Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

The Role of Nanoparticles as Nanocarriers for the Controlled Release of some Potential Existing Antiviral Drugs for SARS-CoV-2 Management: A Review

Author(s): Onome Ejeromedoghene*, Joshua I. Orege, Justina U. Onwuka, Philip A. Adebule, Teddy Ehianeta, Bright O. Okonkwo and Richard O. Akinyeye*

Volume 2, Issue 6, 2021

Published on: 09 December, 2020

Article ID: e130621188923 Pages: 12

DOI: 10.2174/2666796701999201209142419

Abstract

Introduction: The World Health Organization (WHO) has recently declared the outbreak and spread of the new strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-- CoV-2) a global pandemic. In this regard, a lot of scientific investigations and clinical trials on some existing antiviral and antibiotic drugs have been ongoing to combat this menace.

Methods: In the past, conventional drug therapy has shown irregular drug distribution, poor solubility, and low permeability to target cells, organs, and tissues. However, Chloroquine, Hydroxychloroquine Remdesivir, Lopinavir/Ritonavir, etc. have attracted several investigations in monotherapeutic approaches and a combination of therapy have shown promising effects in reducing viral loading in some SARS-CoV-2 infected patients. Nevertheless, the advent of nanomedicine has triggered serious attention on drug-loaded nanoparticle as nanocarriers to deliver bioactive drug molecules to target organs with increased circulation and controlled release. Therefore, the application of nanoparticles as nanocarriers for the controlled release of antiviral drugs would improve the ease of drug administration and care of patients admitted at various health care facilities worldwide.

Conclusion: Owing to their small sizes, biocompatibility, and high encapsulation properties, nanoparticles can be utilized as potential nanocarrier of antiviral drugs for the SARS-CoV-2 management at a reduced cost with minimal side effect in the body system. In addition, some noticeable concerns on the ongoing management of SARS-CoV-2 pandemic in developing nations have been presented for concerted attention.

Keywords: Nanoparticles, nanocarriers, antiviral drugs, drug delivery, SARS-CoV-2 management, global pandemic.

[1]
Gerba CP, Betancourt WQ. Viral aggregation: impact on virus behavior in the environment. Environ Sci Technol 2017; 51(13): 7318-25.
[http://dx.doi.org/10.1021/acs.est.6b05835] [PMID: 28599109]
[2]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): 1-11.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[3]
Cojocaru FD, Botezat D, Gardikiotis I, et al. Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics 2020; 12(2): 1-34.
[http://dx.doi.org/10.3390/pharmaceutics12020171] [PMID: 32085535]
[4]
Akbarzadeh A, Kafshdooz L, Razban Z, et al. An overview application of silver nanoparticles in inhibition of herpes simplex virus. Artif Cells Nanomed Biotechnol 2018; 46(2): 263-7.
[http://dx.doi.org/10.1080/21691401.2017.1307208] [PMID: 28403676]
[5]
Xiang DX, Chen Q, Pang L, Zheng CL. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods 2011; 178(1-2): 137-42.
[http://dx.doi.org/10.1016/j.jviromet.2011.09.003] [PMID: 21945220]
[6]
Tu H, Tu S, Gao S, Shao A, Sheng J. The epidemiological and clinical features of COVID-19 and lessons from this global infectious public health event. J Infect 2020; 81(1): 1-9.
[http://dx.doi.org/10.1016/j.jinf.2020.04.011] [PMID: 32315723]
[7]
Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[8]
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C 2020; 112: 110924.
[http://dx.doi.org/10.1016/j.msec.2020.110924] [PMID: 32409074]
[9]
Yousefi B, Valizadeh S, Ghaffari H, Vahedi A, Karbalaei M, Eslami M. A global treatments for coronaviruses including COVID-19. J Cell Physiol 2020; 235(12): 9133-42.
[http://dx.doi.org/10.1002/jcp.29785] [PMID: 32394467]
[10]
Júlio A, Costa Lima SA, Reis S, Santos de Almeida T, Fonte P. Development of ionic liquid-polymer nanoparticle hybrid systems for delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2019; 56: 100915.
[http://dx.doi.org/10.1016/j.jddst.2019.01.030]
[11]
Xin Y, Huang Q, Tang JQ, et al. Nanoscale drug delivery for targeted chemotherapy. Cancer Lett 2016; 379(1): 24-31.
[http://dx.doi.org/10.1016/j.canlet.2016.05.023] [PMID: 27235607]
[12]
Dong X, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond) 2010; 5(4): 597-615.
[http://dx.doi.org/10.2217/nnm.10.35] [PMID: 20528455]
[13]
Bharti S, Kaur G, Gupta S, Tripathi SK. Conjugation of antioxidant molecule to PEGylated NPs for pH dependent drug release. Mater Res Bull 2018; 105: 1-12.
[http://dx.doi.org/10.1016/j.materresbull.2018.04.020]
[14]
Abu-Thabit NY, Makhlouf ASH. Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications 2018.
[15]
Fonte P, Soares S, Sousa F, et al. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules 2014; 15(10): 3753-65.
[http://dx.doi.org/10.1021/bm5010383] [PMID: 25180545]
[16]
Choudhary S, Kumar R, Dalal U, Tomar S, Reddy SN. Green synthesis of nanometal impregnated biomass - antiviral potential. Mater Sci Eng C 2020; 112: 110934.
[http://dx.doi.org/10.1016/j.msec.2020.110934] [PMID: 32409081]
[17]
Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv 2018; 15(8): 821-34.
[http://dx.doi.org/10.1080/17425247.2018.1502267] [PMID: 30021074]
[18]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[19]
Kaur G, Narang RK, Rath G, Goyal AK. Advances in pulmonary delivery of nanoparticles. Artif Cells Blood Substit Immobil Biotechnol 2012; 40(1-2): 75-96.
[http://dx.doi.org/10.3109/10731199.2011.592494] [PMID: 21806501]
[20]
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010; 1: 149-73.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[21]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[22]
Vedantam P, Huang G, Tzeng TRJ. Size-dependent cellular toxicity and uptake of commercial colloidal gold nanoparticles in DU-145 cells. Cancer Nanotechnol 2013; 4(1-3): 13-20.
[http://dx.doi.org/10.1007/s12645-013-0033-8] [PMID: 26316898]
[23]
World Health Organization (WHO). Novel coronavirus (‎2019-nCoV)‎: situation report. 2019. Available from: www.who.int
[24]
Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 2020; 6(3): 315-31.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[25]
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92(4): 401-2.
[http://dx.doi.org/10.1002/jmv.25678] [PMID: 31950516]
[26]
Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020; 76: 71-6.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[27]
Liu P, Chen W, Chen JP. Viral metagenomics revealed sendai virus and coronavirus infection of malayan pangolins (manis javanica). Viruses 2019; 11(11): E979.
[http://dx.doi.org/10.3390/v11110979] [PMID: 31652964]
[28]
Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020; 109: 102434.
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[29]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[30]
WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-2019). 2019. Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
[31]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[32]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[33]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[34]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[35]
Cao Q, Chen YC, Chen CL, Chiu CH. SARS-CoV-2 infection in children: Transmission dynamics and clinical characteristics. J Formos Med Assoc 2020; 119(3): 670-3.
[http://dx.doi.org/10.1016/j.jfma.2020.02.009] [PMID: 32139299]
[36]
Liu J, Liu Y, Xiang P, et al. Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. MedRxiv 2020021020021584 2020.
[http://dx.doi.org/10.1101/2020.02.10.20021584]
[37]
Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl) 2020; 133(9): 1015-24.
[http://dx.doi.org/10.1097/CM9.0000000000000722] [PMID: 32004165]
[38]
Zhu N, Zhang D, Wang W, et al. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[39]
Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 2020; 92(4): 441-7.
[http://dx.doi.org/10.1002/jmv.25689] [PMID: 31994742]
[40]
Otter J. Considering the role of environmental contamination in the spread of COVID-19. Available from: https://reflectionsipc.com/2020/03/12/considering-the-role-of-environmental-contamination-in-the-spread-of-covid-19/
[41]
Li J, Fan J-G. Characteristics and mechanism of liver injury in 2019 coronavirus disease. J Clin Transl Hepatol 2020; 8(1): 13-7.
[http://dx.doi.org/10.14218/JCTH.2020.00019] [PMID: 32274341]
[42]
Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 2016; 299: 78-89.
[http://dx.doi.org/10.1016/j.taap.2015.12.022] [PMID: 26739622]
[43]
Baron SA, Devaux C, Colson P, Raoult D, Rolain JM. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents 2020; 55(4): 105944.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[44]
Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J 2020; 18: 784-90.
[http://dx.doi.org/10.1016/j.csbj.2020.03.025] [PMID: 32280433]
[45]
Perricone C, Triggianese P, Bartoloni E, et al. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun 2020; 111: 102468.
[http://dx.doi.org/10.1016/j.jaut.2020.102468] [PMID: 32317220]
[46]
Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci 2020; 253: 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[47]
Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci 2020; 41(6): 363-82.
[http://dx.doi.org/10.1016/j.tips.2020.03.006] [PMID: 32291112]
[48]
Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res 2020; 178: 104791.
[http://dx.doi.org/10.1016/j.antiviral.2020.104791] [PMID: 32275914]
[49]
Smith T, Bushek J, LeClaire A, Prosser T. COVID-19 drug therapy. Available from: https://www.elsevier.com/__data/assets/pdf_file/0007/988648/COVID-19-Drug-Therapy_2020-8-28.pdf
[50]
Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents 2020; 55(3): 105923.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923] [PMID: 32070753]
[51]
Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 55(4): 105932.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[52]
Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct 2016; 34(4): 191-6.
[http://dx.doi.org/10.1002/cbf.3182] [PMID: 27001679]
[53]
Li C, Zhu X, Ji X, et al. Chloroquine, a FDA-approved drug, prevents zika virus infection and its associated congenital microcephaly in mice. EBioMedicine 2017; 24: 189-94.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.034] [PMID: 29033372]
[54]
Yan Y, Zou Z, Sun Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 2013; 23(2): 300-2.
[http://dx.doi.org/10.1038/cr.2012.165] [PMID: 23208422]
[55]
Tripathy S, Roy S. A review of age-old antimalarial drug to combat malaria: Efficacy upgradation by nanotechnology based drug delivery. Asian Pac J Trop Med 2014; 7: 673-9.
[http://dx.doi.org/10.1016/S1995-7645(14)60115-2]
[56]
Tan YW, Yam WK, Sun J, Chu JJH. An evaluation of Chloroquine as a broad-acting antiviral against Hand, Foot and Mouth Disease. Antiviral Res 2018; 149: 143-9.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.017] [PMID: 29175128]
[57]
Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res 2020; 177: 104762.
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[58]
Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr 2020; 14(3): 241-6.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[59]
Lehane AM, Kirk K. Efflux of a range of antimalarial drugs and ‘chloroquine resistance reversers’ from the digestive vacuole in malaria parasites with mutant PfCRT. Mol Microbiol 2010; 77(4): 1039-51.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07272.x] [PMID: 20598081]
[60]
Tripathy S, Mahapatra SK, Chattopadhyay S, et al. A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop 2013; 128(3): 494-503.
[http://dx.doi.org/10.1016/j.actatropica.2013.07.011] [PMID: 23906613]
[61]
Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine. Int J Antimicrob Agents 2020; 55(4): 105945.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105945] [PMID: 32194152]
[62]
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6: 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0]
[63]
Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome main point : hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vit. Clin Infect Dis 2020; 2: 1-25.
[64]
Gabriels J, Saleh M, Chang D, Epstein LM. Inpatient use of mobile continuous telemetry for COVID-19 patients treated with hydroxychloroquine and azithromycin. HeartRhythm Case Rep 2020; 6(5): 241-3. Available from: https://doi.org/https://doi.org/10.1016/j.hrcr.2020.03.017
[http://dx.doi.org/10.1016/j.hrcr.2020.03.017] [PMID: 32363144]
[65]
Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[66]
Juurlink DN. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ 2020; 192(17): E450-3.
[http://dx.doi.org/10.1503/cmaj.200528] [PMID: 32269021]
[67]
van den Broek MPH, Möhlmann JE, Abeln BGS, Liebregts M, van Dijk VF, van de Garde EMW. Chloroquine-induced QTc prolongation in COVID-19 patients. Neth Heart J 2020; 28(7-8): 406-9.
[http://dx.doi.org/10.1007/s12471-020-01429-7] [PMID: 32350818]
[68]
Klimke A, Hefner G, Will B, Voss U. Hydroxychloroquine as an aerosol might markedly reduce and even prevent severe clinical symptoms after SARS-CoV-2 infection. Med Hypotheses 2020; 142: 109783.
[http://dx.doi.org/10.1016/j.mehy.2020.109783] [PMID: 32402766]
[69]
Kashyap A, Kaur R, Baldi A, Jain UK, Chandra R, Madan J. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites. Int J Biol Macromol 2018; 114: 161-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.102] [PMID: 29572147]
[70]
Usmana M, Farrukh MA. Formulation of polymeric iron nano-chloroquine phosphate antimalarial drug via polyol method. Mater Today Proc 2018; 5: 15595-602.
[http://dx.doi.org/10.1016/j.matpr.2018.04.168]
[71]
Usmana M, Farrukh MA. Delayed release profile of iron nano-chloroquine phosphate and evaluation of its toxicity. Mater Today Proc 2018; 5: 15645-52.
[http://dx.doi.org/10.1016/j.matpr.2018.04.174]
[72]
Lima TLC, Feitosa RC, Dos Santos-Silva E, et al. Improving encapsulation of hydrophilic chloroquine diphosphate into biodegradable nanoparticles: A promising approach against herpes virus simplex-1 infection. Pharmaceutics 2018; 10(4): 1-18.
[http://dx.doi.org/10.3390/pharmaceutics10040255] [PMID: 30513856]
[73]
Wani WA, Jameel E, Baig U, Mumtazuddin S, Hun LT. Ferroquine and its derivatives: new generation of antimalarial agents. Eur J Med Chem 2015; 101: 534-51.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.009] [PMID: 26188909]
[74]
Biot C, Daher W, Chavain N, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem 2006; 49(9): 2845-9.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[75]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[76]
Amirian ES, Levy JK. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 2020; 9: 100128.
[http://dx.doi.org/10.1016/j.onehlt.2020.100128] [PMID: 32258351]
[77]
Block J. How much optimism should we have about remdesivir for COVID-19?. Available from: https://medshadow.org/research-for-covid-remdesivir-flawed/
[78]
Ko WC, Rolain JM, Lee NY, et al. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int J Antimicrob Agents 2020; 55(4): 105933.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105933] [PMID: 32147516]
[79]
News Wires. US says remdesivir shows ‘clear-cut’ effect in treating coronavirus. Available from: https://www.france24.com/en/20200429-us-says-remdesivir-shows-clear-cut-effect-in-treating-coronavirus-1
[80]
Shannon A, Le NT, Selisko B, et al. Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Antiviral Res 2020; 178: 104793.
[http://dx.doi.org/10.1016/j.antiviral.2020.104793] [PMID: 32283108]
[81]
Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis 2020; 35: 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[82]
FDA News Release. Coronavirus (COVID-19) update: daily roundup. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-daily-roundup-may-1-2020
[83]
Meynard JL, Moinot L, Landman R, et al. Week 96 efficacy of lopinavir/ritonavir monotherapy in virologically suppressed patients with HIV: a randomized non-inferiority trial (ANRS 140 DREAM). J Antimicrob Chemother 2018; 73(6): 1672-6.
[http://dx.doi.org/10.1093/jac/dky055] [PMID: 29584910]
[84]
Ravi PR, Aditya N, Kathuria H, Malekar S, Vats R. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm 2014; 87(1): 114-24.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.015] [PMID: 24378615]
[85]
du Plooy M, Viljoen M, Rheeders M. Evidence for time-dependent interactions between ritonavir and lopinavir/ritonavir plasma levels following P-glycoprotein inhibition in Sprague-Dawley rats. Biol Pharm Bull 2011; 34(1): 66-70.
[http://dx.doi.org/10.1248/bpb.34.66] [PMID: 21212519]
[86]
Kaplan SS, Hicks CB. Safety and antiviral activity of lopinavir/ritonavir-based therapy in human immunodeficiency virus type 1 (HIV-1) infection. J Antimicrob Chemother 2005; 56(2): 273-6.
[http://dx.doi.org/10.1093/jac/dki209] [PMID: 15994247]
[87]
Kang S, Peng W, Zhu Y, et al. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int J Antimicrob Agents 2020; 55(5): 105950.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105950] [PMID: 32234465]
[88]
Duan Y, Zhu H-L, Zhou C. Advance of promising targets and agents against COVID-19 in China. Drug Discov Today 2020; 25(5): 810-2.
[http://dx.doi.org/10.1016/j.drudis.2020.02.011] [PMID: 32198066]
[89]
Nutho B, Mahalapbutr P, Hengphasatporn K, et al. Why are lopinavir and ritonavir effective against the newly emerged Coronavirus 2019?: Atomistic insights into the inhibitory mechanisms. Biochemistry 2020; 59(18): 1769-79.
[http://dx.doi.org/10.1021/acs.biochem.0c00160] [PMID: 32293875]
[90]
Chu CM, Cheng VCC, Hung IFN, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[91]
Ravi PR, Vats R, Balija J, Adapa SPN, Aditya N. Modified pullulan nanoparticles for oral delivery of lopinavir: formulation and pharmacokinetic evaluation. Carbohydr Polym 2014; 110: 320-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.099] [PMID: 24906762]
[92]
Din F ud , Aman Waqur, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 7291-309.
[93]
Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017; 4(4): 105-31.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[94]
Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett 2019; 17: 849-65.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[95]
Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Deliv 2018; 15(1): 93-114.
[http://dx.doi.org/10.1080/17425247.2017.1360863] [PMID: 28749739]
[96]
Kadam RS, Bourne DWA, Kompella UB. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: contribution of reduced clearance. Drug Metab Dispos 2012; 40(7): 1380-8.
[http://dx.doi.org/10.1124/dmd.112.044925] [PMID: 22498894]
[97]
Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23(20): 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[98]
Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019; 2019: 3702518.
[http://dx.doi.org/10.1155/2019/3702518]
[99]
Naik DR, Raval JP. Amorphous polymeric binary blend pH-responsive nanoparticles for dissolution enhancement of antiviral drug. J Saudi Chem Soc 2012; 20: S168-77.
[http://dx.doi.org/10.1016/j.jscs.2012.09.020]
[100]
Zhu YP, Li C, Wan XY, Yang Q, Xie GS, Huang J. Delivery of plasmid DNA to shrimp hemocytes by Infectious hypodermal and hematopoietic necrosis virus (IHHNV) nanoparticles expressed from a baculovirus insect cell system. J Invertebr Pathol 2019; 166: 107231.
[http://dx.doi.org/10.1016/j.jip.2019.107231] [PMID: 31425685]
[101]
Phan AD, Hoang TX. The pH-dependent electrostatic interaction of a metal nanoparticle with the MS2 virus-like particles. Chem Phys Lett 2019; 730: 84-8.
[http://dx.doi.org/10.1016/j.cplett.2019.05.045]
[102]
Gerson T, Makarov E, Senanayake TH, Gorantla S, Poluektova LY, Vinogradov SV. Nano-NRTIs demonstrate low neurotoxicity and high antiviral activity against HIV infection in the brain. Nanomedicine (Lond) 2014; 10(1): 177-85.
[http://dx.doi.org/10.1016/j.nano.2013.06.012] [PMID: 23845925]
[103]
Zheng H, Pan L, Lv J, et al. Comparison of immune responses in guinea pigs by intranasal delivery with different nanoparticles-loaded FMDV DNA vaccine. Microb Pathog 2020; 142: 104061.
[http://dx.doi.org/10.1016/j.micpath.2020.104061] [PMID: 32061916]
[104]
Komal S, Sonia , Kukreti S, Kaushik M. Exploring the potential of environment friendly silver nanoparticles for DNA interaction: Physicochemical approach. J Photochem Photobiol B 2019; 194: 158-65.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.03.022] [PMID: 30954875]
[105]
Wahab R, Kim YS, Hwang IH, Shin HS. A non-aqueous synthesis, characterization of zinc oxide nanoparticles and their interaction with DNA. Synth Met 2009; 159: 2443-52.
[http://dx.doi.org/10.1016/j.synthmet.2009.08.006]
[106]
Saha S, Ray S, Acharya R, Chatterjee TK, Chakraborty J. Magnesium, zinc and calcium aluminium layered double hydroxide-drug nanohybrids: A comprehensive study. Appl Clay Sci 2017; 135: 493-509.
[http://dx.doi.org/10.1016/j.clay.2016.09.030]
[107]
Halder A, Das S, Ojha D, Chattopadhyay D, Mukherjee A. Highly monodispersed gold nanoparticles synthesis and inhibition of herpes simplex virus infections. Mater Sci Eng C 2018; 89: 413-21.
[http://dx.doi.org/10.1016/j.msec.2018.04.005] [PMID: 29752114]
[108]
Gandhi A, Jana S, Sen KK. In-vitro release of acyclovir loaded Eudragit RLPO(®) nanoparticles for sustained drug delivery. Int J Biol Macromol 2014; 67: 478-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.019] [PMID: 24755259]
[109]
Ghera BB, Perret F, Chevalier Y, Parrot-Lopez H. Novel nanoparticles made from amphiphilic perfluoroalkyl α-cyclodextrin derivatives: preparation, characterization and application to the transport of acyclovir. Int J Pharm 2009; 375(1-2): 155-62.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.004] [PMID: 19481701]
[110]
Martinez-Alvarez M, Jarde A, Usuf E, et al. COVID-19 pandemic in west Africa. Lancet Glob Health 2020; 8(5): e631-2.
[http://dx.doi.org/10.1016/S2214-109X(20)30123-6] [PMID: 32246918]
[111]
Patel S, Julia HMiao, Yetiskul E, Anokhin A, Majmundar SH. Physiology, carbon dioxide retention. StatPearls Publishing 2021.

© 2024 Bentham Science Publishers | Privacy Policy