; Zhao, M. PK-PD Correlation of Erigeron breviscapus Injection in the treatment of cerebral ischemia-reperfusion injury model rats. J. Mol. Neurosci., 2021, 71, 302-324.
[http://dx.doi.org/10.1007/s12031-020-01651-3]
[26]
Gonthier, M.P.; Verny, M.A.; Besson, C.; Rémésy, C.; Scalbert, A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J. Nutr., 2003, 133(6), 1853-1859.
[http://dx.doi.org/10.1093/jn/133.6.1853] [PMID: 12771329]
[27]
Xie, C.; Zhong, D.F.; Chen, X.Y. Identification of metabolites in rats after chlorogenic acid injection. Yao Xue Xue Bao, 2011, 1, 88-95.
[PMID: 21465813]
[28]
Yang, B.; Meng, Z.Y.; Yan, L.P.; Dong, J.X.; Zou, L.B.; Tang, Z.M.; Dou, G.F. Pharmacokinetics and metabolism of 1,5-dicaffeoylquinic acid in rats following a single intravenous administration. J. Pharm. Biomed. Anal., 2006, 40(2), 417-422.
[http://dx.doi.org/10.1007/s12031-020-01651-3] [PMID: 16143483]
[29]
Gu, R.; Dou, G.; Wang, J.; Dong, J.; Meng, Z. Simultaneous determination of 1,5-dicaffeoylquinic acid and its active metabolites in human plasma by liquid chromatography-tandem mass spectrometry for pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 852(1-2), 85-91.
[http://dx.doi.org/10.1016/j.jchromb.2006.12.055] [PMID: 17267301]
[30]
Zhou, L.; Ju, W.Z.; Li, C.Y.; Xie, L.Y.; Xu, J.L.; Shi, J.; Tan, H.S. Simultaneous quantification of nine bioactive constituents in dengzhanxixin injection by UPLC-MS/MS. Instrum. Sci. Technol., 2012, 40(4), 316-326.
[31]
Li, Z.; Ni, J.; Fang, G.; Gao, Y.; Wei, J. Effect of baicalin on pharmacokinetics of chlorogenic acid in rabbits. Zhongguo Zhongyao Zazhi, 2010, 35(24), 3291-3293.
[PMID: 21438392]
[32]
Wang, W.; Hao, H.P.; Wang, G.J.; Cui, N.; Zheng, C.N.; Wang, Y.X. Simultaneous quantitation of dicaffeoylquinic acids in rat plasma after an intravenous administration of mailuoning injection using liquid chromatography- mass spectrometry. J. Chromatogr. Sci., 2009, 47(3), 216-222.
[http://dx.doi.org/10.1093/chromsci/47.3.216] [PMID: 19298709]
[33]
Zhang, J.; Chen, M.; Ju, W.; Liu, S.; Xu, M.; Chu, J.; Wu, T. Liquid chromatograph/tandem mass spectrometry assay for the simultaneous determination of chlorogenic acid and cinnamic acid in plasma and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal., 2010, 51(3), 685-690.
[http://dx.doi.org/10.1016/j.jpba.2009.09.039] [PMID: 19864104]
[34]
Fang, M.; Yuan, Y.; Rangarajan, P.; Lu, J.; Wu, Y.; Wang, H.; Wu, C.; Ling, E.A. Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci., 2015, 16, 84.
[http://dx.doi.org/10.1186/s12868-015-0219-6] [PMID: 26608466]
[35]
Sheng, Y.M.; Tang, S.W.; Zhang, J.; Zhang, Y. 3, 5-dicaffeinoquininic acid in vitro blood-permeable brain barrier ability and anti-cerebral ischemia-reperfusion injury in rats. Pharmacol. Clin. Chin. Mater. Clin. Med., 2016, 32(06), 26-29.
[36]
Yin, M.H.; Xu, X.H.; Jiang, K.S. Protective effects of breviscapine on ischemia-reperfusion induced learning and memory impairment in mice. Chung Kuo Yao Hsueh Tsa Chih, 2007, 42, 497-501.
[37]
Ye, L.; Li, J.Y.; Li, Y.P.; Gu, J. Protective effect of breviscapine on brain microvascular endothelial cell injury in rats. Chin. Tradit. Herbal Drugs, 2011, 42(5), 955-957.
[38]
Zhang, Y. Nrf2-Keapl signaling pathway and stroke. J. Apoplexy Nerv. Dis., 2014, 31, 372-374.
[39]
Yuan, Y.; Rangarajan, P.; Kan, E.M.; Wu, Y.; Wu, C.; Ling, E.A. Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J. Neuroinflammation, 2015, 12, 11.
[http://dx.doi.org/10.1186/s12974-014-0226-z] [PMID: 25600517]
[40]
Yang, Q.H.; Tang, S.S. Inhibitory effect of breviscapine on the expression of NF-κB in rat brain after cerebral ischemia-reperfusion. Zhong Yao Cai, 2010, 7, 1154-1156.
[41]
Yang, Q.H.; Tang, S.S. Inhibitory effect of breviscapine on Fas expression in rats after cerebral ischemia and reperfusion. Guangdong Yaoxueyuan Xuebao, 2009, 25, 516-518.
[42]
Zhong, Z.H.; Li, G.Z.; Li, H.L.; Zhao, W.R.; Tian, Y.; Li, D.J.; Gu, H.X.; Wang, H.T.; Dong, X.Q. Expressions of TNF-alpha and IL-1beta in human ischemic brain tissues. Xibao Yu Fenzi Mianyixue Zazhi, 2003, 19(4), 349-350.
[PMID: 15163382]
[43]
Wang, W.J.; Ma, X.T.; Han, J.C.; Zhou, M.J.; Ren, H.H.; Pan, Q.W.; Zheng, C.L.; Zheng, Q.S. Neuroprotective effect of Scutellarin on ischemic cerebral injury by down-regulating the expression of angiotensin-converting enzyme and AT1 receptor. PLoS One, 2016, 11, 1-17.
[44]
Guo, H.; Hu, L.M.; Wang, S.X.; Wang, Y.L.; Shi, F.; Li, H.; Liu, Y.; Kang, L.Y.; Gao, X.M. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity. Chin. J. Physiol., 2011, 54(6), 399-405.
[PMID: 22229507]
[45]
Yuan, Y.; Zha, H.; Rangarajan, P.; Ling, E.A.; Wu, C. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neurosci., 2014, 15, 125.
[http://dx.doi.org/10.1186/s12868-014-0125-3] [PMID: 25416145]
[46]
Wang, S.; Wang, H.; Guo, H.; Kang, L.; Gao, X.; Hu, L. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation. Neuroscience, 2011, 185, 150-160.
[http://dx.doi.org/10.1016/j.neuroscience.2011.04.005] [PMID: 21524691]
[47]
Hu, X.M.; Zhou, M.M.; Hu, X.M.; Zeng, F.D. Neuroprotective effects of scutellarin on rat neuronal damage induced by cerebral ischemia/reperfusion. Acta Pharmacol. Sin., 2005, 26(12), 1454-1459.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00239.x] [PMID: 16297343]
[48]
Li, Q.; Chen, Y.; Zhang, X.; Zuo, S.; Ge, H.; Chen, Y.; Liu, X.; Zhang, J.H.; Ruan, H.; Feng, H. Scutellarin attenuates vasospasm through the Erk5-KLF2-eNOS pathway after subarachnoid hemorrhage in rats. J. Clin. Neurosci., 2016, 34, 264-270.
[http://dx.doi.org/10.1016/j.jocn.2016.09.028] [PMID: 27742373]
[49]
Wang, S.X.; Guo, H.; Hu, L.M.; Liu, Y.N.; Wang, Y.F.; Kang, L.Y.; Gao, X.M. Caffeic acid ester fraction from Erigeron breviscapus inhibits microglial activation and provides neuroprotection. Chin. J. Integr. Med., 2012, 18(6), 437-444.
[http://dx.doi.org/10.1007/s11655-012-1114-y] [PMID: 22821656]
[50]
Lin, L.L.; Liu, A.J.; Liu, J.G.; Yu, X.H.; Qin, L.P.; Su, D.F. Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats. J. Cardiovasc. Pharmacol., 2007, 50(3), 327-332.
[http://dx.doi.org/10.1097/FJC.0b013e3180cbd0e7] [PMID: 17878763]
[51]
Tang, S.S. Intervention of breviscapine on apoptosis-related proteins in rats after cerebral ischemia-reperfusion. Zhongguo Linchuang Kangfu, 2005, 17, 130-131.
[52]
Zhang, M.Y.; Fan, S.J.; Li, L.P.; Wu, B.Y.; Wang, Y. Effects of breviscapine injection on the expression of bcl-2 and Bax in hypoxic ischemic brain injury in neonatal rats. Can. J. Appl. Physiol., 2011, 27, 196-200.
[53]
Yiming, L.; Wei, H.; Aihua, L.; Fandian, Z. Neuroprotective effects of breviscapine against apoptosis induced by transient focal cerebral ischaemia in rats. J. Pharm. Pharmacol., 2008, 60(3), 349-355.
[http://dx.doi.org/10.1211/jpp.60.3.0010] [PMID: 18284815]
[54]
Shin, J.W.; Kweon, K.J.; Kim, D.K.; Kim, P.; Jeon, T.D.; Maeng, S.; Sohn, N.W. Scutellarin ameliorates learning and memory deficit via suppressing β-amyloid formation and microglial activation in rats with chronic cerebral hypoperfusion. Am. J. Chin. Med., 2018, 46(6), 1203-1223.
[http://dx.doi.org/10.1142/S0192415X18500635]
[55]
Yin, M.H.; Xu, X.H.; Li, Y.J. Protective effect of breviscapine on apoptosis of brain cells in ischemia-reperfusion mice. Chung Kuo Yao Hsueh Tsa Chih, 2008, 43, 184-188.
[56]
Fang, M.; Yuan, Y.; Lu, J.; Li, H.E.; Zhao, M.; Ling, E.A.; Wu, C.Y. Scutellarin promotes microglia-mediated astrogliosis coupled with improved behavioral function in cerebral ischemia. Neurochem. Int., 2016, 97, 154-171.
[http://dx.doi.org/10.1016/j.neuint.2016.04.007] [PMID: 27105682]
[57]
Chai, L.; Guo, H.; Li, H.; Wang, S.; Wang, Y.L.; Shi, F.; Hu, L.M.; Liu, Y.; Adah, D. Scutellarin and caffeic acid ester fraction, active components of Dengzhanxixin injection, upregulate neurotrophins synthesis and release in hypoxia/reoxygenation rat astrocytes. J. Ethnopharmacol., 2013, 150(1), 100-107.
[http://dx.doi.org/10.1016/j.jep.2013.08.011] [PMID: 24012966]
[58]
Deng, Y.; Wang, N.; Zhu, Q.; Xie, X.M.; Duan, J.A.; Ding, A.W. Protective effect of ferulic acid on injured nerve cells. Pharmacol. Clin. Chin. Mater. Clin. Med., 2008, 24, 32-34.
[59]
Zhou, Q.; Liao, W.J.; Yang, W.T. Study on the effect of sodium ferulate on the recovery of nerve function and angiogenesis after focal cerebral ischemia-reperfusion. Chin. J. Rehabil. Med., 2006, 21, 200-203.
[60]
Yue, J.M.; Zhao, Q.S.; Lin, Z.W.; Sun, H.D. Chemical study of phenolic compounds in breviscapine. Acta Bot. Sin., 2000, 42, 313.
[61]
Tang, H.; Tang, Y.; Li, N.; Shi, Q.; Guo, J.; Shang, E.; Duan, J.A. Neuroprotective effects of scutellarin and scutellarein on repeatedly cerebral ischemia-reperfusion in rats. Pharmacol. Biochem. Behav., 2014, 118, 51-59.
[http://dx.doi.org/10.1016/j.pbb.2014.01.003] [PMID: 24423938]
[62]
Tang, H.; Tang, Y.; Li, N.G.; Lin, H.; Li, W.; Shi, Q.; Zhang, W.; Zhang, P.; Dong, Z.; Shen, M.; Gu, T.; Duan, J.A. Comparative metabolomic analysis of the neuroprotective effects of scutellarin and scutellarein against ischemic insult. PLoS One, 2015, 10(7), e0131569.
[http://dx.doi.org/10.1371/journal.pone.0131569] [PMID: 26147971]
[63]
Tang, H.; Dong, Z.X.; Gu, T.; Li, N.G.; Tang, Y.P.; Shi, Q.P. Studies on the protective effects of scutellarein against neuronal injury by ischemia through the analysis of endogenous amino acids and Ca2+ concentration together with Ca2+-ATPase activity. J. Chem., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/497842]
[64]
Li, Q.C.; Tang, S.W.; Wu, Y.Y.; Zeng, J.; Zhao, J.N.; Sheng, Y.M. Protective effect and mechanism of optimal ratio of Astragalus Breigeron components on cerebral ischemia in rats. Pharmacol. Clin. Chin. Mater. Clin. Med., 2019, 35, 104-108.
[65]
Guo, L.L.; Guan, Z.Z.; Huang, Y.; Wang, Y.L.; Shi, J.S. The neurotoxicity of β-amyloid peptide toward rat brain is associated with enhanced oxidative stress, inflammation and apoptosis, all of which can be attenuated by scutellarin. Exp. Toxicol. Pathol., 2013, 65(5), 579-584.
[http://dx.doi.org/10.1016/j.etp.2012.05.003] [PMID: 22739358]
[66]
Zeng, Y.Q.; Cui, Y.B.; Gu, J.H.; Liang, C.; Zhou, X.F. Scutellarin mitigates Aβ-induced neurotoxicity and improves behavior impairments in AD mice. Molecules, 2018, 23(4), 869.
[http://dx.doi.org/10.3390/molecules23040869] [PMID: 29642616]
[67]
Guo, L.L.; Wang, Y.J.; Yu, Y.N. Effects of breviscapine on protein expression profile in brain tissue of mice with dementia. Zhong Yao Cai, 2017, 40, 1918-1925.
[68]
Guo, L.L.; Guan, Z.Z. Effects of breviscapine on neuroinflammatory response in brain tissues of rats with dementia. Chin. J. Exp. Tradit. Med. Form., 2013, 19, 186-190.
[69]
Mei, Z.R.; Si, T.B.; Huang, H.H.; Yan, P.K. Effects of breigeron on learning, memory and antioxidant capacity in Alzheimer’s disease model rats. Chung Kuo Yao Hsueh Tsa Chih, 2012, 47, 347-350.
[70]
Wang, W.W.; Han, J.H.; Wang, L.; Bao, T.H. Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells. Iran. J. Basic Med. Sci., 2017, 20(3), 272-279.
[PMID: 28392899]
[71]
Xie, X.G.; Wu, Q.; Sun, X.X. Effects of breviscapine on learning and memory in rats with vascular dementia. Zhongguo Laonianxue Zazhi, 2011, 31, 2498-2499.
[72]
Xiong, Z.; Liu, C.; Wang, F.; Li, C.; Wang, W.; Wang, J.; Chen, J. Protective effects of breviscapine on ischemic vascular dementia in rats. Biol. Pharm. Bull., 2006, 29(9), 1880-1885.
[http://dx.doi.org/10.1248/bpb.29.1880] [PMID: 16946502]
[73]
Wei, F.; Wang, Y.L.; Han, X. Effects of breviscapine on learning, memory and amyloid levels in brain tissue of aged mice. Chin. Hosp. Pharm. J., 2012, 32, 519-521.
[74]
Guo, L.L.; Guan, Z.Z.; Wang, Y.L. Scutellarin protects against Aβ-induced learning and memory deficits in rats: involvement of nicotinic acetylcholine receptors and cholinesterase. Acta Pharmacol. Sin., 2011, 32(12), 1446-1453.
[http://dx.doi.org/10.1038/aps.2011.115] [PMID: 21986571]
[75]
Hu, X.; Teng, S.; He, J.; Sun, X.; Du, M.; Kou, L.; Wang, X. Pharmacological basis for application of scutellarin in Alzheimer’s disease: antioxidation and antiapoptosis. Mol. Med. Rep., 2018, 18(5), 4289-4296.
[http://dx.doi.org/10.3892/mmr.2018.9482] [PMID: 30221730]
[76]
Xu, W.; Zha, R.P.; Wang, W.Y.; Wang, Y.P. Effects of scutellarin on PKCgamma in PC12 cell injury induced by oxygen and glucose deprivation. Acta Pharmacol. Sin., 2007, 28(10), 1573-1579.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00502.x]
[77]
Wang, W.W.; Lu, L.; Bao, T.H.; Zhang, H.M.; Yuan, J.; Miao, W.; Wang, S.F.; Xiao, Z.C. Scutellarin alleviates behavioral deficits in a mouse model of multiple sclerosis, possibly through protecting neural stem cells. J. Mol. Neurosci., 2016, 58(2), 210-220.
[http://dx.doi.org/10.1007/s12031-015-0660-0] [PMID: 26514969]
[78]
Liu, H.; Yang, X.L.; Wang, Y.; Tang, X.Q.; Jiang, D.Y.; Xu, H.B. Protective effects of scutellarin on superoxide-induced oxidative stress in rat cortical synaptosomes. Acta Pharmacol. Sin., 2003, 24(11), 1113-1117.
[PMID: 14627495]
[79]
Zhou, Y.; Li, M.; Sun, L.Y. Intervention of chlorogenic acid, caffeic acid and ferulic acid on the expression of inflammation related molecules in endothelial cells induced by complement bypass activation. Chin. Pharmacol. Bull., 2016, 32, 1723-1728.
[80]
Landmesser, U.; Spiekermann, S.; Dikalov, S.; Tatge, H.; Wilke, R.; Kohler, C.; Harrison, D.G.; Hornig, B.; Drexler, H. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation, 2002, 106(24), 3073-3078.
[http://dx.doi.org/10.1161/01.CIR.0000041431.57222.AF] [PMID: 12473554]
[81]
Stocker, R.; Keaney, J.F., Jr. Role of oxidative modifications in atherosclerosis. Physiol. Rev., 2004, 84(4), 1381-1478.
[http://dx.doi.org/10.1152/physrev.00047.2003] [PMID: 15383655]
[82]
Considine, M.J.; Sandalio, L.M.; Foyer, C.H. Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress. Ann. Bot., 2015, 116(4), 469-473.
[http://dx.doi.org/10.1093/aob/mcv153] [PMID: 26649372]
[83]
Lartigue, A.; Burlat, B.; Coutard, B.; Chaspoul, F.; Claverie, J.M.; Abergel, C. The megavirus chilensis Cu, Zn-superoxide dismutase, the first viral structure of a typical CCS-independent hyperstable dimeric enzyme. J. Virol., 2014, 2588, 254-261.
[84]
Li, X.; Zhao, L.; Yue, L.; Liu, H.; Yang, X.; Wang, X.; Lin, Y.; Qu, Y. Evidence for the protective effects of curcumin against oxyhemoglobin-induced injury in rat cortical neurons. Brain Res. Bull., 2016, 120, 34-40.
[http://dx.doi.org/10.1016/j.brainresbull.2015.11.006] [PMID: 26551062]
[85]
Hong, H.; Liu, G.Q. Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin. Life Sci., 2004, 74(24), 2959-2973.
[http://dx.doi.org/10.1016/j.lfs.2003.09.074] [PMID: 15051420]
[86]
Wei, X.U.; Zha, R.P.; Wang, W.Y.; Wang, P.Y. Effects of scutellarin on PKC in PC12 cell injury induced by oxygen and glucose deprivation. Acta Pharmacol. Sin., 2010, 28, 1573-1579.
[87]
Zhang, Y.; Zhu, X.R.; Cai, Y.; Cao, G.X.; Zhan, W.H. Effects of breviscapine on oxidative stress and inflammatory response in atherosclerotic rats. J Guizhou Med Univ, 2017, 42, 71-75.
[88]
Fan, H.; Ma, X.; Lin, P.; Kang, Q.; Zhao, Z.; Wang, L.; Sun, D.; Cheng, J.; Li, Y. Scutellarin Prevents Nonalcoholic Fatty Liver Disease (NAFLD) and hyperlipidemia via PI3K/AKT-dependent activation of nuclear factor (Erythroid-derived 2)-like 2 (Nrf2) in rats. Med. Sci. Monit., 2017, 23, 5599-5612.
[http://dx.doi.org/10.12659/MSM.907530] [PMID: 29172017]
[89]
Li, Q.; Wu, J.H.; Guo, D.J.; Cheng, H.L.; Chen, S.L.; Chan, S.W. Suppression of diet-induced hypercholesterolemia by scutellarin in rats. Planta Med., 2009, 75(11), 1203-1208.
[http://dx.doi.org/10.1055/s-0029-1185539] [PMID: 19350483]
[90]
Ross, R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[91]
Ovsepyan, V.A.; Gabdulkhakova, A.Kh.; Shubenkiva, A.A.; Zotina, E.N. Role of interleukin-10 gene promoter region polymorphism in the development of chronic lymphoid leukemia. Bull. Exp. Biol. Med., 2015, 160(2), 275-277.
[http://dx.doi.org/10.1007/s10517-015-3148-6] [PMID: 26642793]
[92]
Pei, Z.Y. The role of inflammation in the pathogenesis of unstable angina pectoris. Clin Med China, 2002, 1, 5-7.
[93]
Liu, Y.; Jing, Y.Y.; Zeng, C.Y.; Li, C.G.; Xu, L.H.; Yan, L.; Bai, W.J.; Zha, Q.B.; Ouyang, D.Y.; He, X.H. Scutellarin suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Front. Pharmacol., 2018, 8, 975.
[http://dx.doi.org/10.3389/fphar.2017.00975] [PMID: 29375379]
[94]
Sung, N.Y.; Kim, M.Y.; Cho, J.Y. Scutellarein reduces inflammatory responses by inhibiting Src kinase activity. Korean J. Physiol. Pharmacol., 2015, 19(5), 441-449.
[http://dx.doi.org/10.4196/kjpp.2015.19.5.441] [PMID: 26330757]
[95]
Fu, Y.; Sun, S.; Sun, H.; Peng, J.; Ma, X.; Bao, L.; Ji, R.; Luo, C.; Gao, C.; Zhang, X.; Jin, Y. Scutellarin exerts protective effects against atherosclerosis in rats by regulating the Hippo-FOXO3A and PI3K/AKT signaling pathways. J. Cell. Physiol., 2019, 234(10), 18131-18145.
[http://dx.doi.org/10.1002/jcp.28446]
[96]
He, M.; Xue, Z.M.; Li, J.; Zhou, B.Q. Breviscapine inhibits high glucose-induced proliferation and migration of cultured vascular smooth muscle cells of rats via suppressing the ERK1/2 MAPK signaling pathway. Acta Pharmacol. Sin., 2012, 33(5), 606-614.
[http://dx.doi.org/10.1038/aps.2012.6] [PMID: 22465949]
[97]
Wang, L.J.; Wang, Y.; Li, J.M. Effect of breviscapine on delayed potassium current in ventricular myocytes of guinea pigs. Chin. Pharmacol. Bull., 2002, 3, 326-328.
[98]
Wang, L.J.; Wang, Y.; Li, J.M. Effect of breviscapine on ventricular myocyte I_ (Ca) in Guinea pigs. J. Shenyang Pharm. Univ., 2007, 5, 303-309.
[99]
Tian, X.; Chang, L.; Ma, G.; Wang, T.; Lv, M.; Wang, Z.; Chen, L.; Wang, Y.; Gao, X.; Zhu, Y. Delineation of platelet activation pathway of scutellarein revealed its intracellular target as Protein Kinase C. Biol. Pharm. Bull., 2016, 39(2), 181-191.
[http://dx.doi.org/10.1248/bpb.b15-00511] [PMID: 26581323]
[100]
Huang, H.; Geng, Q.; Yao, H.; Shen, Z.; Wu, Z.; Miao, X.; Shi, P. Protective effect of scutellarin on myocardial infarction induced by isoprenaline in rats. Iran. J. Basic Med. Sci., 2018, 21(3), 267-276.
[PMID: 29511493]
[101]
Wang, Z.; Yu, J.; Wu, J.; Qi, F.; Wang, H.; Wang, Z.; Xu, Z. Scutellarin protects cardiomyocyte ischemia-reperfusion injury by reducing apoptosis and oxidative stress. Life Sci., 2016, 157, 200-207.
[http://dx.doi.org/10.1016/j.lfs.2016.01.018] [PMID: 26775564]
[102]
Yang, W.; Li, L.; Cai, D.; Li, J.; Du, Y.; Guo, T. Effect of scutellarin on JAK/STAT pathway in myocardial ischemia reperfusion rats (LB561). FASEB J., 2014, 28, 1.
[103]
Wang, J.; Ji, S.Y.; Liu, S.Z.; Jing, R.; Lou, W.J. Cardioprotective effect of breviscapine: inhibition of apoptosis in H9c2 cardiomyocytes via the PI3K/Akt/eNOS pathway following simulated ischemia/reperfusion injury. Pharmazie, 2015, 70(9), 593-597.
[PMID: 26492644]
[104]
Liu, X.D.; Chen, Y.Z. The effects of breviscapine on cardiac myocyte apoptosis and expression of bcl-2 during myocardial ischemia/reperfusion course in rats. Guiyang Med. Coll., 2004, 29, 102-104.
[105]
Wang, Y.; Ji, M.; Chen, L.; Wu, X.; Wang, L. Breviscapine reduces acute lung injury induced by left heart ischemic reperfusion in rats by inhibiting the expression of ICAM-1 and IL-18. Exp. Ther. Med., 2013, 6(5), 1322-1326.
[http://dx.doi.org/10.3892/etm.2013.1287] [PMID: 24223666]
[106]
Yan, L.; Huang, H.; Tang, Q.Z.; Zhu, L.H.; Wang, L.; Liu, C.; Bian, Z.Y.; Li, H. Breviscapine protects against cardiac hypertrophy through blocking PKC-α-dependent signaling. J. Cell. Biochem., 2010, 109(6), 1158-1171.
[http://dx.doi.org/10.1002/jcb.22495] [PMID: 20127712]
[107]
Zhao, G.A.; Qi, S.L.; Tang, R.J. Experimental study of effect of combining breviscapine with ischemic/preconditioning on the expression of myocardial protein tumor necrosis factor-α,nuclear factor-kappa B during myocardial ischemia/reperfusion in rabbits. J. Clin. Cardiol., 2010, 26, 631-634.
[108]
Zhang, H.; Wang, X.Y.; Liu, Y. CHai, L. J.; Wang, H.; Zhang, B. L.; Gao, X. M. Effects of Dengzhan Xixin injection on inflammatory cytokine production in rat cardiac microvascular cells induced by tumor necrosis factor. Chin. Pharmacol. J., 2009, 44, 1791-1795.
[109]
Shi, M.; Liu, Y.; Feng, L.; Cui, Y.; Chen, Y.; Wang, P.; Wu, W.; Chen, C.; Liu, X.; Yang, W. Protective effects of scutellarin on human cardiac microvascular endothelial cells against hypoxia-reoxygenation injury and its possible target-related proteins. Evid. Based Complement. Alternat. Med., 2015, 2015, 278014.
[http://dx.doi.org/10.1155/2015/278014] [PMID: 26557144]
[110]
Pan, Z.; Zhao, W.; Zhang, X.; Wang, B.; Wang, J.; Sun, X.; Liu, X.; Feng, S.; Yang, B.; Lu, Y. Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFβ1 expression and activation of p38-MAPK and ERK1/2. Br. J. Pharmacol., 2011, 162(3), 688-700.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01070.x] [PMID: 20942814]
[111]
Li, W.Y.; Xu, X.Y.; Li, F.Q.; Chen, Y.Z.; Ding, M. The effects of scutellarein on platelet cytosolic free calcium concentration, platelet aggregation rate, and heart remodeling in rats. Zhongguo Xin Yao Zazhi, 2004, 13(03), 220-223.
[112]
Zhou, J.Z.; Lei, H.; Chen, Y.Z.; Li, F.Q. Breigeron injection reversed myocardial interstitial remodeling in spontaneously hypertensive rats. Basic Clin. Med., 2001, 21, 477-478.
[113]
Zhou, J.Z.; Lei, H.; Chen, Y.Z. Effects of breigeron injection on ventricular and vascular remodeling in spontaneously hypertensive rats. Chin. J. Integr. Tradit. West. Med., 2002, 22, 122-125.
[PMID: 12585150]
[114]
Chen, X.; Shi, X.; Zhang, X.; Lei, H.; Long, S.; Su, H.; Pei, Z.; Huang, R. Scutellarin attenuates hypertension-induced expression of brain Toll-like receptor 4/nuclear factor kappa B. Mediators Inflamm., 2013, 2013, 432623.
[http://dx.doi.org/10.1155/2013/432623] [PMID: 24223475]
[115]
Li, F.Q.; Chen, Y.Z. Effects of breviscapine on myocardial cell apoptosis and ventricular remodeling in spontaneously hypertensive rats. Chongqing Yike Daxue Xuebao, 2002, 27, 400-402.
[116]
Li, Q.Q.; Weng, Z.Y.; Zhang, M.; Chen, C.; Du, X.H.; Peng, P.H.; Wu, W.J.; Zhang, J.; Yang, W.M. Protective effects of scutellarin on vascular dysfunction caused by hypertension in SHR rats. Zhongguo Yaolixue Yu Dulixue Zazhi, 2015, 29(S1), 32.
[117]
Pan, Z.; Feng, T.; Shan, L.; Cai, B.; Chu, W.; Niu, H.; Lu, Y.; Yang, B. Scutellarin-induced endothelium-independent relaxation in rat aorta. Phytother. Res., 2008, 22(11), 1428-1433.
[http://dx.doi.org/10.1002/ptr.2364] [PMID: 18972583]
[118]
Yang, W.; Lust, R.M.; Bofferding, A.; Wingard, C.J. Nitric oxide and catalase-sensitive relaxation by scutellarin in the mouse thoracic aorta. J. Cardiovasc. Pharmacol., 2009, 53(1), 66-76.
[http://dx.doi.org/10.1097/FJC.0b013e318195d776] [PMID: 19129733]
[119]
Yang, Y.T.; Wang, X.M. Effects of breviscapine on expression of myocardial transforming growth factor-ag1 and Smad7 in diabetic rats. Guangdong Yixue, 2011, 32, 2629-2632.
[120]
Liu, X.J.; Cui, X.L.; Liu, W.Z.; Qi, Z.M. Effects of breigeron on expression of cardiac growth factor 1, transcription factor - B in diabetic rats. Zhongguo Yiyuan Yaoxue Zazhi, 2011, 31, 443-446.
[121]
Wang, M.; Zhang, W.B.; Zhu, J.H.; Fu, G.S.; Zhou, B.Q. Breviscapine ameliorates cardiac dysfunction and regulates the myocardial Ca(2+)-cycling proteins in streptozotocin-induced diabetic rats. Acta Diabetol., 2010, 47(Suppl. 1), 209-218.
[http://dx.doi.org/10.1007/s00592-009-0164-x] [PMID: 19882101]
[122]
Wang, M.; Zhang, W.B.; Zhu, J.H.; Fu, G.S.; Zhou, B.Q. Breviscapine ameliorates hypertrophy of cardiomyocytes induced by high glucose in diabetic rats via the PKC signaling pathway. Acta Pharmacol. Sin., 2009, 30(8), 1081-1091.
[http://dx.doi.org/10.1038/aps.2009.95] [PMID: 19597526]
[123]
Zhao, L.Y.; Li, X.Y.; Luo, M.L.; Xu, Y.J.; Liu, X.H. Effect of breiscapine on myocardial intervention and neuropeptide Y levels in diabetic rats. Acta Univ. Med. Nanjing, 2014, 34(02), 164-167.
[124]
Yu, X.J. Effects of breviscapine on serum NO, Et-1 and myocardial cell apoptosis in diabetic cardiomyopathy rats. Chin. J. Mod. Drug. Appl., 2017, 11, 197-198.
[125]
Yu, X.J. Effects of breviscapine on CVF in basement membrane and myocardial tissue of diabetic cardiomyopathy rats. Chin. J. Mod. Drug. Appl., 2017, 11, 191-192.
[126]
Wu, Sh.N.; Liu, Z.J.; Zhang, C.E.; He, Q.; Wang, X.; Niu, M.; Wang, J.B.; Xiao, X.H. Study on antiplatelet aggregation active components of Erigeron breviscapusin vitro based on spectral effect relationship. Chin. Tradit. Herbal Drugs, 2017, 48, 5179-5185.
[127]
Gao, Z.X.Z.; Huang, D.Y.; Li, H.X.; Zhang, L.N.; Lv, Y.H.; Cui, H.D.; Zheng, J.H. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun., 2010, 400(1), 151-156.
[http://dx.doi.org/10.1016/j.bbrc.2010.08.034] [PMID: 20709020]
[128]
Sun, X.P.; Wan, L.L.; Yang, Q.J.; Huo, Y.; Han, Y.L.; Guo, C. Scutellarin protects against doxorubicin-induced acute cardiotoxicity and regulates its accumulation in the heart. Arch. Pharm. Res., 2017, 40(7), 875-883.
[http://dx.doi.org/10.1007/s12272-017-0907-0] [PMID: 28315259]
[129]
Sun, C.; Li, C.; Li, X.; Zhu, Y.; Su, Z.; Wang, X.; He, Q.; Zheng, G.; Feng, B. Scutellarin induces apoptosis and autophagy in NSCLC cells through ERK1/2 and AKT Signaling Pathways in vitro and in vivo. J. Cancer, 2018, 9(18), 3247-3256.
[http://dx.doi.org/10.7150/jca.25921] [PMID: 30271483]
[130]
Cao, P.; Liu, B.; Du, F.; Li, D.; Wang, Y.; Yan, X.; Li, X.; Li, Y. Scutellarin suppresses proliferation and promotes apoptosis in A549 lung adenocarcinoma cells via AKT/mTOR/4EBP1 and STAT3 pathways. Thorac. Cancer, 2019, 10(3), 492-500.
[http://dx.doi.org/10.1111/1759-7714.12962] [PMID: 30666790]
[131]
Li, H.; Huang, D.; Gao, Z.; Chen, Y.; Zhang, L.; Zheng, J. Scutellarin inhibits the growth and invasion of human tongue squamous carcinoma through the inhibition of matrix metalloproteinase-2 and -9 and αvβ6 integrin. Int. J. Oncol., 2013, 42(5), 1674-1681.
[http://dx.doi.org/10.3892/ijo.2013.1873] [PMID: 23546449]
[132]
Li, H.; Huang, D.; Gao, Z.; Lv, Y.; Zhang, L.; Cui, H.; Zheng, J. Scutellarin inhibits cell migration by regulating production of αvβ6 integrin and E-cadherin in human tongue cancer cells. Oncol. Rep., 2010, 24(5), 1153-1160.
[PMID: 20878105]
[133]
Xu, H.; Zhang, S. Scutellarin-induced apoptosis in HepG2 hepatocellular carcinoma cells via a STAT3 pathway. Phytother. Res., 2013, 27(10), 1524-1528.
[PMID: 23192830]
[134]
Feng, Y.; Zhang, S.; Tu, J.; Cao, Z.; Pan, Y.; Shang, B.; Liu, R.; Bao, M.; Guo, P.; Zhou, Q. Novel function of scutellarin in inhibiting cell proliferation and inducing cell apoptosis of human Burkitt lymphoma Namalwa cells. Leuk. Lymphoma, 2012, 53(12), 2456-2464.
[http://dx.doi.org/10.3109/10428194.2012.693177] [PMID: 22582896]
[135]
Shi, X.; Chen, G.; Liu, X.; Qiu, Y.; Yang, S.; Zhang, Y.; Fang, X.; Zhang, C.; Liu, X. Scutellarein inhibits cancer cell metastasis in vitro and attenuates the development of fibrosarcoma in vivo. Int. J. Mol. Med., 2015, 35(1), 31-38.
[http://dx.doi.org/10.3892/ijmm.2014.1997] [PMID: 25394920]
[136]
He, X.Y.; Xiong, L.L.; Xia, Q.J.; Wang, Y.Y.; Zhao, X.M.; Du, R.L.; Huang, J.; He, X.Q.; Jia-Liu, ; Wang, T.H. C18H17NO6 and its combination with scutellarin suppress the proliferation and induce the apoptosis of human glioma cells via upregulation of fas-associated factor 1 expression. BioMed Res. Int., 2019, 2019, 6821219.
[http://dx.doi.org/10.1155/2019/6821219] [PMID: 30915356]
[137]
Deng, W.; Han, W.; Fan, T.; Wang, X.; Cheng, Z.; Wan, B.; Chen, J. Scutellarin inhibits human renal cancer cell proliferation and migration via upregulation of PTEN. Biomed. Pharmacother., 2018, 107, 1505-1513.
[http://dx.doi.org/10.1016/j.biopha.2018.08.127] [PMID: 30257368]
[138]
Nie, J.; Yang, H.M.; Sun, C.Y.; Liu, Y.L.; Zhuo, J.Y.; Zhang, Z.B.; Lai, X.P.; Su, Z.R.; Li, Y.C. Scutellarin enhances antitumor effects and attenuates the toxicity of bleomycin in H22 ascites tumor-bearing mice. Front. Pharmacol., 2018, 9, 615.
[http://dx.doi.org/10.3389/fphar.2018.00615] [PMID: 29962947]
[139]
Chan, J.Y.; Tan, B.K.H.; Lee, S.C. Scutellarin sensitizes drug-evoked colon cancer cell apoptosis through enhanced caspase-6 activation. Anticancer Res., 2009, 29(8), 3043-3047.
[PMID: 19661313]
[140]
Tan, L.; Lei, N.; He, M.; Zhang, M.; Sun, Q.; Zeng, S.; Chen, L.; Zhou, L.J.; Meng, X.L.; Xu, H.B. Scutellarin protects against human colorectal cancer in vitro by down regulation of hedgehog signaling pathway activity. Int. J. Pharmacol., 2020, 16(1), 53-62.
[http://dx.doi.org/10.3923/ijp.2020.53.62]
[141]
Su, Y.; Liu, W.; Ma, L.; Liu, X.; Liu, Z.; Zhu, B. Scutellarin inhibits translocation of protein kinase C in diabetic thoracic aorta of the rat. Clin. Exp. Pharmacol. Physiol., 2012, 39(2), 136-140.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05645.x] [PMID: 22092277]
[142]
Long, L.; Wang, J.; Lu, X.; Xu, Y.; Zheng, S.; Luo, C.; Li, Y. Protective effects of scutellarin on type II diabetes mellitus-induced testicular damages related to reactive oxygen species/Bcl-2/Bax and reactive oxygen species/microcirculation/staving pathway in diabetic rat. J. Diabetes Res., 2015, 2015, 252530.
[http://dx.doi.org/10.1155/2015/252530] [PMID: 25861655]
[143]
Long, L.L.; Zheng, S.H.; Li, Y.B. Breviscapine effects on the expression of proliferating cell nuclear antigen and c-fos in the testis of diabetic rat models. J. Clin. Rehabil. Tis. Eng. Res., 2015, 19, 2917-2922.
[144]
Luo, P.; Tan, Z.H.; Zhang, Z.F.; Zhang, H.; Liu, X.F.; Mo, Z.J. Scutellarin isolated from Erigeron multiradiatus inhibits high glucose-mediated vascular inflammation. Yakugaku Zasshi, 2008, 128(9), 1293-1299.
[http://dx.doi.org/10.1248/yakushi.128.1293] [PMID: 18758143]
[145]
Ma, Q.Q.; Li, J.P.; Wu, L.; Song, B.Y.; Wang, M.L. Effects of breviscapine on glycolipid metabolism in type 2 diabetic rats. Chin. J. Exp. Tradit. Med. Form., 2014, 20, 176-179.
[146]
Wang, J.; Tan, J.; Luo, J.; Huang, P.; Zhou, W.; Chen, L.; Long, L.; Zhang, L.M.; Zhu, B.; Yang, L.; Deng, D.Y. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J. Nanobiotechnology, 2017, 15(1), 18.
[http://dx.doi.org/10.1186/s12951-017-0251-z] [PMID: 28249594]
[147]
Zhu, J.; Chen, L.; Qi, Y.; Feng, J.; Zhu, L.; Bai, Y.; Wu, H. Protective effects of Erigeron breviscapus Hand.- Mazz. (EBHM) extract in retinal neurodegeneration models. Mol. Vis., 2018, 24, 315-325.
[PMID: 29769797]
[148]
Yin, S.; Wang, Z.F.; Duan, J.G.; Ji, L.; Lu, X.J. Extraction (DSX) from Erigeron breviscapus modulates outward potassium currents in rat retinal ganglion cells. Int. J. Ophthalmol., 2015, 8(6), 1101-1106.
[PMID: 26682155]
[149]
Lu, X.J.; Zhang, F.W.; Cheng, L.; Liu, A.Q.; Duan, J.G. Effect on multifocal electroretinogram in persistently elevated intraocular pressure by Erigeron breviscapus extract. Int. J. Ophthalmol., 2011, 4(4), 349-352.
[PMID: 22553678]
[150]
Jiang, D.P.; Li, Q.; Yang, J.; Perelman, J.M.; Kolosov, V.P.; Zhou, X.D. Scutellarin attenuates human-neutrophil-elastase-induced mucus production by inhibiting the PKC-ERK signaling pathway in vitro and in vivo. Am. J. Chin. Med., 2011, 39(6), 1193-1206.
[http://dx.doi.org/10.1142/S0192415X11009494] [PMID: 22083990]
[151]
Jiang, D.P.; Perelman, J.M.; Kolosov, V.P.; Zhou, X.D. Effects of scutellarin on MUC5AC mucin production induced by human neutrophil elastase or interleukin 13 on airway epithelial cells. J. Korean Med. Sci., 2011, 26(6), 778-784.
[http://dx.doi.org/10.3346/jkms.2011.26.6.778] [PMID: 21655064]
[152]
Karna, E.; Nazaruk, J.; Szoka, Ł.; Pałka, J.A. Scutellarin-dependent inhibition of collagen biosynthesis in cultured fibroblasts. Nat. Prod. Res., 2011, 25(19), 1789-1795.
[http://dx.doi.org/10.1080/14786419.2010.482056] [PMID: 21500091]
[153]
Choi, M.; Jeon, S. Antiapoptotic effects of scutellarin on ultraviolet A-irradiated HaCaT human keratinocytes. Biomed. Dermatol., 2018, 2, 17.
[http://dx.doi.org/10.1186/s41702-018-0022-y]
[154]
Mei, Y.; Yangyang, Z.; Shuai, L.; Hao, J.; Yirong, Y.; Yong, C.; Peng, X.; Bicheng, C.; Yan, Z. Breviscapine prevents downregulation of renal water and sodium transport proteins in response to unilateral ureteral obstruction. Iran. J. Basic Med. Sci., 2016, 19(5), 573-578.
[PMID: 27403265]
[155]
Zhu, J.J.; Luo, X.; Zhao, C.C.; Hang, A.X. Extraction of polyphenols from Erigeron breviscapus and its antioxidant activity in vitro. Food Res. Develop., 2019, 40, 31-37.
[156]
Tao, Y.; Jiang, Y.H.; Li, W.D.; Cai, B.C. Rapid magnetic solid-phase extraction combined with ultra-high performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for analysis of thrombin binders from a crude extract and injection of Erigeron breviscapus. RSC Adv., 2016, 6, 34782-34790.
[http://dx.doi.org/10.1039/C6RA04001B]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 1
Year: 2021
Published on: 16 December, 2020
Page: [24 - 39]
Pages: 16
DOI: 10.2174/1389200221666201217093255
Price: $65

Article Metrics

PDF: 21