Recovery of Metals and Rare Earth Elements by Microwave heating Technology - A Review

Author(s): Shunda Lin, Mamdouh Omran, Shenghui Guo*

Journal Name: Current Microwave Chemistry

Volume 7 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Microwave heating technology is considered one of the most likely to replace traditional heating methods due to its efficient, quick, and green heating transmission that meets the requirements of sustainable development. Microwave heating can strengthen chemical reactions and change the morphology of minerals, and it can save energy and achieve rapid and efficient heating, clean production, and emission reduction. Therefore, this paper summarizes the research status of microwave heating in the recovery of valuable metals (Cu, Au, V),) from metallurgical waste ore and rare earth elements from rare earth minerals in recent years, expounds the principle of microwave heating, and summarizes the previous experimental phenomena. Finally, the development potential, opportunities, and difficulties of microwave technology in future industrial applications are discussed.

Keywords: Microwave heating, copper, gold, vanadium, rare earth, dipole rotation.

[1]
Fieschi, R.; Bianucci, M. An introductory course - the role of materials through the history of human civilization. J. Mater. Educ., 2015, 37, 169-184.
[2]
Paraskevas, D.; Kellens, K.; Dewulf, W.; Duflou, J.R. Environmental modelling of aluminium recycling: A life cycle assessment tool for sustainable metal management. J. Clean. Prod., 2015, 105, 357-370.
[3]
Reck, B.K.; Graedel, T.E. Challenges in metal recycling. Science, 2012, 337, 690-695.
[4]
Oguchi, M.; Murakami, S.; Sakanakura, H.; Kida, A.; Kameya, T. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources., 2011, 31, 2150-2160.
[5]
He, Y.; Guo, S.; Chen, K.; Li, S.; Zhang, L.; Yin, S. Sustainable green production: A review of recent development on rare earths extraction and separation using microreactors. ACS Sustain. Chem. Eng., 2019, 7, 17616-17626.
[6]
Mahapatra, R.P.; Srikant, S.S.; Rao, R.B.; Mohanty, B. Microwave heating and acid leaching processes for recovery of gold and other precious metals from e-waste. Curr. Sci., 2019, 116, 463-468.
[7]
Li, L.; Zhai, L.; Zhang, X.; Lu, J.; Chen, R.; Wu, F.; Amine, K. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J. Power Sources, 2019, 262, 380-385.
[8]
Zhang, K.; Li, B.; Wu, Y.; Wang, W.; Li, R.; Zhang, Y.-N.; Zuo, T.J.W.M. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave., 2017, 64, 236-243.
[9]
Peng, H.; Liu, Z.; Tao, C.J.J.o.E.C.E. Selective leaching of vanadium from chromium residue intensified by electric field., 2015, 3, 1252-1257.
[10]
Veit, H.M.; Diehl, T.R.; Salami, A.P.; Rodrigues, J.d.S.; Bernardes, A.M.; Tenório, J.A.S. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. Waste Manage., 2005, 25, 67-74.
[11]
Chen, J.; Li, L.; Chen, G.; Peng, J.; Srinivasakannan, C. Rapid thermal decomposition of manganese ore using microwave heating. J. Alloys Compd., 2017, 699, 430-435.
[http://dx.doi.org/10.1016/j.jallcom.2016.12.379]
[12]
Falciglia, P.P.; Roccaro, P.; Bonanno, L.; De Guidi, G.; Vagliasindi, F.G.A.; Romano, S. A review on the microwave heating as a sustainable technique for environmental remediation/detoxification applications. Renew. Sustain. Energy Rev., 2018, 95, 147-170.
[http://dx.doi.org/10.1016/j.rser.2018.07.031]
[13]
Guo, L.; Lan, J.; Du, Y.; Zhang, T.C.; Du, D. Microwave-enhanced selective leaching of arsenic from copper smelting flue dusts. J. Hazard. Mater., 2020, 386121964
[http://dx.doi.org/10.1016/j.jhazmat.2019.121964] [PMID: 31884356]
[14]
Clarke, M.L.; France, M.B.; Fuentes, J.A.; Milton, E.J.; Roff, G.J. A convenient catalyst system for microwave accelerated cross-coupling of a range of aryl boronic acids with aryl chlorides. Beilstein J. Org. Chem., 2007, 3, 18.
[http://dx.doi.org/10.1186/1860-5397-3-18] [PMID: 17537249]
[15]
Nuchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis - a critical technology overview. Green Chem., 2004, 6, 128-141.
[http://dx.doi.org/10.1039/B310502D]
[16]
Zhang, X.L.; Hayward, D.O.; Mingos, D.M.P. Effects of microwave dielectric heating on heterogeneous catalysis. Catal. Lett., 2003, 88, 33-38.
[http://dx.doi.org/10.1023/A:1023530715368]
[17]
Zhang, Y.M.; Wang, P.; Han, N.; Lei, H.F. Microwave irradiation: A novel method for rapid synthesis of D,L-lactide. Macromol. Rapid Commun., 2007, 28, 417-421.
[http://dx.doi.org/10.1002/marc.200600668]
[18]
Liu, X.; Yu, G. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil. Chemosphere, 2006, 63(2), 228-235.
[http://dx.doi.org/10.1016/j.chemosphere.2005.08.030] [PMID: 16213557]
[19]
Yuan, S.; Tian, M.; Lu, X. Microwave remediation of soil contaminated with hexachlorobenzene. J. Hazard. Mater., 2006, 137(2), 878-885.
[http://dx.doi.org/10.1016/j.jhazmat.2006.03.005] [PMID: 16901632]
[20]
Zhihui, A.; Peng, Y.; Xiaohua, L. Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes. Chemosphere, 2005, 60(6), 824-827.
[http://dx.doi.org/10.1016/j.chemosphere.2005.04.027] [PMID: 15951003]
[21]
Horikoshi, S.; Hidaka, H.; Serpone, N. Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions. Chem. Phys. Lett., 2003, 376, 475-480.
[http://dx.doi.org/10.1016/S0009-2614(03)01007-8]
[22]
Correa, R.; Gonzalez, G.; Dougar, V. Emulsion polymerization in a microwave reactor. Polymer (Guildf.), 1998, 39, 1471-1474.
[http://dx.doi.org/10.1016/S0032-3861(97)00413-8]
[23]
Bianco Prevot, A.; Gulmini, M.; Zelano, V.; Pramauro, E. Microwave-assisted extraction of polycyclic aromatic hydrocarbons from marine sediments using nonionic surfactant solutions. Anal. Chem., 2001, 73(15), 3790-3795.
[http://dx.doi.org/10.1021/ac010302z] [PMID: 11510850]
[24]
Srogi, K. A review: Application of microwave techniques for environmental analytical chemistry. Anal. Lett., 2006, 39, 1261-1288.
[http://dx.doi.org/10.1080/00032710600666289]
[25]
Cherbanski, R.; Rudniak, L. Modelling of microwave heating of water in a monomode applicator - Influence of operating conditions. Int. J. Therm. Sci., 2013, 74, 214-229.
[http://dx.doi.org/10.1016/j.ijthermalsci.2013.07.001]
[26]
Hoogenboom, R.; Wilms, T.F.A.; Erdmenger, T.; Schubert, U.S. Microwave-assisted chemistry: A closer look at heating efficiency. Aust. J. Chem., 2009, 62, 236-243.
[http://dx.doi.org/10.1071/CH08503]
[27]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[28]
Mudhoo, A.; Sharma, S.K. Microwave irradiation technology in waste sludge and wastewater treatment research. Crit. Rev. Environ. Sci. Technol., 2011, 41, 999-1066.
[http://dx.doi.org/10.1080/10643380903392767]
[29]
Patil, N.G.; Benaskar, F.; Rebrov, E.V.; Meuldijk, J.; Hulshof, L.A.; Hessel, V.; Schouten, J.C. Microwave setup design for continuous fine-chemicals synthesis. Chem. Eng. Technol., 2014, 37, 1645-1653.
[http://dx.doi.org/10.1002/ceat.201400118]
[30]
Chemat, F.; Esveld, E. Microwave super-heated boiling of organic liquids: Origin, effect and application. Chem. Eng. Technol., 2001, 24, 735-744.
[http://dx.doi.org/10.1002/1521-4125(200107)24:7<735:AID-CEAT735>3.0.CO;2-H]
[31]
Huang, J.; Xu, G.; Liang, Y.; Hu, G.; Chang, P. Improving coal permeability using microwave heating technology-A review. Fuel, 2020, 266117022
[http://dx.doi.org/10.1016/j.fuel.2020.117022]
[32]
Jones, D.A.; Lelyveld, T.P.; Mavrofidis, S.D.; Kingman, S.W.; Miles, N.J. Microwave heating applications in enviromnental engineering - a review. Resour. Conserv. Recycling, 2002, 34, 75-90.
[http://dx.doi.org/10.1016/S0921-3449(01)00088-X]
[33]
El Khaled, D.; Novas, N.; Gazquez, J.A.; Manzano-Agugliaro, F. Microwave dielectric heating: Applications on metals processing. Renew. Sustain. Energy Rev., 2018, 82, 2880-2892.
[http://dx.doi.org/10.1016/j.rser.2017.10.043]
[34]
Sun, J.; Wang, W.; Yue, Q. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies; Materials: Basel, Switzerland, 2016, p. 9.
[35]
Prieto, P.; de la Hoz, A.; Díaz-Ortiz, A.; Rodríguez, A.M. Understanding MAOS through computational chemistry. Chem. Soc. Rev., 2017, 46(2), 431-451.
[http://dx.doi.org/10.1039/C6CS00393A] [PMID: 27841413]
[36]
Anwar, J.; Shafique, U. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens. Arab. J. Chem., 2015, 8, 100-104.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.014]
[37]
Zaker, A.; Chen, Z.; Wang, X.; Zhang, Q. Microwave-assisted pyrolysis of sewage sludge: A review. Fuel Process. Technol., 2019, 187, 84-104.
[http://dx.doi.org/10.1016/j.fuproc.2018.12.011]
[38]
Farag, S.; Sobhy, A.; Akyel, C.; Doucet, J.; Chaouki, J. Temperature profile prediction within selected materials heated by microwaves at 2.45GHz. Appl. Therm. Eng., 2012, 36, 360-369.
[http://dx.doi.org/10.1016/j.applthermaleng.2011.10.049]
[39]
Binner, E.R.; Robinson, J.P.; Silvester, S.A.; Kingman, S.W.; Lester, E.H. Investigation into the mechanisms by which microwave heating enhances separation of water-in-oil emulsions. Fuel, 2014, 116, 516-521.
[http://dx.doi.org/10.1016/j.fuel.2013.08.042]
[40]
Lin, Y-C.; Chen, S-C.; Wu, T-Y.; Yang, P-M.; Jhang, S-R.; Lin, J-F. Energy-saving and rapid transesterification of jatropha oil using a microwave heating system with ionic liquid catalyst. J. Taiwan Inst. Chem. Eng., 2015, 49, 72-78.
[http://dx.doi.org/10.1016/j.jtice.2014.11.014]
[41]
Hesas, R.H.; Daud, W.M.A.W.; Sahu, J.N.; Arami-Niya, A. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. J. Anal. Appl. Pyrolysis, 2013, 100, 1-11.
[http://dx.doi.org/10.1016/j.jaap.2012.12.019]
[42]
Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd., 2010, 494, 175-189.
[http://dx.doi.org/10.1016/j.jallcom.2010.01.068]
[43]
Cheng, S.F.; Nor, L.M.; Chuah, C.H. Microwave pretreatment: A clean and dry method for palm oil production. Ind. Crops Prod., 2011, 34, 967-971.
[http://dx.doi.org/10.1016/j.indcrop.2011.03.002]
[44]
Horikoshi, S.; Osawa, A.; Sakamoto, S.; Serpone, N. Control of microwave-generated hot spots. Part IV. Control of hot spots on a heterogeneous microwave-absorber catalyst surface by a hybrid internal/external heating method. Chemical Engineering and Processing-Process Intensification, 2013, 69, 52-56.
[http://dx.doi.org/10.1016/j.cep.2013.02.003]
[45]
Analia Campanone, L.; Paola, C.A.; Mascheroni, R.H. Modeling and simulation of microwave heating of foods under different process schedules. Food Bioprocess Technol., 2012, 5, 738-749.
[http://dx.doi.org/10.1007/s11947-010-0378-5]
[46]
Jose-Luis, P.; Abadias, A.; Valero, A.; Valero, A.; Reuter, M. The energy needed to concentrate minerals from common rocks: The case of copper ore. Energy, 2019, 181, 494-503.
[http://dx.doi.org/10.1016/j.energy.2019.05.145]
[47]
Meinert, L.D.; Robinson, G.R.; Nassar, N.T. Mineral resources: Reserves, peak production and the future., 2016, 5, 14.
[48]
Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing ore grades in global metallic mining: A theoretical issue or a global reality?, 2016, 5, 36.
[49]
Moravvej, Z.; Mohebbi, A.; Daneshpajouh, S. The microwave irradiation effect on copper leaching from sulfide/oxide ores. Mater. Manuf. Process., 2018, 33, 1-6.
[http://dx.doi.org/10.1080/10426914.2016.1244850]
[50]
Sabzezari, B.; Koleini, S.M.J.; Ghassa, S.; Shahbazi, B.; Chehreh Chelgani, S. Microwave-leaching of copper smelting dust for Cu and Zn extraction. Materials (Basel), 2019, 12(11), 12.
[http://dx.doi.org/10.3390/ma12111822] [PMID: 31195613]
[51]
Al-Harahsheh, M.; Kingman, S.; Hankins, N.; Somerfield, C.; Bradshaw, S.; Louw, W. The influence of microwaves on the leaching kinetics of chalcopyrite. Miner. Eng., 2005, 18, 1259-1268.
[http://dx.doi.org/10.1016/j.mineng.2005.06.006]
[52]
Ma, Z-y.; Yang, H-y.; Huang, S-t.; Lu, Y.; Xiong, L. Ultra fast microwave-assisted leaching for the recovery of copper and tellurium from copper anode slime. Int. J. Miner. Metall. Mater., 2015, 22, 582-588.
[http://dx.doi.org/10.1007/s12613-015-1110-2]
[53]
Wen, T.; Zhao, Y.; Xiao, Q.; Ma, Q.; Kang, S.; Li, H.; Song, S. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results in Physics, 2017, 7, 2594-2600.
[http://dx.doi.org/10.1016/j.rinp.2017.07.035]
[54]
Wen, T.; Zhao, Y.; Ma, Q.; Xiao, Q.; Zhang, T.; Chen, J.; Song, S. Microwave improving copper extraction from chalcopyrite through modifying the surface structure.Journal of Materials Research and Technology-Jmr&T, 2020, 9, 263-270.
[http://dx.doi.org/10.1016/j.jmrt.2019.10.054]
[55]
Lovas, M.; Murova, I.; Mockovciakova, A.; Rowson, N.; Jakabsky, S. Intensification of magnetic separation and leaching of Cu-ores by microwave radiation. Separ. Purif. Tech., 2003, 31, 291-299.
[http://dx.doi.org/10.1016/S1383-5866(02)00206-X]
[56]
Konadu, K.T.; Huddy, R.J.; Harrison, S.T.L.; Osseo-Asare, K.; Sasaki, K. Sequential pretreatment of double refractory gold ore (DRGO) with a thermophilic iron oxidizing archeaon and fungal crude enzymes. Miner. Eng., 2019, 138, 86-94.
[http://dx.doi.org/10.1016/j.mineng.2019.04.043]
[57]
Ince, C. Reusing gold-mine tailings in cement mortars: Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cyprus. J. Clean. Prod., 2019, 238117871
[http://dx.doi.org/10.1016/j.jclepro.2019.117871]
[58]
Kim, Y.; Kim, M.; Sohn, J.; Park, H. Applicability of gold tailings, waste limestone, red mud, and ferronickel slag for producing glass fibers. J. Clean. Prod., 2018, 203, 957-965.
[http://dx.doi.org/10.1016/j.jclepro.2018.08.230]
[59]
Tran, Q.B.; Lohitnavy, M.; Phenrat, T. Assessing potential hydrogen cyanide exposure from cyanide-contaminated mine tailing management practices in Thailand’s gold mining. J. Environ. Manage., 2019, 249109357
[http://dx.doi.org/10.1016/j.jenvman.2019.109357] [PMID: 31401446]
[60]
Guo, X.; Qin, H.; Tian, Q.; Zhang, L. The efficacy of a new iodination roasting technology to recover gold and silver from refractory gold tailing. J. Clean. Prod., 2020, 261121147
[61]
Su, X.; Mo, W.; Ma, S.; Yang, J.; Lin, M. Experimental Study on Microwave Pretreatment with Some Refractory Flotation Gold Concentrate. Powder Technology and Application I ii; Lu, X.J; Qiu, J., Ed.; , 2011, pp. 71-75.
[62]
Zhu, F.; Zhang, L.; Li, H.; Yin, S.; Koppala, S.; Yang, K.; Li, S. Gold Extraction from Cyanidation Tailing Using Microwave Chlorination Roasting Method. Metals (Basel), 2018, 8, 1025.
[http://dx.doi.org/10.3390/met8121025]
[63]
Li, H.; Long, H.; Zhang, L.; Yin, S.; Li, S.; Zhu, F.; Xie, H. Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings. J. Hazard. Mater., 2020, 384121456
[http://dx.doi.org/10.1016/j.jhazmat.2019.121456] [PMID: 31668759]
[64]
Zhang, X.; Sun, C.; Xing, Y.; Kou, J.; Su, M. Thermal decomposition behavior of pyrite in a microwave field and feasibility of gold leaching with generated elemental sulfur from the decomposition of gold-bearing sulfides. Hydrometallurgy, 2018, 180, 210-220.
[http://dx.doi.org/10.1016/j.hydromet.2018.07.012]
[65]
Hu, N.; Chen, W.; Ding, D-x.; Li, F.; Dai, Z-r.; Li, G-y.; Wang, Y-d.; Zhang, H.; Lang, T. Role of water contents on microwave roasting of gold bearing high arsenic sulphide concentrate. Int. J. Miner. Process., 2017, 161, 72-77.
[http://dx.doi.org/10.1016/j.minpro.2017.02.004]
[66]
Amankwah, R.K.; Ofori-Sarpong, G. Microwave heating of gold ores for enhanced grindability and cyanide amenability. Miner. Eng., 2011, 24, 541-544.
[http://dx.doi.org/10.1016/j.mineng.2010.12.002]
[67]
Wang, J.; Wang, W.; Dong, K.; Fu, Y.; Xie, F. Research on leaching of carbonaceous gold ore with copper-ammonia-thiosulfate solutions. Miner. Eng., 2019, 137, 232-240.
[http://dx.doi.org/10.1016/j.mineng.2019.04.013]
[68]
Anjass, M.H.; Kastner, K.; Nägele, F.; Ringenberg, M.; Boas, J.F.; Zhang, J.; Bond, A.M.; Jacob, T.; Streb, C. Stabilization of low-valent Iron(I) in a high-valent Vanadium(V) oxide cluster. Angew. Chem. Int. Ed. Engl., 2017, 56(46), 14749-14752.
[http://dx.doi.org/10.1002/anie.201706828] [PMID: 28906058]
[69]
Smirnov, M.B.; Kazimirov, V.Y.; Baddour-Hadjean, R.; Smirnov, K.S.; Pereira-Ramos, J-P. Atomistic mechanism of alpha-beta phase transition in vanadium pentoxide. J. Phys. Chem. Solids, 2014, 75, 115-122.
[http://dx.doi.org/10.1016/j.jpcs.2013.09.007]
[70]
Wei, Z.; Liu, D.; Hsu, C.; Liu, F. All-vanadium redox photoelectrochemical cell: An approach to store solar energy. Electrochem. Commun., 2014, 45, 79-82.
[http://dx.doi.org/10.1016/j.elecom.2014.05.018]
[71]
Moskalyk, R.R.; Alfantazi, A.M. Processing of vanadium: A review. Miner. Eng., 2003, 16, 793-805.
[http://dx.doi.org/10.1016/S0892-6875(03)00213-9]
[72]
Janssens, E.; Lang, S.M.; Brümmer, M.; Niedziela, A.; Santambrogio, G.; Asmis, K.R.; Sauer, J. Kinetic study of the reaction of vanadium and vanadium-titanium oxide cluster anions with SO2. Phys. Chem. Chem. Phys., 2012, 14(41), 14344-14353.
[http://dx.doi.org/10.1039/c2cp42201h] [PMID: 23008835]
[73]
He, D.; Feng, Q.; Zhang, G.; Ou, L.; Lu, Y. An environmentally-friendly technology of vanadium extraction from stone coal. Miner. Eng., 2007, 20, 1184-1186.
[http://dx.doi.org/10.1016/j.mineng.2007.04.017]
[74]
Peng, H. A literature review on leaching and recovery of vanadium. J. Environ. Chem. Eng., 2019, 7103313
[http://dx.doi.org/10.1016/j.jece.2019.103313]
[75]
Zhang, Y.; Chen, X.; Chu, W.; Cui, H.; Wang, M. Removal of vanadium from petroleum coke by microwave and ultrasonic-assisted leaching. Hydrometallurgy, 2020, 191105168
[http://dx.doi.org/10.1016/j.hydromet.2019.105168]
[76]
Gao, H.; Jiang, T.; Zhou, M.; Wen, J.; Li, X.; Wang, Y.; Xue, X. Effect of microwave irradiation and conventional calcification roasting with calcium hydroxide on the extraction of vanadium and chromium from high-chromium vanadium slag. Miner. Eng., 2020, 145106056
[http://dx.doi.org/10.1016/j.mineng.2019.106056]
[77]
Yuan, Y.; Zhang, Y.; Liu, T.; Hu, P.; Zheng, Q. Optimization of microwave roasting-acid leaching process for vanadium extraction from shale via response surface methodology. J. Clean. Prod., 2019, 234, 494-502.
[http://dx.doi.org/10.1016/j.jclepro.2019.06.271]
[78]
Tian, L.; Xu, Z.; Chen, L.; Liu, Y.; Zhang, T-a. Effect of microwave heating on the pressure leaching of vanadium from converter slag. Hydrometallurgy, 2019, 184, 45-54.
[http://dx.doi.org/10.1016/j.hydromet.2018.11.004]
[79]
Demol, J.; Ho, E.; Soldenhoff, K.; Senanayake, G. The sulfuric acid bake and leach route for processing of rare earth ores and concentrates: A review. Hydrometallurgy, 2019, 188, 123-139.
[http://dx.doi.org/10.1016/j.hydromet.2019.05.015]
[80]
Marion, C.; Li, R.; Waters, K.E. A review of reagents applied to rare-earth mineral flotation. Adv. Colloid Interface Sci., 2020, 279, 102142-102142.
[http://dx.doi.org/10.1016/j.cis.2020.102142] [PMID: 32244063]
[81]
Zhang, J.; Edwards, C. Mineral decomposition and leaching processes for treating rare earth ore concentrates. Can. Metall. Q., 2013, 52, 243-248.
[http://dx.doi.org/10.1179/1879139513Y.0000000084]
[82]
Xue, C.; Mao, Y.; Wang, W.; Song, Z.; Zhao, X.; Sun, J.; Wang, Y. Current status of applying microwave-associated catalysis for the degradation of organics in aqueous phase - A review. J. Environ. Sci. (China), 2019, 81, 119-135.
[http://dx.doi.org/10.1016/j.jes.2019.01.019] [PMID: 30975315]
[83]
Omodara, L.; Pitkaaho, S.; Turpeinen, E-M.; Saavalainen, P.; Oravisjarvi, K.; Keiski, R.L. Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications - A review. J. Clean. Prod., 2019, 236117573
[http://dx.doi.org/10.1016/j.jclepro.2019.07.048]
[84]
Yang, J.; Yang, W.; Li, F.; Yang, Y. Research and development of high-performance new microwave absorbers based on rare earth transition metal compounds: A review. J. Magn. Magn. Mater., 2020, 497165961
[http://dx.doi.org/10.1016/j.jmmm.2019.165961]
[85]
Suoranta, T.; Zugazua, O.; Niemela, M.; Peramaki, P. Recovery of palladium, platinum, rhodium and ruthenium from catalyst materials using microwave-assisted leaching and cloud point extraction. Hydrometallurgy, 2015, 154, 56-62.
[http://dx.doi.org/10.1016/j.hydromet.2015.03.014]
[86]
Huang, Y.; Zhang, T-a.; Dou, Z.; Liu, J.; Tian, J. Influence of microwave heating on the extractions of fluorine and Rare Earth elements from mixed rare earth concentrate. Hydrometallurgy, 2016, 162, 104-110.
[http://dx.doi.org/10.1016/j.hydromet.2016.03.022]
[87]
Lambert, A.; Anawati, J.; Walawalkar, M.; Tam, J.; Azimi, G. Innovative application of microwave treatment for recovering of rare earth elements from phosphogypsum. ACS Sustain. Chem. Eng., 2018, 6, 16471-16481..
[http://dx.doi.org/10.1021/acssuschemeng.8b03588]
[88]
Huang, Y.; Zhang, T-a.; Dou, Z.; Han, G.; Cao, Y.; Hou, C. Decomposition mechanism of a mixed rare earth concentrate with sodium hydroxide in the microwave heating process. Miner. Eng., 2019, 132, 220-227.
[http://dx.doi.org/10.1016/j.mineng.2018.12.021]
[89]
Huang, Y.; Zhang, T.a.; Liu, J.; Dou, Z.; Tian, J. Decomposition of the mixed rare earth concentrate by microwave-assisted method. J. Rare Earths, 2016, 34, 529-535.
[http://dx.doi.org/10.1016/S1002-0721(16)60058-3]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 3
Year: 2020
Page: [196 - 206]
Pages: 11
DOI: 10.2174/2213335607999201207151322
Price: $25

Article Metrics

PDF: 20
HTML: 1