Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Research Article

Inhibitory Effect of Carissa spinarum Linn Methanolic Leaf Extract Against Vipera russelli

Author(s): Bhavya Janardhan, Vineetha M. Shrikanth, Veena S. More, Govindappa Melappa, K.S. Ananthraju, Farhan Zameer and Sunil S. More*

Volume 1, Issue 1, 2021

Published on: 16 December, 2020

Page: [85 - 93] Pages: 9

DOI: 10.2174/2666121701999201216144752

Abstract

Background: Carissa spinarum Linn has been used as a traditional medicine to treat various ailments, including snakebite. It is found in India, Ceylon and Thailand.

Objective: The study was performed to determine the inhibiting potential of Carissa spinarum methanolic leaf extract on the pharmacological effects of Viper venom.

Methods: The dose-dependent enzymatic studies, pharmacological and in vivo studies were conducted using standard methods.

Results: It neutralized toxic enzymes in a dose-dependent manner with concentrations ranging from 53.3 –1190.4 μg/mL, inhibited lysis of fibrinogen at 1:8 (venom: extract, w/w), and increased the procoagulant activity and lecithin lysis at 1:25 (venom: extract, w/w). The extract neutralized the LD50 of venom in mice and embryos, reduced haemorrhage, myotoxicity and edema induced by the venom in mice.

Conclusion: The observed results confirm that the leaf extract possesses adequate phytochemicals that could neutralize the toxic properties of the venom.

Keywords: In vivo, snake bite, haemorrhage, Vipera russelli, fibrinogenolysis, Carissa spinarum Linn.

Graphical Abstract
[1]
Kasturiratne A, Wickremasinghe AR, de Silva N, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 2008; 5(11): e218.
[http://dx.doi.org/10.1371/journal.pmed.0050218] [PMID: 18986210]
[2]
Mohapatra B, Warrell DA, Suraweera W, et al. Million Death Study Collaborators. Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl Trop Dis 2011; 5(4): e1018.
[http://dx.doi.org/10.1371/journal.pntd.0001018] [PMID: 21532748]
[3]
Leong PK, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH. Cross neutralization of Afro-Asian cobra and Asian krait venoms by a Thai polyvalent snake antivenom (Neuro Polyvalent Snake Antivenom). PLoS Negl Trop Dis 2012; 6(6): e1672.
[http://dx.doi.org/10.1371/journal.pntd.0001672] [PMID: 22679522]
[4]
León G, Herrera M, Segura Á, Villalta M, Vargas M, Gutiérrez JM. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon 2013; 76: 63-76.
[http://dx.doi.org/10.1016/j.toxicon.2013.09.010] [PMID: 24055551]
[5]
Makhija IK, Khamar D. Anti-snake venom properties of medicinal plants. Der Pharmacia Lettre 2010; 2(5): 399-411.
[6]
Santhosh MS, Hemshekhar M, Sunitha K, et al. Snake venom induced local toxicities: plant secondary metabolites as an auxiliary therapy. Mini Rev Med Chem 2013; 13(1): 106-23.
[http://dx.doi.org/10.2174/138955713804484730] [PMID: 22876950]
[7]
Kirtikar KR. Indian Medicinal Plants: Lalit Mohan Basu. Allahabad, India 1935.
[8]
Hegde K, Joshi AB. Preliminary phytochemical screening and antipyretic activity of Carissa spinarum root extract. Der Pharmacia Lettre 2010; 2(3): 255-60.
[9]
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75.
[PMID: 14907713]
[10]
Janardhan B, Shrikanth VM, Mirajkar KK, More SS. In vitro Anti-Snake Venom Properties of Carisssa spinarum Linn Leaf Extracts. J Herbs Spices Med Plants 2015; 21(3): 283-93.
[http://dx.doi.org/10.1080/10496475.2014.961627]
[11]
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7(2): 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[12]
Bessey OA, Lowry OH, Brock MJ. A method for the rapid determination of alkaline phosphates with five cubic millimeters of serum. J Biol Chem 1946; 164: 321-9.
[PMID: 20989492]
[13]
Lo TB, Chen YH, Lee CY. Chemical Studies of Formosan Cobra (Naja naja atra) Venom. Part I. Chromatographic Separation of Crude Venom on CM‐Sepadex and Preliminary Characterization of its Components. J Chin Chem Soc (Taipei) 1966; 13(1): 25-37.
[http://dx.doi.org/10.1002/jccs.196600004]
[14]
Tan NH, Tan CS. Acidimetric assay for phospholipase A using egg yolk suspension as substrate. Anal Biochem 1988; 170(2): 282-8.
[http://dx.doi.org/10.1016/0003-2697(88)90632-X] [PMID: 3394929]
[15]
Pukrittayakamee S, Warrell DA, Desakorn V, McMichael AJ, White NJ, Bunnag D. The hyaluronidase activities of some Southeast Asian snake venoms. Toxicon 1988; 26(7): 629-37.
[http://dx.doi.org/10.1016/0041-0101(88)90245-0] [PMID: 3176052]
[16]
Greenberg DM. Plant proteolytic enzymesMethods in Enzymology. New York, USA: Academic Press Inc. 1955; pp. 54-64.
[http://dx.doi.org/10.1016/S0076-6879(55)02169-1]
[17]
Rowe M, de Gast GC, Platts-Mills TA, Asherson GL, Webster AD, Johnson SM. Lymphocyte 5′-nucleotidase in primary hypogammaglobulinaemia and cord blood. Clin Exp Immunol 1980; 39(2): 337-43.
[PMID: 6248281]
[18]
Condrea E, Yang CC, Rosenberg P. Anticoagulant activity and plasma phosphatidylserine hydrolysis by snake venom phospholipases A2. Thromb Haemost 1983; 49(2): 151.
[http://dx.doi.org/10.1055/s-0038-1657347] [PMID: 6868012]
[19]
Ouyang C, Teng CM. Fibrinogenolytic enzymes of Trimeresurus mucrosquamatus venom. Biochimica et Biophysica Acta (BBA)-. Protein Structure 1976; 420(2): 298-308.
[http://dx.doi.org/10.1016/0005-2795(76)90321-4]
[20]
Krishnan SA, Dileepkumar R, Nair AS, Oommen OV. Studies on neutralizing effect of Ophiorrhiza mungos root extract against Daboia russelii venom. J Ethnopharmacol 2014; 151(1): 543-7.
[http://dx.doi.org/10.1016/j.jep.2013.11.010] [PMID: 24280030]
[21]
Gutiérrez JM, Avila C, Rojas E, Cerdas L. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon 1988; 26(4): 411-3.
[http://dx.doi.org/10.1016/0041-0101(88)90010-4] [PMID: 3406951]
[22]
Meier J, Theakston RD. Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon 1986; 24(4): 395-401.
[http://dx.doi.org/10.1016/0041-0101(86)90199-6] [PMID: 3715904]
[23]
Vishwanath BS, Kini RM, Gowda TV. Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon 1987; 25(5): 501-15.
[http://dx.doi.org/10.1016/0041-0101(87)90286-8] [PMID: 3617087]
[24]
Kondo H, Kondo S, Ikezawa H, Murata R. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. Jpn J Med Sci Biol 1960; 13(1-2): 43-52.
[http://dx.doi.org/10.7883/yoken1952.13.43] [PMID: 13853435]
[25]
Gutiérrez JM, Arce V, Brenes F, Chaves F. Changes in myofibrillar components after skeletal muscle necrosis induced by a myotoxin isolated from the venom of the snake Bothrops asper. Exp Mol Pathol 1990; 52(1): 25-36.
[http://dx.doi.org/10.1016/0014-4800(90)90055-I] [PMID: 2307211]
[26]
Dunn BE, Boone MA. Growth of the chick embryo in vitro. Poult Sci 1976; 55(3): 1067-71.
[http://dx.doi.org/10.3382/ps.0551067] [PMID: 935040]
[27]
Sells PG, Richards AM, Laing GD, Theakston RD. The use of hens’ eggs as an alternative to the conventional in vivo rodent assay for antidotes to haemorrhagic venoms. Toxicon 1997; 35(9): 1413-21.
[http://dx.doi.org/10.1016/S0041-0101(97)00022-6] [PMID: 9403964]
[28]
Soares AM, Ticli FK, Marcussi S, et al. Medicinal plants with inhibitory properties against snake venoms. Curr Med Chem 2005; 12(22): 2625-41.
[http://dx.doi.org/10.2174/092986705774370655] [PMID: 16248818]
[29]
Aird SD. Ophidian envenomation strategies and the role of purines. Toxicon 2002; 40(4): 335-93.
[http://dx.doi.org/10.1016/S0041-0101(01)00232-X] [PMID: 11738231]
[30]
Girish KS, Shashidharamurthy R, Nagaraju S, Gowda TV, Kemparaju K. Isolation and characterization of hyaluronidase a “spreading factor” from Indian cobra (Naja naja) venom. Biochimie 2004; 86(3): 193-202.
[http://dx.doi.org/10.1016/j.biochi.2004.02.004] [PMID: 15134834]
[31]
Kini RM, Evans HJ. Effects of phospholipase A2 enzymes on platelet aggregation Venom phospholipase A . 1997; 2: 369-87.
[32]
Biondo R, Pereira AM, Marcussi S, Pereira PS, França SC, Soares AM. Inhibition of enzymatic and pharmacological activities of some snake venoms and toxins by Mandevilla velutina (Apocynaceae) aqueous extract. Biochimie 2003; 85(10): 1017-25.
[http://dx.doi.org/10.1016/S0300-9084(03)00138-X] [PMID: 14644557]
[33]
Markland FS. Snake venoms and the hemostatic system. Toxicon 1998; 36(12): 1749-800.
[http://dx.doi.org/10.1016/S0041-0101(98)00126-3] [PMID: 9839663]
[34]
Dhananjaya BL, Zameer F, Girish KS, D’Souza CJ. Anti-venom potential of aqueous extract of stem bark of Mangifera indica L. against Daboia russellii (Russell’s viper) venom. Indian J Biochem Biophys 2011; 48(3): 175-83.
[PMID: 21793309]
[35]
Gomes A, Bhattacharya S, Mukherjee S, Gomes A. Inn-ho-Tsai. Inhibition of toxic actions of phospholipase A2 isolated & characterized from the Indian Banded Krait (Bungarus fasciatus) venom by synthetic herbal compounds. Indian J Med Res 2012; 136(1): 40-5.
[PMID: 22885262]
[36]
Gutiérrez JM, Rucavado A, Escalante T, Díaz C. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 2005; 45(8): 997-1011.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.029] [PMID: 15922771]
[37]
Gutiérrez JM, Ownby CL. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon 2003; 42(8): 915-31.
[http://dx.doi.org/10.1016/j.toxicon.2003.11.005] [PMID: 15019491]

© 2024 Bentham Science Publishers | Privacy Policy