Biomarker Approach Towards Rheumatoid Arthritis Treatment

Author(s): Hitesh Malhotra, Vandana Garg*, Govind Singh

Journal Name: Current Rheumatology Reviews

Volume 17 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Rheumatoid arthritis is an auto-immune disorder, recognized by cartilage as well as bone destruction, which causes irreversible joint deformities, which further results in functional limitations in the patient. Genes like HLA-DRB1 and PTPN22 are likely implicated in the genetic predisposition of rheumatoid arthritis pathology. The first and foremost clinical manifestation in a person with rheumatoid arthritis is joint destruction followed by cartilage and bone destruction caused by cell-cell interactions. The cell-cell interactions are thought to be initialized through the contact of antigen-presenting cells (APC) with CD4+ cells, leading to the progression of the disease. APC includes a complex of class ІІ major histocompatibility complex molecules along with peptide antigens and binds to the receptors present on the surface of T-cells. Further, the activation of macrophages is followed by the release of various pro-inflammatory cytokines such as IL-1 and TNF-α, which lead to the secretion of enzymes that degrade proteoglycan and collagen, which in turn, increase tissue degradation. Biomarkers like IL-6, IL-12, IL-8 and IL-18, 14-3-3η, RANKL, IFN-γ, IFN-β and TGF-β have been designated as key biomarkers in disease development and progression. The study of these biomarkers is very important as they act as a molecular indicator of pathological processes that aggravate the disease.

Keywords: Arthritis, biomarkers, joint destruction, inflammation, antigen-presenting cells, C4D+.

[1]
Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 2012; 51(Suppl. 5): v3-v11.
[http://dx.doi.org/10.1093/rheumatology/kes113] [PMID: 22718924]
[2]
Paleolog EM. Angiogenesis in rheumatoid arthritis. Arthritis Res 2002; 4(Suppl. 3): S81-90.
[http://dx.doi.org/10.1186/ar575] [PMID: 12110126]
[3]
McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011; 365(23): 2205-19.
[http://dx.doi.org/10.1056/NEJMra1004965] [PMID: 22150039]
[4]
Grassi W, De Angelis R, Lamanna G, Cervini C. The clinical features of rheumatoid arthritis. Eur J Radiol 1998; 27(Suppl. 1): S18-24.
[http://dx.doi.org/10.1016/S0720-048X(98)00038-2] [PMID: 9652497]
[5]
Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003; 423(6937): 356-61.
[http://dx.doi.org/10.1038/nature01661] [PMID: 12748655]
[6]
Gravallese EM. Bone destruction in arthritis. Ann Rheum Dis 2002; 61(Suppl. 2): ii84-6.
[http://dx.doi.org/10.1136/ard.61.suppl_2.ii84] [PMID: 12379632]
[7]
Arend WP. The pathophysiology and treatment of rheumatoid arthritis. Arthritis Rheum 1997; 40(4): 595-7.
[http://dx.doi.org/10.1002/art.1780400402] [PMID: 9125239]
[8]
Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 2002; 4(Suppl. 3): S265-72.
[http://dx.doi.org/10.1186/ar578] [PMID: 12110146]
[9]
Weyand CM, Hicok KC, Conn DL, Goronzy JJ. The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann Intern Med 1992; 117(10): 801-6.
[http://dx.doi.org/10.7326/0003-4819-117-10-801] [PMID: 1416553]
[10]
McGeough M. Diagnostic, prognostic and theranostic genetic biomarkers for rheumatoid arthritis. J Clin Cell Immunol 2012; S6: 1-5.
[11]
Schellekens GA, Visser H, de Jong BA, et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 2000; 43(1): 155-63.
[http://dx.doi.org/10.1002/1529-0131(200001)43:1<155::AID-ANR20>3.0.CO;2-3] [PMID: 10643712]
[12]
Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30(11): 1205-13.
[http://dx.doi.org/10.1002/art.1780301102] [PMID: 2446635]
[13]
Farahat MN, Yanni G, Poston R, Panayi GS. Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 1993; 52(12): 870-5.
[http://dx.doi.org/10.1136/ard.52.12.870] [PMID: 8311538]
[14]
Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 1996; 14: 397-440.
[http://dx.doi.org/10.1146/annurev.immunol.14.1.397] [PMID: 8717520]
[15]
Pratesi F, Migliorini P. Something old, something new: biomarkers in rheumatoid arthritis. J Rheumatol 2014; 41(11): 2091-3.
[http://dx.doi.org/10.3899/jrheum.141069] [PMID: 25362703]
[16]
Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 2008; 118(11): 3537-45.
[http://dx.doi.org/10.1172/JCI36389] [PMID: 18982160]
[17]
Schett G. Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res Ther 2007; 9(1): 203.
[http://dx.doi.org/10.1186/ar2110] [PMID: 17316459]
[18]
Willemze A, Toes REM, Huizinga TWJ, Trouw LA. New biomarkers in rheumatoid arthritis. Neth J Med 2012; 70(9): 392-9.
[PMID: 23123533]
[19]
Mc Ardle A, Flatley B, Pennington SR, FitzGerald O. Early biomarkers of joint damage in rheumatoid and psoriatic arthritis. Arthritis Res Ther 2015; 17: 141.
[http://dx.doi.org/10.1186/s13075-015-0652-z] [PMID: 26028339]
[20]
Smith JB, Haynes MK. Rheumatoid arthritis--a molecular understanding. Ann Intern Med 2002; 136(12): 908-22.
[http://dx.doi.org/10.7326/0003-4819-136-12-200206180-00012] [PMID: 12069565]
[21]
Smolen JS, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2003; 2(6): 473-88.
[http://dx.doi.org/10.1038/nrd1109] [PMID: 12776222]
[22]
Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 1998; 16: 27-55.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.27] [PMID: 9597123]
[23]
Hauptmann B, Van Damme J, Dayer JM. Modulation of IL-1 inflammatory and immunomodulatory properties by IL-6. Eur Cytokine Netw 1991; 2(1): 39-46.
[PMID: 1651782]
[24]
Arend WP. Interleukin 1 receptor antagonist. A new member of the interleukin 1 family. J Clin Invest 1991; 88(5): 1445-51.
[http://dx.doi.org/10.1172/JCI115453] [PMID: 1834696]
[25]
Horai R, Saijo S, Tanioka H, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 2000; 191(2): 313-20.
[http://dx.doi.org/10.1084/jem.191.2.313] [PMID: 10637275]
[26]
Schiff MH. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann Rheum Dis 2000; 59(Suppl. 1): i103-8.
[http://dx.doi.org/10.1136/ard.59.suppl_1.i103] [PMID: 11053099]
[27]
Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996; 87(6): 2095-147.
[http://dx.doi.org/10.1182/blood.V87.6.2095.bloodjournal8762095] [PMID: 8630372]
[28]
Conti P. Interleukin-1 (IL-1) and interleukin-1 receptor antagonist (IL-1ra). Ann Med Interne (Paris) 1991; 142(7): 521-5.
[PMID: 1838671]
[29]
Blakemore AI, Tarlow JK, Cork MJ, Gordon C, Emery P, Duff GW. Interleukin-1 receptor antagonist gene polymorphism as a disease severity factor in systemic lupus erythematosus. Arthritis Rheum 1994; 37(9): 1380-5.
[http://dx.doi.org/10.1002/art.1780370917] [PMID: 7945503]
[30]
Cohen S, Hurd E, Cush J, et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2002; 46(3): 614-24.
[http://dx.doi.org/10.1002/art.10141] [PMID: 11920396]
[31]
Firestein GS, Boyle DL, Yu C, et al. Synovial interleukin-1 receptor antagonist and interleukin-1 balance in rheumatoid arthritis. Arthritis Rheum 1994; 37(5): 644-52.
[http://dx.doi.org/10.1002/art.1780370507] [PMID: 8185691]
[32]
Hannum CH, Wilcox CJ, Arend WP, et al. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature 1990; 343(6256): 336-40.
[http://dx.doi.org/10.1038/343336a0] [PMID: 2137200]
[33]
Arend WP, Dayer J-M. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum 1990; 33(3): 305-15.
[http://dx.doi.org/10.1002/art.1780330302] [PMID: 2180403]
[34]
Houssiau FA, Devogelaer JP, Van Damme J, de Deuxchaisnes CN, Van Snick J. Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum 1988; 31(6): 784-8.
[http://dx.doi.org/10.1002/art.1780310614] [PMID: 3260102]
[35]
Dayer JM, Choy E. Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor. Rheumatology (Oxford) 2010; 49(1): 15-24.
[http://dx.doi.org/10.1093/rheumatology/kep329] [PMID: 19854855]
[36]
Srirangan S, Choy EH. The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis 2010; 2(5): 247-56.
[http://dx.doi.org/10.1177/1759720X10378372] [PMID: 22870451]
[37]
Dienz O, Eaton SM, Bond JP, et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med 2009; 206(1): 69-78.
[http://dx.doi.org/10.1084/jem.20081571] [PMID: 19139170]
[38]
Madhok R, Crilly A, Watson J, Capell HA. Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann Rheum Dis 1993; 52(3): 232-4.
[http://dx.doi.org/10.1136/ard.52.3.232] [PMID: 8484679]
[39]
Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol 2018; 9: 754.
[http://dx.doi.org/10.3389/fimmu.2018.00754] [PMID: 29706967]
[40]
Takagi N, Mihara M, Moriya Y, et al. Blockage of interleukin-6 receptor ameliorates joint disease in murine collagen-induced arthritis. Arthritis Rheum 1998; 41(12): 2117-21.
[http://dx.doi.org/10.1002/1529-0131(199812)41:12<2117::AID-ART6>3.0.CO;2-P] [PMID: 9870868]
[41]
Boe A, Baiocchi M, Carbonatto M, Papoian R, Serlupi-Crescenzi O. Interleukin 6 knock-out mice are resistant to antigen-induced experimental arthritis. Cytokine 1999; 11(12): 1057-64.
[http://dx.doi.org/10.1006/cyto.1999.0502] [PMID: 10623431]
[42]
De Benedetti F, Rucci N, Del Fattore A, et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum 2006; 54(11): 3551-63.
[http://dx.doi.org/10.1002/art.22175] [PMID: 17075861]
[43]
Tanaka T, Ogata A, Kishimoto T. Targeting of interleukin-6 for the treatment of rheumatoid arthritis: a review and update. RheumatolCurr Res 2013; S4: 1-14.
[44]
Nowell MA, Richards PJ, Horiuchi S, et al. Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J Immunol 2003; 171(6): 3202-9.
[http://dx.doi.org/10.4049/jimmunol.171.6.3202] [PMID: 12960349]
[45]
Hashizume M, Yoshida H, Koike N, Suzuki M, Mihara M. Overproduced interleukin 6 decreases blood lipid levels via upregulation of very-low-density lipoprotein receptor. Ann Rheum Dis 2010; 69(4): 741-6.
[http://dx.doi.org/10.1136/ard.2008.104844] [PMID: 19433409]
[46]
Mihara M, Kotoh M, Nishimoto N, et al. Humanized antibody to human interleukin-6 receptor inhibits the development of collagen arthritis in cynomolgus monkeys. Clin Immunol 2001; 98(3): 319-26.
[http://dx.doi.org/10.1006/clim.2000.4989] [PMID: 11237555]
[47]
Gaffen SL, Liu KD. Overview of interleukin-2 function, production and clinical applications. Cytokine 2004; 28(3): 109-23.
[http://dx.doi.org/10.1016/j.cyto.2004.06.010] [PMID: 15473953]
[48]
Malek TR, Yu A, Zhu L, Matsutani T, Adeegbe D, Bayer AL. IL-2 family of cytokines in T regulatory cell development and homeostasis. J Clin Immunol 2008; 28(6): 635-9.
[http://dx.doi.org/10.1007/s10875-008-9235-y] [PMID: 18726679]
[49]
Rubin LA, Nelson DL. The soluble interleukin-2 receptor: biology, function, and clinical application. Ann Intern Med 1990; 113(8): 619-27.
[http://dx.doi.org/10.7326/0003-4819-113-8-619] [PMID: 2205142]
[50]
Combe B, Pope RM, Fischbach M, Darnell B, Baron S, Talal N. Interleukin-2 in rheumatoid arthritis: production of and response to interleukin-2 in rheumatoid synovial fluid, synovial tissue and peripheral blood. Clin Exp Immunol 1985; 59(3): 520-8.
[PMID: 3921298]
[51]
Rubin LA, Galli F, Greene WC, Nelson DL, Jay G. The molecular basis for the generation of the human soluble interleukin 2 receptor. Cytokine 1990; 2(5): 330-6.
[http://dx.doi.org/10.1016/1043-4666(90)90062-X] [PMID: 2103332]
[52]
Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 2004; 4(9): 665-74.
[http://dx.doi.org/10.1038/nri1435] [PMID: 15343366]
[53]
Emery P, Panayi GS, Nouri AM. Interleukin-2 reverses deficient cell-mediated immune responses in rheumatoid arthritis. Clin Exp Immunol 1984; 57(1): 123-9.
[PMID: 6611230]
[54]
Miossec P, Kashiwado T, Ziff M. Inhibitor of interleukin-2 in rheumatoid synovial fluid. Arthritis Rheum 1987; 30(2): 121-9.
[http://dx.doi.org/10.1002/art.1780300201] [PMID: 3493780]
[55]
Boiardi L, Macchioni P, Salvarani C, et al. Serum soluble interleukin-2 receptor levels in rheumatoid arthritis: correlation with clinical and immunological parameters and with the response to auranofin treatment. Clin Exp Rheumatol 1994; 12(4): 357-62.
[PMID: 7955597]
[56]
Capobianco PM, Cassiano CG, Antonia CDFA, Storti MML, Domingos BRC, Machado DLR. Human interleukin 2 (IL-2) promotions of immune regulation and clinical outcomes: A review. J Cytokine Biol 2016; 1: 1-4.
[http://dx.doi.org/10.4172/2576-3881.1000109]
[57]
Klimiuk PA, Sierakowski S, Latosiewicz R, et al. Interleukin-6, soluble interleukin-2 receptor and soluble interleukin-6 receptor in the sera of patients with different histological patterns of rheumatoid synovitis. Clin Exp Rheumatol 2003; 21(1): 63-9.
[PMID: 12673891]
[58]
Espersen GT, Vestergaard M, Ernst E, Grunnet N. Tumour necrosis factor alpha and interleukin-2 in plasma from rheumatoid arthritis patients in relation to disease activity. Clin Rheumatol 1991; 10(4): 374-6.
[http://dx.doi.org/10.1007/BF02206655] [PMID: 1802490]
[59]
Suenaga Y, Yasuda M, Yamamoto M, et al. Serum interleukin-2 receptor for the early diagnosis of rheumatoid arthritis. Clin Rheumatol 1998; 17(4): 311-7.
[http://dx.doi.org/10.1007/BF01451012] [PMID: 9776115]
[60]
Cicuttini FM, Byron KA, Maher D, Wootton AM, Muirden KD, Hamilton JA. Serum IL-4, IL-10 and IL-6 levels in inflammatory arthritis. Rheumatol Int 1995; 14(5): 201-6.
[http://dx.doi.org/10.1007/BF00262298] [PMID: 7724996]
[61]
Colotta F, Re F, Muzio M, et al. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 1993; 261(5120): 472-5.
[http://dx.doi.org/10.1126/science.8332913] [PMID: 8332913]
[62]
Song GG, Bae SC, Kim JH, Lee YH. Interleukin-4, interleukin-4 receptor, and interleukin-18 polymorphisms and rheumatoid arthritis: a meta-analysis. Immunol Invest 2013; 42(6): 455-69.
[http://dx.doi.org/10.3109/08820139.2013.804084] [PMID: 23883285]
[63]
Sun YH, Wei ST, Zong SH. Correlation between IL-4 gene polymorphismas well as its mRNA expressionand rheumatoid arthritis. Eur Rev Med Pharmacol Sci 2017; 21(17): 3879-85.
[PMID: 28975976]
[64]
Pawlik A, Wrzesniewska J, Florczak M, Gawronska-Szklarz B, Herczynska M, Martin J. The -590 IL-4 promoter polymorphism in patients with rheumatoid arthritis. Rheumatol Int 2005; 26(1): 48-51.
[http://dx.doi.org/10.1007/s00296-004-0539-9] [PMID: 15660235]
[65]
Park HK, Kim SK, Kweon HY, Lee KG, Arasu MV, Kim YO. Promoter polymorphism (-590, T/C) of interleukin 4 (IL4) gene is associated with rheumatoid arthritis: An updated meta-analysis. Saudi J Biol Sci 2017; 24(2): 444-9.
[http://dx.doi.org/10.1016/j.sjbs.2016.01.013] [PMID: 28149185]
[66]
ElKassar N, Gress RE. An overview of IL-7 biology and its use in immunotherapy. J Immunotoxicol 2010; 7(1): 1-7.
[http://dx.doi.org/10.3109/15476910903453296] [PMID: 20017587]
[67]
Mazzucchelli R, Durum SK. Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 2007; 7(2): 144-54.
[http://dx.doi.org/10.1038/nri2023] [PMID: 17259970]
[68]
Niu N, Qin X. New insights into IL-7 signaling pathways during early and late T cell development. Cell Mol Immunol 2013; 10(3): 187-9.
[http://dx.doi.org/10.1038/cmi.2013.11] [PMID: 23584490]
[69]
van Roon JA, Verweij MC, Wijk MW, Jacobs KM, Bijlsma JW, Lafeber FP. Increased intraarticular interleukin-7 in rheumatoid arthritis patients stimulates cell contact-dependent activation of CD4(+) T cells and macrophages. Arthritis Rheum 2005; 52(6): 1700-10.
[http://dx.doi.org/10.1002/art.21045] [PMID: 15934068]
[70]
Churchman SM, Ponchel F. Interleukin-7 in rheumatoid arthritis. Rheumatology (Oxford) 2008; 47(6): 753-9.
[http://dx.doi.org/10.1093/rheumatology/ken053] [PMID: 18356170]
[71]
Churchman SM, El-Jawhari JJ, Burska AN, et al. Modulation of peripheral T-cell function by interleukin-7 in rheumatoid arthritis. Arthritis Res Ther 2014; 16(6): 511.
[http://dx.doi.org/10.1186/s13075-014-0511-3] [PMID: 25533722]
[72]
Ponchel F, Verburg RJ, Bingham SJ, et al. Interleukin-7 deficiency in rheumatoid arthritis: consequences for therapy-induced lymphopenia. Arthritis Res Ther 2005; 7(1): R80-92.
[http://dx.doi.org/10.1186/ar1452] [PMID: 15642146]
[73]
Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford) 2006; 45(6): 669-75.
[http://dx.doi.org/10.1093/rheumatology/kel065] [PMID: 16567358]
[74]
Troughton PR, Platt R, Bird H, el-Manzalawi E, Bassiouni M, Wright V. Synovial fluid interleukin-8 and neutrophil function in rheumatoid arthritis and seronegative polyarthritis. Br J Rheumatol 1996; 35(12): 1244-51.
[http://dx.doi.org/10.1093/rheumatology/35.12.1244] [PMID: 9010051]
[75]
Lo SF, Huang CM, Lin HC, Chen WC, Tsai CH, Tsai FJ. Cytokine (IL-6) and chemokine (IL-8) gene polymorphisms among rheumatoid arthritis patients in Taiwan. Clin Exp Rheumatol 2008; 26(4): 632-7.
[PMID: 18799095]
[76]
Georganas C, Liu H, Perlman H, Hoffmann A, Thimmapaya B, Pope RM. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-κ B but not C/EBP β or c-Jun. J Immunol 2000; 165(12): 7199-206.
[http://dx.doi.org/10.4049/jimmunol.165.12.7199] [PMID: 11120852]
[77]
Rodenburg RJ, van Den Hoogen FH, Barrera P, van Venrooij WJ, van De Putte LB. Superinduction of interleukin 8 mRNA in activated monocyte derived macrophages from rheumatoid arthritis patients. Ann Rheum Dis 1999; 58(10): 648-52.
[http://dx.doi.org/10.1136/ard.58.10.648] [PMID: 10491366]
[78]
Slavic V, Stankovic A, Kamenov B. Role of interleukin-8 and monocyte chemotactic protein-1 in rheumatoid arthritis. Med Biol (Milano) 2005; 12: 19-22.
[79]
Gracie JA, Forsey RJ, Chan WL, et al. A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 1999; 104(10): 1393-401.
[http://dx.doi.org/10.1172/JCI7317] [PMID: 10562301]
[80]
Dinarello CA, Novick D, Puren AJ, et al. Overview of interleukin-18: more than an interferon-gamma inducing factor. J Leukoc Biol 1998; 63(6): 658-64.
[http://dx.doi.org/10.1002/jlb.63.6.658] [PMID: 9620656]
[81]
Novick D, Kim SH, Fantuzzi G, Reznikov LL, Dinarello CA, Rubinstein M. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 1999; 10(1): 127-36.
[http://dx.doi.org/10.1016/S1074-7613(00)80013-8] [PMID: 10023777]
[82]
Ma X, Yan W, Zheng H, et al. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000 Res 2015; 4: 1-13.
[http://dx.doi.org/10.12688/f1000research.7010.1] [PMID: 26918147]
[83]
Barrie MA, Plevy ES. The interleukin-12 family of cytokines: therapeutic targets for inflammatory disease mediation. ClinApplImmunol 2005; 5: 225-40.
[http://dx.doi.org/10.1016/j.cair.2005.06.003]
[84]
Drulović J, Mostarica-Stojković M, Lević Z, et al. Serum interleukin-12 levels in patients with multiple sclerosis. Neurosci Lett 1998; 251(2): 129-32.
[http://dx.doi.org/10.1016/S0304-3940(98)00520-5] [PMID: 9718991]
[85]
Morita Y, Yamamura M, Nishida K, et al. Expression of interleukin-12 in synovial tissue from patients with rheumatoid arthritis. Arthritis Rheum 1998; 41(2): 306-14.
[http://dx.doi.org/10.1002/1529-0131(199802)41:2<306::AID-ART15>3.0.CO;2-4] [PMID: 9485089]
[86]
Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 1998; 8(5): 591-9.
[http://dx.doi.org/10.1016/S1074-7613(00)80564-6] [PMID: 9620680]
[87]
Marks-Konczalik J, Dubois S, Losi JM, et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 2000; 97(21): 11445-50.
[http://dx.doi.org/10.1073/pnas.200363097] [PMID: 11016962]
[88]
Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9(5): 669-76.
[http://dx.doi.org/10.1016/S1074-7613(00)80664-0] [PMID: 9846488]
[89]
Waldmann TA. Targeting the interleukin-15 system in rheumatoid arthritis. Arthritis Rheum 2005; 52(9): 2585-8.
[http://dx.doi.org/10.1002/art.21363] [PMID: 16142738]
[90]
McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007; 7(6): 429-42.
[http://dx.doi.org/10.1038/nri2094] [PMID: 17525752]
[91]
Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201(2): 233-40.
[http://dx.doi.org/10.1084/jem.20041257] [PMID: 15657292]
[92]
Paradowska-Gorycka A, Grzybowska-Kowalczyk A, Wojtecka-Lukasik E, Maslinski S. IL-23 in the pathogenesis of rheumatoid arthritis. Scand J Immunol 2010; 71(3): 134-45.
[http://dx.doi.org/10.1111/j.1365-3083.2009.02361.x] [PMID: 20415779]
[93]
Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol 2015; 11(7): 415-29.
[http://dx.doi.org/10.1038/nrrheum.2015.53] [PMID: 25907700]
[94]
Hillyer P, Larché MJ, Bowman EP, et al. Investigating the role of the interleukin-23/-17A axis in rheumatoid arthritis. Rheumatology (Oxford) 2009; 48(12): 1581-9.
[http://dx.doi.org/10.1093/rheumatology/kep293] [PMID: 19815670]
[95]
Dalila AS, Mohd Said MS, Shaharir SS, et al. Interleukin-23 and its correlation with disease activity, joint damage, and functional disability in rheumatoid arthritis. Kaohsiung J Med Sci 2014; 30(7): 337-42.
[http://dx.doi.org/10.1016/j.kjms.2014.02.010] [PMID: 24924839]
[96]
Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect 2013; 2(9): e60.
[PMID: 26038490]
[97]
Gaffen SL. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep 2009; 11(5): 365-70.
[http://dx.doi.org/10.1007/s11926-009-0052-y] [PMID: 19772832]
[98]
Al-SaadanyHanan M, Hussein SM, Gaber AR, Zaytoun AH. Th-17 cells and serum IL-17 in rheumatoid arthritis patients: correlation with disease activity and severity. Egypt Rheumatol 2016; 38: 1-7.
[http://dx.doi.org/10.1016/j.ejr.2015.01.001]
[99]
Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103(9): 1345-52.
[http://dx.doi.org/10.1172/JCI5703] [PMID: 10225978]
[100]
Kellner H. Targeting interleukin-17 in patients with active rheumatoid arthritis: rationale and clinical potential. Ther Adv Musculoskelet Dis 2013; 5(3): 141-52.
[http://dx.doi.org/10.1177/1759720X13485328] [PMID: 23858337]
[101]
Daham RW, Rasheed KM, Mohammed H. The role of IL-17, metaphase reactants on patients with early rheumatoid arthritis disease activity and trace elements. J ApplChem 2013; 6: 58-65.
[http://dx.doi.org/10.9790/5736-0625865]
[102]
Edrees AF, Misra SN, Abdou NI. Anti-tumor necrosis factor (TNF) therapy in rheumatoid arthritis: correlation of TNF-alpha serum level with clinical response and benefit from changing dose or frequency of infliximab infusions. Clin Exp Rheumatol 2005; 23(4): 469-74.
[PMID: 16095114]
[103]
Farrugia M, Baron B. The role of TNF-α in rheumatoid arthritis: a focus on regulatory T cells. J Clin Transl Res 2016; 2(3): 84-90.
[http://dx.doi.org/10.18053/jctres.02.201603.005] [PMID: 30873466]
[104]
Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 2007; 48(4): 751-62.
[http://dx.doi.org/10.1194/jlr.R600021-JLR200] [PMID: 17202130]
[105]
Hyrich KL, Silman AJ, Watson KD, Symmons DP. Anti-tumour necrosis factor α therapy in rheumatoid arthritis: an update on safety. Ann Rheum Dis 2004; 63(12): 1538-43.
[http://dx.doi.org/10.1136/ard.2004.024737] [PMID: 15242866]
[106]
Fröde TS, Tenconi P, Debiasi MR, Medeiros YS. Tumour necrosis factor-alpha, interleukin-2 soluble receptor and different inflammatory parameters in patients with rheumatoid arthritis. Mediators Inflamm 2002; 11(6): 345-9.
[http://dx.doi.org/10.1080/0962935021000051539] [PMID: 12581498]
[107]
Issekutz AC, Meager A, Otterness I, Issekutz TB. The role of tumour necrosis factor-alpha and IL-1 in polymorphonuclear leucocyte and T lymphocyte recruitment to joint inflammation in adjuvant arthritis. Clin Exp Immunol 1994; 97(1): 26-32.
[http://dx.doi.org/10.1111/j.1365-2249.1994.tb06574.x] [PMID: 8033415]
[108]
Matsuno H, Yudoh K, Katayama R, et al. The role of TNF-α in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse chimera. Rheumatology (Oxford) 2002; 41(3): 329-37.
[http://dx.doi.org/10.1093/rheumatology/41.3.329] [PMID: 11934972]
[109]
Kalden JR. Emerging role of anti-tumor necrosis factor therapy in rheumatic diseases. Arthritis Res 2002; 4(Suppl. 2): S34-40.
[http://dx.doi.org/10.1186/ar552] [PMID: 12110156]
[110]
Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008; 473(2): 139-46.
[http://dx.doi.org/10.1016/j.abb.2008.03.018] [PMID: 18395508]
[111]
Petit AR, Walsh NC, Manning C, Goldring RS, Gravallese ME. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatol 2006; 45: 068-1076.
[http://dx.doi.org/10.1093/rheumatology/kel045]
[112]
Neumann E, Gay S, Müller-Ladner U. The RANK/RANKL/osteoprotegerin system in rheumatoid arthritis: new insights from animal models. Arthritis Rheum 2005; 52(10): 2960-7.
[http://dx.doi.org/10.1002/art.21361] [PMID: 16200575]
[113]
Crotti TN, Smith MD, Weedon H, et al. Receptor activator NF-kappaB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis. Ann Rheum Dis 2002; 61(12): 1047-54.
[http://dx.doi.org/10.1136/ard.61.12.1047] [PMID: 12429533]
[114]
Jones DH, Kong Y-Y, Penninger JM. Role of RANKL and RANK in bone loss and arthritis. Ann Rheum Dis 2002; 61(Suppl. 2): ii32-9.
[http://dx.doi.org/10.1136/ard.61.suppl_2.ii32] [PMID: 12379618]
[115]
Yeo L, Toellner KM, Salmon M, et al. Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis 2011; 70(11): 2022-8.
[http://dx.doi.org/10.1136/ard.2011.153312] [PMID: 21742639]
[116]
van de Loo FA, Joosten LA, van Lent PL, Arntz OJ, van den Berg WB. Role of interleukin-1, tumor necrosis factor α, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 1995; 38(2): 164-72.
[http://dx.doi.org/10.1002/art.1780380204] [PMID: 7848306]
[117]
Trouvin AP, Goëb V. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging 2010; 5: 345-54.
[PMID: 21228900]
[118]
Kim W, Min S, Cho M, et al. The role of IL-12 in inflammatory activity of patients with rheumatoid arthritis (RA). Clin Exp Immunol 2000; 119(1): 175-81.
[http://dx.doi.org/10.1046/j.1365-2249.2000.01095.x] [PMID: 10606980]
[119]
Geusens PP, Landewé RBM, Garnero P, et al. The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum 2006; 54(6): 1772-7.
[http://dx.doi.org/10.1002/art.21896] [PMID: 16736519]
[120]
Paul G. Heusden van H. 14-3-3 Proteins: regulators of numerous eukaryotic proteins. IUBMB Life 2005; 57(9): 623-9.
[http://dx.doi.org/10.1080/15216540500252666] [PMID: 16203681]
[121]
Walter PM. Desiree van der H, Cornelia FA, Robert L, Gilles B, Paul PT, Yuan G, Aziz G, Ruhangiz K, Anthony M., 2014. 14-3-3η is a novel mediator associated with the pathogenesis of rheumatoid arthritis and joint damage. Arthritis Res Ther 2014; 16: 1-11.
[122]
van Beers-Tas MH, Marotta A, Boers M, Maksymowych WP, van Schaardenburg D. A prospective cohort study of 14-3-3η in ACPA and/or RF-positive patients with arthralgia. Arthritis Res Ther 2016; 18: 76.
[http://dx.doi.org/10.1186/s13075-016-0975-4] [PMID: 27037016]
[123]
Maksymowych WP, Naides SJ, Bykerk V, et al. Serum 14-3-3η is a novel marker that complements current serological measurements to enhance detection of patients with rheumatoid arthritis. J Rheumatol 2014; 41(11): 2104-13.
[http://dx.doi.org/10.3899/jrheum.131446] [PMID: 25128504]
[124]
Vasconcellos A, Chittalae S. Does 14-3-3-eta protein offer any additional diagnostic value in rheumatoid arthritis? Arthritis Rheumatol 2015; 2627.
[125]
Ridley MG, Panayi GS, Nicholas NS, Murphy J. Mechanisms of macrophage activation in rheumatoid arthritis: the role of gamma-interferon. Clin Exp Immunol 1986; 63(3): 587-93.
[PMID: 3086002]
[126]
Kelchtermans H, Billiau A, Matthys P. How interferon-γ keeps autoimmune diseases in check. Trends Immunol 2008; 29(10): 479-86.
[http://dx.doi.org/10.1016/j.it.2008.07.002] [PMID: 18775671]
[127]
Pollard KM, Cauvi DM, Toomey CB, Morris KV, Kono DH. Interferon-γ and systemic autoimmunity. Discov Med 2013; 16(87): 123-31.
[PMID: 23998448]
[128]
Schurgers E, Billiau A, Matthys P. Collagen-induced arthritis as an animal model for rheumatoid arthritis: focus on interferon-γ. J Interferon Cytokine Res 2011; 31(12): 917-26.
[http://dx.doi.org/10.1089/jir.2011.0056] [PMID: 21905879]
[129]
Williams AS, Richards PJ, Thomas E, et al. Interferon-γ protects against the development of structural damage in experimental arthritis by regulating polymorphonuclear neutrophil influx into diseased joints. Arthritis Rheum 2007; 56(7): 2244-54.
[http://dx.doi.org/10.1002/art.22732] [PMID: 17599735]
[130]
Karonitsch T, Dalwigk K, Byrne R. IFN- gamma promotes fibroblasts-like synoviocytesmotitliy. Ann Rheum Dis 2010; 69: A1-A76.
[http://dx.doi.org/10.1136/ard.2010.129650k]
[131]
Machold KP, Neumann K, Smolen JS. Recombinant human interferon gamma in the treatment of rheumatoid arthritis: double blind placebo controlled study. Ann Rheum Dis 1992; 51(9): 1039-43.
[http://dx.doi.org/10.1136/ard.51.9.1039] [PMID: 1417133]
[132]
Yin Z, Siegert S, Neure L, et al. The elevated ratio of interferon gamma-/interleukin-4-positive T cells found in synovial fluid and synovial membrane of rheumatoid arthritis patients can be changed by interleukin-4 but not by interleukin-10 or transforming growth factor beta. Rheumatology (Oxford) 1999; 38(11): 1058-67.
[http://dx.doi.org/10.1093/rheumatology/38.11.1058] [PMID: 10556256]
[133]
Yellin M, Paliienko I, Balanescu A, et al. A phase II, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of MDX-1100, a fully human anti-CXCL10 monoclonal antibody, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 2012; 64(6): 1730-9.
[http://dx.doi.org/10.1002/art.34330] [PMID: 22147649]
[134]
Vervoordeldonk MJ, Aalbers CJ, Tak PP. Interferon β for rheumatoid arthritis: new clothes for an old kid on the block. Ann Rheum Dis 2009; 68(2): 157-8.
[http://dx.doi.org/10.1136/ard.2008.097899] [PMID: 19139202]
[135]
van Holten J, Plater-Zyberk C, Tak PP. Interferon-β for treatment of rheumatoid arthritis? Arthritis Res 2002; 4(6): 346-52.
[http://dx.doi.org/10.1186/ar598] [PMID: 12453310]
[136]
Sugiura Y, Niimi T, Sato S, et al. Transforming growth factor β1 gene polymorphism in rheumatoid arthritis. Ann Rheum Dis 2002; 61(9): 826-8.
[http://dx.doi.org/10.1136/ard.61.9.826] [PMID: 12176809]
[137]
Tak PP, Hart BA, Kraan MC, Jonker M, Smeets TJ, Breedveld FC. The effects of interferon beta treatment on arthritis. Rheumatology (Oxford) 1999; 38(4): 362-9.
[http://dx.doi.org/10.1093/rheumatology/38.4.362] [PMID: 10378715]
[138]
Gonzalo-Gil E, Criado G, Santiago B, Dotor J, Pablos JL, Galindo M. Transforming growth factor (TGF)-β signalling is increased in rheumatoid synovium but TGF-β blockade does not modify experimental arthritis. Clin Exp Immunol 2013; 174(2): 245-55.
[PMID: 23869798]
[139]
Rosengren S, Corr M, Boyle DL. Platelet-derived growth factor and transforming growth factor beta synergistically potentiate inflammatory mediator synthesis by fibroblast-like synoviocytes. Arthritis Res Ther 2010; 12(2): R65.
[http://dx.doi.org/10.1186/ar2981] [PMID: 20380722]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2021
Published on: 16 December, 2020
Page: [162 - 175]
Pages: 14
DOI: 10.2174/1573397116666201216164013
Price: $65

Article Metrics

PDF: 56
HTML: 1