Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Novel Dithranol Loaded Cyclodextrin Nanosponges for Augmentation of Solubility, Photostability and Cytocompatibility

Author(s): Sunil Kumar and Rekha Rao*

Volume 17, Issue 5, 2021

Published on: 15 December, 2020

Page: [747 - 761] Pages: 15

DOI: 10.2174/1573413716666201215165552

Price: $65

Abstract

Background: Drug loaded β-cyclodextrin based nanosponges (CDNS) are of special interest for the entrapment of moieties with the view to address their physicochemical challenges, and to improve their delivery characteristics and utility. Dithranol (DTH), the standard drug for psoriasis, has poor stability and solubility, which limit its pharmaceutical applications.

Objective: The objective of the current study was to entrap DTH in CDNS in order to alleviate the above-mentioned challenges.

Methods: To synthesize CDNS, β-cyclodextrin was treated with diphenyl carbonate in various molar ratios. The obtained placebo CDNS were loaded with DTH by lyophilisation. The particle size of the DTH loaded CDNS was found to lie between 150 and 450 nm, with a narrow polydispersity index range. Fourier transform infrared spectroscopy, thermal analysis, X-ray diffraction, zeta potential and electron microscopy with energy dispersive spectroscopy (EDS) were conducted for characterization of DTH-CDNS.

Results: Findings from spectral examinations confirmed the formation of inclusion complexes. Solubilisation efficiency of DTH (in distilled water) was found augmented 4.54 folds with optimized CDNS. The cytocompatibility study was performed by the MTT assay employing THP1 cell lines. A remarkable amelioration in stability and photostability of DTH was also observed by its inclusion in nanosponges.

Conclusion: In a nutshell, we report the rational engineering and characterization of DTH loaded cyclodextrin-based nanosponges, and subsequently, their stepwise screening for photostability, in vitro release, in vitro cytocompatibility, in vitro antioxidant and in vitro inflammatory activity in a top-down manner, yielding the best carrier for this drug.

Keywords: β-cyclodextrin nanosponges, diphenyl carbonate, photostability, cytocompatibility, antioxidant potential, antiinflammatory activity.

Graphical Abstract
[1]
Mahrle, G. Dithranol. Clin. Dermatol., 1997, 15(5), 723-737.
[http://dx.doi.org/10.1016/S0738-081X(97)00019-9] [PMID: 9313971]
[2]
McGill, A.; Frank, A.; Emmett, N.; Turnbull, D.M.; Birch-Machin, M.A.; Reynolds, N.J. The anti-psoriatic drug anthralin accumulates in keratinocyte mitochondria, dissipates mitochondrial membrane potential, and induces apoptosis through a pathway dependent on respiratory competent mitochondria. FASEB J., 2005, 19(8), 1012-1014.
[http://dx.doi.org/10.1096/fj.04-2664fje] [PMID: 15802490]
[3]
Myśliwiec, H.; Myśliwiec, P.; Baran, A.; Flisiak, I. Dithranol treatment of plaque-type psoriasis increases serum TNF-like weak inducer of apoptosis (TWEAK). Adv. Med. Sci., 2016, 61(2), 207-211.
[http://dx.doi.org/10.1016/j.advms.2016.01.001] [PMID: 26895458]
[4]
Sehgal, V.N.; Verma, P.; Khurana, A. Anthralin/dithranol in dermatology. Int. J. Dermatol., 2014, 53(10), e449-e460.
[http://dx.doi.org/10.1111/j.1365-4632.2012.05611.x] [PMID: 25208745]
[5]
Benezeder, T.; Painsi, C.; Patra, V.; Dey, S.; Holcmann, M.; Lange-Asschenfeldt, B.; Sibilia, M.; Wolf, P. Dithranol targets keratinocytes, their crosstalk with neutrophils and inhibits the IL-36 inflammatory loop in psoriasis. eLife, 2020, 9, e56991.
[http://dx.doi.org/10.7554/eLife.56991] [PMID: 32484435]
[6]
Kemény, L.; Ruzicka, T.; Braun-Falco, O. Dithranol: a review of the mechanism of action in the treatment of psoriasis vulgaris. Skin Pharmacol., 1990, 3(1), 1-20.
[http://dx.doi.org/10.1159/000210836] [PMID: 2202336]
[7]
Argyris, T.S.; Slaga, T.J. The regulation of epidermal hyperplastic growth. Crit. Rev. Toxicol., 1981, 9(2), 151-200.
[http://dx.doi.org/10.3109/10408448109059564] [PMID: 7026175]
[8]
Tripathi, P.K.; Gorain, B.; Choudhury, H.; Srivastava, A.; Kesharwani, P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon, 2019, 5(3), e01343.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01343] [PMID: 30957038]
[9]
Hiller, C. How stable is dithranol? An investigation into the degradation of different dithranol formulations. Pharm. Prax., 1995, 5, 428-431.
[10]
Raza, K.; Negi, P.; Takyar, S.; Shukla, A.; Amarji, B.; Katare, O.P. Novel dithranol phospholipid microemulsion for topical application: development, characterization and percutaneous absorption studies. J. Microencapsul., 2011, 28(3), 190-199.
[http://dx.doi.org/10.3109/02652048.2010.546435] [PMID: 21395406]
[11]
Kadian, V.; Kumar, S.; Saini, K.; Kakkar, V.; Rao, R. Dithranol: an insight on its novel delivery cargos for psoriasis management. Curr. Drug Res. Rev, 2020, 12(2), 82-96.
[12]
Agarwal, R.; Katare, O.P.; Vyas, S.P. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int. J. Pharm., 2001, 228(1-2), 43-52.
[http://dx.doi.org/10.1016/S0378-5173(01)00810-9] [PMID: 11576767]
[13]
Saraswat, A.; Agarwal, R.; Kaur, I.; Katare, O.P.; Kumar, B. Fabric-staining properties and washability of a novel liposomal dithranol formulation. J. Dermatolog. Treat., 2002, 13(3), 119-122.
[http://dx.doi.org/10.1080/09546630260199479] [PMID: 12227874]
[14]
Savian, A.L.; Rodrigues, D.; Weber, J.; Ribeiro, R.F.; Motta, M.H.; Schaffazick, S.R.; Adams, A.I.; de Andrade, D.F.; Beck, R.C.; da Silva, C.B. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug. Mater. Sci. Eng. C, 2015, 46, 69-76.
[http://dx.doi.org/10.1016/j.msec.2014.10.011] [PMID: 25491961]
[15]
Guenther, U.; Smirnova, I.; Neubert, R.H.H. Hydrophilic silica aerogels as dermal drug delivery systems--dithranol as a model drug. Eur. J. Pharm. Biopharm., 2008, 69(3), 935-942.
[http://dx.doi.org/10.1016/j.ejpb.2008.02.003] [PMID: 18423994]
[16]
Raza, K.; Katare, O.P.; Setia, A.; Bhatia, A.; Singh, B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J. Microencapsul., 2013, 30(3), 225-236.
[http://dx.doi.org/10.3109/02652048.2012.717115] [PMID: 23088318]
[17]
Estanqueiro, M.; Conceição, J.; Amaral, M.H.; Lobo, J.M.S. Use of solid dispersions to increase stability of dithranol in topical formulations. Braz. J. Pharm. Sci., 2014, 50(3), 583-590.
[http://dx.doi.org/10.1590/S1984-82502014000300018]
[18]
Carlotti, M.E.; Sapino, S.; Peira, E.; Gallarate, M.; Ugazio, E. On the photodegradation of dithranol in different topical formulations: use of SLN to increase the stability of the drug. J. Dispers. Sci. Technol., 2009, 30(10), 1517-1524.
[http://dx.doi.org/10.1080/01932690903123726]
[19]
Gambhire, M.S.; Bhalekar, M.R.; Gambhire, V.M. Statistical optimization of dithranol-loaded solid lipid nanoparticles using factorial design. Braz. J. Pharm. Sci., 2011, 47(3), 503-511.
[http://dx.doi.org/10.1590/S1984-82502011000300008]
[20]
Abdel-Mottaleb, M.M.; Moulari, B.; Beduneau, A.; Pellequer, Y.; Lamprecht, A. Surface-charge-dependent nanoparticles accumulation in inflamed skin. J. Pharm. Sci., 2012, 101(11), 4231-4239.
[http://dx.doi.org/10.1002/jps.23282] [PMID: 22855370]
[21]
Agrawal, U.; Mehra, N.K.; Gupta, U.; Jain, N.K. Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J. Drug Target., 2013, 21(5), 497-506.
[http://dx.doi.org/10.3109/1061186X.2013.771778] [PMID: 23594093]
[22]
Sathe, P.; Saka, R.; Kommineni, N.; Raza, K.; Khan, W. Dithranol-loaded nanostructured lipid carrier-based gel ameliorate psoriasis in imiquimod-induced mice psoriatic plaque model. Drug Dev. Ind. Pharm., 2019, 45(5), 826-838.
[http://dx.doi.org/10.1080/03639045.2019.1576722] [PMID: 30764674]
[23]
Saraswat, A.; Agarwal, R.; Katare, O.P.; Kaur, I.; Kumar, B. A randomized, double-blind, vehicle-controlled study of a novel liposomal dithranol formulation in psoriasis. J. Dermatolog. Treat., 2007, 18(1), 40-45.
[http://dx.doi.org/10.1080/09546630601028729] [PMID: 17365266]
[24]
Saraswat, A.; Agarwal, R.; Kaur, I. KATARE, O.; Kumar, B. A randomized, double-blind, vehicle-controlled study of a novel liposomal dithranol formulation in psoriasis. Br. J. Dermatol. Suppl., 2003, 149, 20-21.
[25]
Abdel-Mottaleb, M.M.; Try, C.; Pellequer, Y.; Lamprecht, A. Nanomedicine strategies for targeting skin inflammation. Nanomedicine (Lond.), 2014, 9(11), 1727-1743.
[http://dx.doi.org/10.2217/nnm.14.74] [PMID: 25321172]
[26]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I. J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97, 1521-1537.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[27]
Mahant, S.; Kumar, S.; Pahwa, R.; Kaushik, D.; Nanda, S.; Rao, R. Solid lipid nanoparticles in drug delivery for skin care; Nanoparticulate Drug Deliv. Syst, 2019, p. 337.
[28]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[29]
Kumar, S.; Rao, R. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: a review. J. Incl. Phenom. Macrocycl. Chem., 2019, 94, 11-30.
[http://dx.doi.org/10.1007/s10847-019-00903-z]
[30]
Caldera, F.; Tannous, M.; Cavalli, R.; Zanetti, M.; Trotta, F. Evolution of cyclodextrin nanosponges. Int. J. Pharm., 2017, 531(2), 470-479.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.072] [PMID: 28645630]
[31]
Chilajwar, S.V.; Pednekar, P.P.; Jadhav, K.R.; Gupta, G.J.; Kadam, V.J. Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery. Expert Opin. Drug Deliv., 2014, 11(1), 111-120.
[http://dx.doi.org/10.1517/17425247.2014.865013] [PMID: 24298891]
[32]
Pawar, S.; Shende, P.; Trotta, F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int. J. Pharm., 2019, 565, 333-350.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.015] [PMID: 31082468]
[33]
Jain, A.; Prajapati, S.K.; Kumari, A.; Mody, N.; Bajpai, M. Engineered nanosponges as versatile biodegradable carriers: an insight. J. Drug Deliv. Sci. Technol., 2020, 57, 101643.
[http://dx.doi.org/10.1016/j.jddst.2020.101643]
[34]
Kumar, S.; Dalal, P.; Rao, R. Cyclodextrin nanosponges: a promising approach for modulating drug delivery; Colloid Science in Pharmaceutical Nanotechnology, Intech Open, 2019.
[35]
Rao, M.; Bajaj, A.; Khole, I.; Munjapara, G.; Trotta, F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem., 2013, 77(1–4), 135-145.
[http://dx.doi.org/10.1007/s10847-012-0224-7]
[36]
Shende, P.K.; Gaud, R.S.; Bakal, R.; Patil, D. Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf. B Biointerfaces, 2015, 136, 105-110.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.002] [PMID: 26364091]
[37]
Darandale, S.S.; Vavia, P.R. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J. Incl. Phenom. Macrocycl. Chem., 2013, 75(3-4), 315-322.
[http://dx.doi.org/10.1007/s10847-012-0186-9]
[38]
Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Cross-Linked, cyclodextrin-based nanosponges for curcumin delivery-physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol., 2018, 45, 45-53.
[http://dx.doi.org/10.1016/j.jddst.2018.03.004]
[39]
Gharakhloo, M.; Sadjadi, S.; Rezaeetabar, M.; Askari, F.; Rahimi, A. Cyclodextrin-based nanosponges for improving solubility and sustainable release of curcumin. ChemistrySelect, 2020, 5(5), 1734-1738.
[http://dx.doi.org/10.1002/slct.201904007]
[40]
Rao, M.R.P.; Shirsath, C. Enhancement of bioavailability of non-nucleoside reverse transciptase inhibitor using nanosponges. AAPS PharmSciTech, 2017, 18(5), 1728-1738.
[http://dx.doi.org/10.1208/s12249-016-0636-6] [PMID: 27757921]
[41]
Lembo, D.; Swaminathan, S.; Donalisio, M.; Civra, A.; Pastero, L.; Aquilano, D.; Vavia, P.; Trotta, F.; Cavalli, R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm., 2013, 443(1-2), 262-272.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[42]
Rao, M.R.P.; Chaudhari, J.; Trotta, F.; Caldera, F. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. AAPS PharmSciTech, 2018, 19(5), 2358-2369.
[http://dx.doi.org/10.1208/s12249-018-1064-6] [PMID: 29869305]
[43]
Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech, 2011, 12(1), 279-286.
[http://dx.doi.org/10.1208/s12249-011-9584-3] [PMID: 21240574]
[44]
Dhakar, N.K.; Matencio, A.; Caldera, F.; Argenziano, M.; Cavalli, R.; Dianzani, C.; Zanetti, M.; López-Nicolás, J.M.; Trotta, F. Comparative evaluation of solubility, cytotoxicity and photostability studies of resveratrol and oxyresveratrol loaded nanosponges. Pharmaceutics, 2019, 11(10), 545.
[http://dx.doi.org/10.3390/pharmaceutics11100545] [PMID: 31635183]
[45]
Kumar, S.; Trotta, F.; Rao, R. Encapsulation of Babchi Oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics, 2018, 10(4), 169.
[http://dx.doi.org/10.3390/pharmaceutics10040169] [PMID: 30261580]
[46]
Dhakar, N.K.; Caldera, F.; Bessone, F.; Cecone, C.; Pedrazzo, A.R.; Cavalli, R.; Dianzani, C.; Trotta, F. Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydr. Polym., 2019, 224, 115168.
[http://dx.doi.org/10.1016/j.carbpol.2019.115168] [PMID: 31472867]
[47]
Sherje, A.P.; Surve, A.; Shende, P. CDI cross-linked β-cyclodextrin nanosponges of paliperidone: synthesis and physicochemical characterization. J. Mater. Sci. Mater. Med., 2019, 30(6), 74.
[http://dx.doi.org/10.1007/s10856-019-6268-0] [PMID: 31197491]
[48]
Trotta, F.; Cavalli, R.; Tumiatti, W.; Zerbinati, O.; Roggero, C.; Vallero, R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. 2008. United States patent application US 11/630,403.
[49]
Kumar, S.; Singh, K.K.; Rao, R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J. Microencapsul., 2019, 36(2), 140-155.
[http://dx.doi.org/10.1080/02652048.2019.1612475] [PMID: 31030587]
[50]
Doppalapudi, S.; Jain, A.; Chopra, D.K.; Khan, W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. Sci., 2017, 96, 515-529.
[http://dx.doi.org/10.1016/j.ejps.2016.10.025] [PMID: 27777066]
[51]
Panonnummal, R.; Jayakumar, R.; Sabitha, M. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream. Eur. J. Pharm. Sci., 2017, 96, 193-206.
[http://dx.doi.org/10.1016/j.ejps.2016.09.007] [PMID: 27615594]
[52]
Panonnummal, R.; Sabitha, M. Anti-psoriatic and toxicity evaluation of methotrexate loaded chitin nanogel in imiquimod induced mice model. Int. J. Biol. Macromol., 2018, 110, 245-258.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.112] [PMID: 29054520]
[53]
Brand-Williams, W.; Cuvelier, M-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[54]
Aree, T.; Jongrungruangchok, S. Structure-antioxidant activity relationship of β-cyclodextrin inclusion complexes with olive tyrosol, hydroxytyrosol and oleuropein: Deep insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydr. Polym., 2018, 199, 661-669.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.019] [PMID: 30143174]
[55]
Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines, 2018, 6(4), 107.
[http://dx.doi.org/10.3390/biomedicines6040107] [PMID: 30463216]
[56]
Ullah, H.M.; Zaman, S.; Juhara, F.; Akter, L.; Tareq, S.M.; Masum, E.H.; Bhattacharjee, R. Evaluation of antinociceptive, in-vivo & in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complement. Altern. Med., 2014, 14(1), 346.
[http://dx.doi.org/10.1186/1472-6882-14-346] [PMID: 25242194]
[57]
Devi, N.; Kumar, S.; Prasad, M.; Rao, R. Eudragit RS100 based microsponges for dermal delivery of clobetasol propionate in psoriasis management. J. Drug Deliv. Sci. Technol., 2020, 55, 101347.
[58]
Shende, P.K.; Trotta, F.; Gaud, R.S.; Deshmukh, K.; Cavalli, R.; Biasizzo, M. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-Cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-Cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem., 2012, 74(1-4), 447-454.
[http://dx.doi.org/10.1007/s10847-012-0140-x]
[59]
Zidan, M.F.; Ibrahim, H.M.; Afouna, M.I.; Ibrahim, E.A. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium. Drug Dev. Ind. Pharm., 2018, 44(8), 1243-1253.
[http://dx.doi.org/10.1080/03639045.2018.1442844] [PMID: 29452493]
[60]
Omar, S.M.; Ibrahim, F.; Ismail, A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm. J., 2020, 28(3), 349-361.
[http://dx.doi.org/10.1016/j.jsps.2020.01.016] [PMID: 32194337]
[61]
Gambhire, M.S.; Bhalekar, M.R.; Shrivastava, B. Investigations in photostability of dithranol incorporated in solid lipid nanoparticles. Pharm. Chem. J., 2012, 46(4), 256-261.
[http://dx.doi.org/10.1007/s11094-012-0774-4]
[62]
Singh, V.; Xu, J.; Wu, L.; Liu, B.; Guo, T.; Guo, Z.; York, P.; Gref, R.; Zhang, J. Ordered and disordered cyclodextrin nanosponges with diverse physicochemical properties. RSC Advances, 2017, 7(38), 23759-23764.
[http://dx.doi.org/10.1039/C7RA00584A]
[63]
Rezaei, A.; Varshosaz, J.; Fesharaki, M.; Farhang, A.; Jafari, S.M. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. Int. J. Nanomedicine, 2019, 14, 4589-4599.
[http://dx.doi.org/10.2147/IJN.S206350] [PMID: 31296988]
[64]
Kapileshwari, G.R.; Barve, A.R.; Kumar, L.; Bhide, P.J.; Joshi, M.; Shirodkar, R.K. Novel drug delivery system of antifungal drug-formulation and characterisation. J. Drug Deliv. Sci. Technol., 2019, 101302.
[65]
Wassilkowska, A.; Czaplicka-Kotas, A.; Bielski, A.; Zielina, M. An analysis of the elemental composition of micro-samples using EDS Technique. Czas. Tech., 2015.
[66]
Torne, S.; Darandale, S.; Vavia, P.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm. Dev. Technol., 2013, 18(3), 619-625.
[http://dx.doi.org/10.3109/10837450.2011.649855] [PMID: 22235935]
[67]
Anandam, S.; Selvamuthukumar, S. Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci., 2014, 49(23), 8140-8153.
[http://dx.doi.org/10.1007/s10853-014-8523-6]
[68]
Zainuddin, R.; Zaheer, Z.; Sangshetti, J.N.; Momin, M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev. Ind. Pharm., 2017, 43(12), 2076-2084.
[http://dx.doi.org/10.1080/03639045.2017.1371732] [PMID: 28845699]
[69]
Fuchs, J.; Nitschmann, W.; Packer, L. Antioxidant and prooxidant effects of the antipsoriatic compound anthralin in skin and subcellular fractions. Antioxidants in Therapy and Preventive Medicine; Springer, 1990, pp. 537-541.
[http://dx.doi.org/10.1007/978-1-4684-5730-8_81]
[70]
Sapino, S.; Carlotti, M.E.; Cavalli, R.; Ugazio, E.; Berlier, G.; Gastaldi, L.; Morel, S. Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges. J. Incl. Phenom. Macrocycl. Chem., 2013, 75(1-2), 69-76.
[http://dx.doi.org/10.1007/s10847-012-0147-3]
[71]
Sundararajan, M.; Thomas, P.A.; Venkadeswaran, K.; Jeganathan, K.; Geraldine, P. Synthesis and characterization of chrysin-loaded-cyclodextrin-based nanosponges to enhance in-vitro solubility, photostability, drug release, antioxidant effects and antitumorous efficacy. Nanosci. Nanotechnol., 2017, 17, 1-10.
[http://dx.doi.org/10.1166/jnn.2017.13911]
[72]
Cavey, D.; Caron, J-C.; Shroot, B. Anthralin: chemical instability and glucose-6-phosphate dehydrogenase inhibition. J. Pharm. Sci., 1982, 71(9), 980-983.
[http://dx.doi.org/10.1002/jps.2600710906] [PMID: 7131282]
[73]
Tucker, W.F.; MacNeil, S.; Dawson, R.A.; Tomlinson, S.; Bleehen, S.S. An investigation of the ability of antipsoriatic drugs to inhibit calmodulin activity: a possible mode of action of dithranol (anthralin). J. Invest. Dermatol., 1986, 87(2), 232-235.
[http://dx.doi.org/10.1111/1523-1747.ep12696613] [PMID: 3016102]
[74]
Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: from bench to bedside. Mol. Aspects Med., 2012, 33(3), 209-290.
[http://dx.doi.org/10.1016/j.mam.2011.12.002] [PMID: 22230555]
[75]
Kemény, L.; Gross, E.; Arenberger, P.; Ruzicka, T. Dithranol-induced down-regulation of 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] receptors in a human epidermal cell line. Arch. Dermatol. Res., 1991, 283(5), 333-336.
[http://dx.doi.org/10.1007/BF00376623] [PMID: 1656897]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy