Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Ethanolamine: A Potential Promoiety with Additional Effects on the Brain

Author(s): Asfree Gwanyanya, Christie Nicole Godsmark and Roisin Kelly-Laubscher*

Volume 21, Issue 2, 2022

Published on: 11 December, 2020

Page: [108 - 117] Pages: 10

DOI: 10.2174/1871527319999201211204645

Price: $65

Abstract

Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process, ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological actions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer’s disease. This mini-review focuses on the effects of ethanolamine on the CNS and highlights the possible implications of these effects for drug design.

Keywords: Ethanolamine, brain, CNS, phospholipids, prodrug, synaptic, neuromodulator

Graphical Abstract
[1]
Patel MM, Patel BM. Crossing the blood–brain barrier: recent advances in drug delivery to the brain. CNS Drugs 2017; 31(2): 109-33.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[2]
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[3]
Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[4]
Li Y, Zhou Y, Jiang J, et al. Mechanism of brain targeting by dexibuprofen prodrugs modified with ethanolamine-related structures. J Cereb Blood Flow Metab 2015; 35(12): 1985-94.
[http://dx.doi.org/10.1038/jcbfm.2015.160] [PMID: 26154870]
[5]
Zhang X, Liu X, Gong T, Sun X, Zhang ZR. In vitro and in vivo investigation of dexibuprofen derivatives for CNS delivery. Acta Pharmacol Sin 2012; 33(2): 279-88.
[http://dx.doi.org/10.1038/aps.2011.144] [PMID: 22301864]
[6]
Zheng D, Shuai X, Li Y, et al. Novel flurbiprofen derivatives with improved brain delivery: synthesis, in vitro and in vivo evaluations. Drug Deliv 2016; 23(7): 2183-92.
[http://dx.doi.org/10.3109/10717544.2014.954165] [PMID: 25182481]
[7]
Ferrara SJ, Meinig JM, Placzek AT, et al. Ester-to-amide rearrangement of ethanolamine-derived prodrugs of sobetirome with increased blood-brain barrier penetration. Bioorg Med Chem 2017; 25(10): 2743-53.
[http://dx.doi.org/10.1016/j.bmc.2017.03.047] [PMID: 28385597]
[8]
Placzek AT, Ferrara SJ, Hartley MD, Sanford-Crane HS, Meinig JM, Scanlan TS. Sobetirome prodrug esters with enhanced blood-brain barrier permeability. Bioorg Med Chem 2016; 24(22): 5842-54.
[http://dx.doi.org/10.1016/j.bmc.2016.09.038] [PMID: 27707627]
[9]
Patel D, Witt SN. Ethanolamine and phosphatidylethanolamine: partners in health and disease. Oxidative medicine and cellular longevity 2017; 4829180.
[http://dx.doi.org/10.1155/2017/4829180]
[10]
Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochimica et Biophysica Acta (BBA). Mol Basis Dis 2012; 1822(9): 1442-52.
[http://dx.doi.org/10.1016/j.bbadis.2012.05.008]
[11]
Hansch C, Leo A, Hoekman D. Exploring QSAR. American Chemical Society 1995.
[12]
Massarelli AC, Dainous F, Hoffmann D, et al. Uptake of ethanolamine in neuronal and glial cell cultures. Neurochem Res 1986; 11(1): 29-36.
[http://dx.doi.org/10.1007/BF00965162] [PMID: 3960270]
[13]
Taylor A. SLC44A1 transport of choline and ethanolamine in disease. 2019.
[14]
Inazu M. Functional expression of choline transporters in the blood-brain barrier. Nutrients 2019; 11(10): 2265.
[http://dx.doi.org/10.3390/nu11102265] [PMID: 31547050]
[15]
Rhodes C, Case D, Eds. Non-metabolite residues of ici 58,834 (viloxazine)-studies with [morpholine-c-14],[ethanolamine-c-14] and [glyoxylate-c-14]xenobiotica. One gunpowder square, london, england ec4a 3de: taylor francis ltd 1977.
[16]
Marshall DL, De Micheli E, Bogdanov MB, Wurtman RJ. Effects of ethanolamine (Etn) administration on Etn and choline (Ch) levels in plasma, brain extracellular fluid (ECF) and brain tissue, and on brain phospholipid levels in rats: an in vivo study. Neurosci Res Commun 1996; 18(2): 87-96.
[http://dx.doi.org/10.1002/(SICI)1520-6769(199603)18:2<87::AID-NRC144>3.0.CO;2-C] [PMID: 11540106]
[17]
Wishart DS, Tzur D, Knox C, et al. HMDB: the human metabolome database Nucleic Acids Research 2007; 35(suppl_1 ): D521-6.
[http://dx.doi.org/10.1093/nar/gkl923]
[18]
Smilowitz JT, O’Sullivan A, Barile D, German JB, Lönnerdal B, Slupsky CM. The human milk metabolome reveals diverse oligosaccharide profiles. J Nutr 2013; 143(11): 1709-18.
[http://dx.doi.org/10.3945/jn.113.178772] [PMID: 24027187]
[19]
Kiss Z, Crilly KS, Anderson WH. Extracellular sphingosine 1-phosphate stimulates formation of ethanolamine from phosphatidylethanolamine: modulation of sphingosine 1-phosphate-induced mitogenesis by ethanolamine. Biochem J 1997; 328(Pt 2): 383-91.
[http://dx.doi.org/10.1042/bj3280383] [PMID: 9371692]
[20]
Butler M, Morell P. The role of phosphatidylserine decarboxylase in brain phospholipid metabolism. J Neurochem 1983; 41(5): 1445-54.
[http://dx.doi.org/10.1111/j.1471-4159.1983.tb00844.x] [PMID: 6413658]
[21]
Vance JE. Phospholipid synthesis and transport in mammalian cells. Traffic 2015; 16(1): 1-18.
[http://dx.doi.org/10.1111/tra.12230] [PMID: 25243850]
[22]
Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019; 74: 186-95.
[http://dx.doi.org/10.1016/j.plipres.2019.04.003]
[23]
Clarke RJ, Hossain KR, Cao K. Physiological roles of transverse lipid asymmetry of animal membranes. Biochim Biophys Acta Biomembr 2020; 1862(10): 183382.
[http://dx.doi.org/10.1016/j.bbamem.2020.183382] [PMID: 32511979]
[24]
Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochimica et Biophysica Acta (BBA). Biomembranes 2004; 1666(1-2): 275-88.
[http://dx.doi.org/10.1016/j.bbamem.2004.06.010]
[25]
Cullis PR, De Kruijff B. Polymorphic phase behaviour of lipid mixtures as detected by 31P NMR. Evidence that cholesterol may destabilize bilayer structure in membrane systems containing phosphatidylethanolamine. Biochim Biophys Acta 1978; 507(2): 207-18.
[http://dx.doi.org/10.1016/0005-2736(78)90417-0] [PMID: 626732]
[26]
Cullis P, De Kruijff B, Hope M, et al. Structural properties of lipids and their functional roles in biological membranes. Concepts of membrane structure. Elsevier 1983; pp. 39-81.
[27]
Verkleij A, Leunissen-Bijvelt J, Hope M, Cullis P, Eds. Non-bilayer structures in membrane fusion. Ciba Foundation Symposium.
[28]
Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 2008; 9(7): 543-56.
[http://dx.doi.org/10.1038/nrm2417] [PMID: 18496517]
[29]
Maeba R, Maeda T, Kinoshita M, et al. Plasmalogens in human serum positively correlate with high- density lipoprotein and decrease with aging. J Atheroscler Thromb 2007; 14(1): 12-8.
[http://dx.doi.org/10.5551/jat.14.12] [PMID: 17332687]
[30]
Broniec A, Klosinski R, Pawlak A, Wrona-Krol M, Thompson D, Sarna T. Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems. Free Radic Biol Med 2011; 50(7): 892-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.002] [PMID: 21236336]
[31]
Zoeller RA, Lake AC, Nagan N, Gaposchkin DP, Legner MA, Lieberthal W. Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem J 1999; 338(Pt 3): 769-76.
[http://dx.doi.org/10.1042/bj3380769] [PMID: 10051451]
[32]
Rockenfeller P, Carmona-Gutierrez D, Pietrocola F, Kroemer G, Madeo F. Ethanolamine: A novel anti-aging agent. Mol Cell Oncol 2015; 3(1)
[http://dx.doi.org/10.1080/23723556.2015.1019023] [PMID: 27308532]
[33]
Rockenfeller P, Koska M, Pietrocola F, et al. Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ 2015; 22(3): 499-508.
[http://dx.doi.org/10.1038/cdd.2014.219] [PMID: 25571976]
[34]
Hong Y, Maeda Y, Watanabe R, et al. Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol. J Biol Chem 1999; 274(49): 35099-106.
[http://dx.doi.org/10.1074/jbc.274.49.35099] [PMID: 10574991]
[35]
Jesse RL, Cohen P. Arachidonic acid release from diacyl phosphatidylethanolamine by human platelet membranes. Biochem J 1976; 158(2): 283-7.
[http://dx.doi.org/10.1042/bj1580283] [PMID: 985428]
[36]
Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 2004; 279(7): 5298-305.
[http://dx.doi.org/10.1074/jbc.M306642200] [PMID: 14634025]
[37]
Ellison DW, Beal MF, Martin JB. Phosphoethanolamine and ethanolamine are decreased in Alzheimer’s disease and Huntington’s disease. Brain Res 1987; 417(2): 389-92.
[http://dx.doi.org/10.1016/0006-8993(87)90471-9] [PMID: 2958109]
[38]
Engelborghs S, Marescau B, De Deyn PP. Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson’s disease. Neurochem Res 2003; 28(8): 1145-50.
[http://dx.doi.org/10.1023/A:1024255208563] [PMID: 12834252]
[39]
Choi J, Yin T, Shinozaki K, et al. Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids. Mol Cell Biochem 2018; 442(1-2): 187-201.
[http://dx.doi.org/10.1007/s11010-017-3203-x] [PMID: 28993959]
[40]
Kuschner CE, Choi J, Yin T, et al. Comparing phospholipid profiles of mitochondria and whole tissue: Higher PUFA content in mitochondria is driven by increased phosphatidylcholine unsaturation. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094: 147-57.
[http://dx.doi.org/10.1016/j.jchromb.2018.07.006] [PMID: 30029201]
[41]
Neumann EK, Comi TJ, Rubakhin SS, Sweedler JV. Lipid Heterogeneity between astrocytes and neurons revealed by single-cell MALDI-MS combined with immunocytochemical classification. Angew Chem Int Ed Engl 2019; 58(18): 5910-4.
[http://dx.doi.org/10.1002/anie.201812892] [PMID: 30811763]
[42]
Han X, Holtzman DM, McKeel DW Jr. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 2001; 77(4): 1168-80.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00332.x] [PMID: 11359882]
[43]
Liao C, Nicholson RA. Depolarization-induced release of ethanolamine from brain synaptic preparations in vitro. Brain Res 2005; 1060(1-2): 170-8.
[http://dx.doi.org/10.1016/j.brainres.2005.08.043] [PMID: 16198321]
[44]
Holbrook PG, Wurtman RJ. Presence of base-exchange activity in rat brain nerve endings: dependence on soluble substrate concentrations and effect of cations. J Neurochem 1988; 50(1): 156-62.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb13243.x] [PMID: 3121785]
[45]
Perschak H, Wolfensberger M, Do KQ, Dunant Y, Cuénod M. Release of ethanolamine, but not of serine or choline, in rat pontine nuclei on stimulation of afferents from the cortex, in vivo. J Neurochem 1986; 46(5): 1338-43.
[http://dx.doi.org/10.1111/j.1471-4159.1986.tb01744.x] [PMID: 3083042]
[46]
Liao C, Nicholson RA. Ethanolamine and related amino alcohols increase basal and evoked release of [3H]-D-aspartic acid from synaptosomes by enhancing the filling of synaptic vesicles. Eur J Pharmacol 2007; 566(1-3): 103-12.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.020] [PMID: 17448462]
[47]
Buratta S, Hamberger A, Ryberg H, Nyström B, Sandberg M, Mozzi R. Effect of serine and ethanolamine administration on phospholipid-related compounds and neurotransmitter amino acids in the rabbit hippocampus. J Neurochem 1998; 71(5): 2145-50.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71052145.x] [PMID: 9798941]
[48]
Hagberg H, Lehmann A, Sandberg M, Nyström B, Jacobson I, Hamberger A. Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab 1985; 5(3): 413-9.
[http://dx.doi.org/10.1038/jcbfm.1985.56] [PMID: 4030918]
[49]
Wolfensberger M, Felix D, Cuénod M. 2-Aminoethanol as a possible neuromodulator in the pigeon optic tectum. Neurosci Lett 1982; 32(1): 53-8.
[http://dx.doi.org/10.1016/0304-3940(82)90228-2] [PMID: 7145226]
[50]
Spanner S, Ansell GB. The release of free ethanolamine in rat brain homogenates incubated in Krebs ringer. Enzymes of Lipid Metabolism. Springer 1978; pp. 247-51.
[51]
Spanner S. The determination of free ethanolamine in brain tissue and its release on incubation 1978.
[52]
Löscher W. Effect of 2-aminoethanol on the synthesis, binding, uptake and metabolism of GABA. Neurosci Lett 1983; 42(3): 293-7.
[http://dx.doi.org/10.1016/0304-3940(83)90277-X] [PMID: 6320073]
[53]
Drescher MJ, Drescher DG, Hatfield JS. Potassium-evoked release of endogenous primary amine-containing compounds from the trout saccular macula and saccular nerve in vitro. Brain Res 1987; 417(1): 39-50.
[http://dx.doi.org/10.1016/0006-8993(87)90177-6] [PMID: 2887257]
[54]
Van der Heyden JA, Venema K, Korf J. In vivo release of endogenous GABA from rat substantia nigra measured by a novel method. J Neurochem 1979; 32(2): 469-76.
[http://dx.doi.org/10.1111/j.1471-4159.1979.tb00373.x] [PMID: 762559]
[55]
Bostwick JR, Abbe R, Sun J, Appel SH. Amino alcohol modulation of hippocampal acetylcholine release. Neuroreport 1992; 3(5): 425-8.
[http://dx.doi.org/10.1097/00001756-199205000-00012] [PMID: 1633280]
[56]
Haidar NE, Carrara M, Andriamampandry C, et al. Incorporation of [3H]ethanolamine into acetylcholine by a human cholinergic neuroblastoma clone. Neurochem Res 1994; 19(1): 9-13.
[http://dx.doi.org/10.1007/BF00966721] [PMID: 8139770]
[57]
Khairy H, Adjei G, Allen-Redpath K, Scott RH. Actions of ethanolamine on cultured sensory neurones from neonatal rats. Neurosci Lett 2010; 468(3): 326-9.
[http://dx.doi.org/10.1016/j.neulet.2009.11.025] [PMID: 19914344]
[58]
Kewitz H, Pleul O. Synthesis of choline from ethanolamine in rat brain. Proc Natl Acad Sci USA 1976; 73(7): 2181-5.
[http://dx.doi.org/10.1073/pnas.73.7.2181] [PMID: 1065868]
[59]
Ansell GB, Spanner S. Studies on the origin of choline in the brain of the rat. Biochem J 1971; 122(5): 741-50.
[http://dx.doi.org/10.1042/bj1220741] [PMID: 5129269]
[60]
Morganstern RD, Abdel-Latif AA. Incorporation of (14-C) ethanolamine and (3-H) methionine into phospholipids of rat brain and liver in vivo and in vitro. J Neurobiol 1974; 5(5): 393-410.
[http://dx.doi.org/10.1002/neu.480050503] [PMID: 4452892]
[61]
Sysoev YI, Uzuegbunam BC, Okovityi SV. Attenuation of neurological deficit by a novel ethanolamine derivative in rats after brain trauma. J Exp Pharmacol 2019; 11: 53-63.
[http://dx.doi.org/10.2147/JEP.S199464] [PMID: 31354367]
[62]
Arreaza G, Devane WA, Omeir RL, et al. The cloned rat hydrolytic enzyme responsible for the breakdown of anandamide also catalyzes its formation via the condensation of arachidonic acid and ethanolamine. Neurosci Lett 1997; 234(1): 59-62.
[http://dx.doi.org/10.1016/S0304-3940(97)00673-3] [PMID: 9347946]
[63]
Ohga T, Ohashi Y. Method for measuring ethanolamine phosphate. Google Patents 2019.
[64]
Ogawa S, Hattori K, Sasayama D, et al. Reduced cerebrospinal fluid ethanolamine concentration in major depressive disorder. Sci Rep 2015; 5: 7796.
[http://dx.doi.org/10.1038/srep07796] [PMID: 25589364]
[65]
Ogawa S, Hattori K, Ota M, et al. Altered ethanolamine plasmalogen and phosphatidylethanolamine levels in blood plasma of patients with bipolar disorder. Psychiatry Clin Neurosci 2020; 74(3): 204-10.
[http://dx.doi.org/10.1111/pcn.12967] [PMID: 31841251]
[66]
Farooqui AA, Rapoport SI, Horrocks LA. Membrane phospholipid alterations in Alzheimer’s disease: deficiency of ethanolamine plasmalogens. Neurochem Res 1997; 22(4): 523-7.
[http://dx.doi.org/10.1023/A:1027380331807] [PMID: 9130265]
[67]
Ginsberg L, Rafique S, Xuereb JH, Rapoport SI, Gershfeld NL. Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res 1995; 698(1-2): 223-6.
[http://dx.doi.org/10.1016/0006-8993(95)00931-F] [PMID: 8581486]
[68]
Grimm MO, Kuchenbecker J, Rothhaar TL, et al. Plasmalogen synthesis is regulated via alkyl-dihydroxyacetonephosphate-synthase by amyloid precursor protein processing and is affected in Alzheimer’s disease. J Neurochem 2011; 116(5): 916-25.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07070.x] [PMID: 21214572]
[69]
Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ. Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci USA 1992; 89(5): 1671-5.
[http://dx.doi.org/10.1073/pnas.89.5.1671] [PMID: 1311847]
[70]
Smart SC, Fox GB, Allen KL, et al. Identification of ethanolamine in rat and gerbil brain tissue extracts by NMR spectroscopy. NMR Biomed 1994; 7(8): 356-65.
[http://dx.doi.org/10.1002/nbm.1940070806] [PMID: 7742203]
[71]
Ben-Menachem E, Hamberger A, Hedner T, et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res 1995; 20(3): 221-7.
[http://dx.doi.org/10.1016/0920-1211(94)00083-9] [PMID: 7796794]
[72]
von Essen C, Rydenhag B, Nyström B, Mozzi R, van Gelder N, Hamberger A. High levels of glycine and serine as a cause of the seizure symptoms of cavernous angiomas? J Neurochem 1996; 67(1): 260-4.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67010260.x] [PMID: 8667000]
[73]
Lehmann A, Hagberg H, Jacobson I, Hamberger A. Effects of status epilepticus on extracellular amino acids in the hippocampus. Brain Res 1985; 359(1-2): 147-51.
[http://dx.doi.org/10.1016/0006-8993(85)91422-2] [PMID: 3000520]
[74]
Su XQ, Wang J, Sinclair AJ. Plasmalogens and Alzheimer’s disease: a review. Lipids Health Dis 2019; 18(1): 100.
[http://dx.doi.org/10.1186/s12944-019-1044-1] [PMID: 30992016]
[75]
Lehmann A. Alterations in hippocampal extracellular amino acids and purine catabolites during limbic seizures induced by folate injections into the rabbit amygdala. Neuroscience 1987; 22(2): 573-8.
[http://dx.doi.org/10.1016/0306-4522(87)90354-X] [PMID: 3670597]
[76]
Hamberger A, Haglid K, Nyström B, Silfvenius H. Co-variation of free amino acids in human epileptogenic cortex. Neurochem Res 1993; 18(4): 519-25.
[http://dx.doi.org/10.1007/BF00967256] [PMID: 8097297]
[77]
Otoki Y, Hennebelle M, Levitt AJ, Nakagawa K, Swardfager W, Taha AY. Plasma phosphatidylethanolamine and triacylglycerol fatty acid concentrations are altered in major depressive disorder patients with seasonal pattern. Lipids 2017; 52(6): 559-71.
[http://dx.doi.org/10.1007/s11745-017-4254-1] [PMID: 28439746]
[78]
Riekkinen P, Rinne UK, Pelliniemi T-T, Sonninen V. Interaction between dopamine and phospholipids. Studies of the substantia nigra in Parkinson disease patients. Arch Neurol 1975; 32(1): 25-7.
[http://dx.doi.org/10.1001/archneur.1975.00490430047006] [PMID: 1115656]
[79]
Manyam BV, Ferraro TN, Hare TA. Cerebrospinal fluid amino compounds in Parkinson’s disease. Alterations due to carbidopa/levodopa. Arch Neurol 1988; 45(1): 48-50.
[http://dx.doi.org/10.1001/archneur.1988.00520250054021] [PMID: 3337677]
[80]
Marangell LB, Rush AJ, George MS, et al. Vagus nerve stimulation (VNS) for major depressive episodes: one year outcomes. Biol Psychiatry 2002; 51(4): 280-7.
[http://dx.doi.org/10.1016/S0006-3223(01)01343-9] [PMID: 11958778]
[81]
Nahas Z, Marangell LB, Husain MM, et al. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry 2005; 66(9): 1097-104.
[http://dx.doi.org/10.4088/JCP.v66n0902] [PMID: 16187765]
[82]
Kraus L, Hetsch F, Schneider UC, et al. Dimethylethanolamine decreases epileptiform activity in acute human hippocampal slices in vitro. Front Mol Neurosci 2019; 12: 209.
[http://dx.doi.org/10.3389/fnmol.2019.00209] [PMID: 31551707]
[83]
Matas D, Juknat A, Pietr M, Klin Y, Vogel Z. Anandamide protects from low serum-induced apoptosis via its degradation to ethanolamine. J Biol Chem 2007; 282(11): 7885-92.
[http://dx.doi.org/10.1074/jbc.M608646200] [PMID: 17227767]
[84]
Kelly R, Opie L, Lecour S. Ethanolamine is a downstream metabolic product of sphingosine-1-phosphate that can confer cytoprotection Cardiovas Africa 2008; 11 (Congress 1).
[85]
Kelly RF, Lamont KT, et al. Ethanolamine is a novel STAT-3 dependent cardioprotective agent. Basic research in cardiology 2010; 105(6): 763-70.
[http://dx.doi.org/10.5830/CVJA-2014-016] [PMID: 25000441]
[86]
Maccarrone M, Di Rienzo M, Finazzi-Agrò A, Rossi A. Leptin activates the anandamide hydrolase promoter in human T lymphocytes through STAT3. J Biol Chem 2003; 278(15): 13318-24.
[http://dx.doi.org/10.1074/jbc.M211248200] [PMID: 12556536]
[87]
Martins IJ. Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. 2016.
[http://dx.doi.org/10.4236/aar.2016.51002]
[88]
Martins IJ. Increased risk for obesity and diabetes with neurodegeneration in developing countries. 2013.
[89]
Mattos G. Phosphoethanolamine improves non-alcoholic steatohepatitis, and enhances muscle insulin signaling Pcyt2 heterozygous mice 2018.
[90]
He Q, Li Z, Wang Y, Hou Y, Li L, Zhao J. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 2017; 50: 208-15.
[http://dx.doi.org/10.1016/j.intimp.2017.06.029] [PMID: 28683365]
[91]
Holper L, Ben-Shachar D, Mann JJ. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology 2019; 44(5): 837-49.
[http://dx.doi.org/10.1038/s41386-018-0090-0] [PMID: 29855563]
[92]
Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr Res 2017; 187: 62-6.
[http://dx.doi.org/10.1016/j.schres.2016.10.037] [PMID: 27839913]
[93]
Modica-Napolitano JS, Renshaw PF. Ethanolamine and phosphoethanolamine inhibit mitochondrial function in vitro: implications for mitochondrial dysfunction hypothesis in depression and bipolar disorder. Biol Psychiatry 2004; 55(3): 273-7.
[http://dx.doi.org/10.1016/S0006-3223(03)00784-4] [PMID: 14744468]
[94]
Che H, Li Q, Zhang T, et al. A comparative study of EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine on Aβ42 induced cognitive deficiency in a rat model of Alzheimer’s disease. Food Funct 2018; 9(5): 3008-17.
[http://dx.doi.org/10.1039/C8FO00643A] [PMID: 29774334]
[95]
Yamashita S, Hashimoto M, Haque AM, et al. Oral administration of ethanolamine glycerophospholipid containing a high level of plasmalogen improves memory impairment in amyloid β-infused rats. Lipids 2017; 52(7): 575-85.
[http://dx.doi.org/10.1007/s11745-017-4260-3] [PMID: 28551706]
[96]
Fujino T, Yamada T, Asada T, et al. Efficacy and blood Plasmalogen changes by Oral Administration of Plasmalogen in patients with mild Alzheimer’s disease and mild cognitive impairment: a multicenter, randomized, double-blind, placebo-controlled trial. EBioMedicine 2017; 17: 199-205.
[http://dx.doi.org/10.1016/j.ebiom.2017.02.012] [PMID: 28259590]
[97]
Beyer C, Bergfeld W, Berndt W, et al. Final report on the safety assessment of triethanolamine, diethanolamine, and monoethanolamine. J Am Coll Toxicol 1983; 2: 183-235.
[http://dx.doi.org/10.3109/10915818309142006]
[98]
Weeks MH, Downing TO, Musselman NP, Carson TR, Groff WA. The effects of continuous exposure of animals to ethanolamine vapor. Am Ind Hyg Assoc J 1960; 21(5): 374-81.
[http://dx.doi.org/10.1080/00028896009344089] [PMID: 13783714]
[99]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy