Forkhead-box A3 (FOXA3) Represses Cancer Stemness and Partially Potentiates Chemosensitivity by Targeting Metastasis-Associated in Colon Cancer 1 (MACC1) Signaling Pathway in Colorectal Cancer Cells

Author(s): Na Li*, Yun Li, Hongbo Gao, Jing Li, Xiaoping Ma, Xiaomei Liu, Ping Gong, Xiaobin Cui, Yong Li*

Journal Name: Current Cancer Drug Targets

Volume 21 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The major challenge to the treatment of advanced colorectal cancer (CRC) is the persistent occurrence of chemoresistance. One of the established etiologies is the existence of cancer stem-like cells (CSCs), due to which, tumors show resistance to external therapeutic challenges.

Objective: The forkhead-box A3 (FOXA3) is a potent transcription factor that potentiates the acquisition and maintenance of stemness fate in many physiological systems. However, its effect on cancer stemness, particularly treatment, has not been explored in CRC, forming the basis of the current study.

Methods: FOXA3 expression in oxaliplatin-resistant CRC tissues and cells was evaluated using RT-qPCR. Effects of FOXA3 manipulation on sensitivity to oxaliplatin were assessed using WST-1, apoptotic ELISA, colony formation and xenograft model. Effects of FOXA3 alteration on CSCs were determined using tumorsphere assay and CD44 staining. Transcriptional regulation of MACC1 by FOXA3 was studied using ChIP, Co-IP and luciferase reporter assay.

Results: FOXA3 expression was significantly reduced in tumor samples from oxaliplatin-non-responsive patients compared with that in tumor samples from oxaliplatin-sensitive patients. This downregulation of FOXA3 expression predicted a poor post-chemotherapy overall- or disease-free survival in our 117-patient cohort. FOXA3 down-regulation significantly enhanced cell survival and stem-like properties, thus rendering the CRC cells unresponsiveness to oxaliplatin-induced cell death. Mechanistically, the anti-neoplastic effect of FOXA3 was mediated mainly through transcriptional repression of metastasis-associated in colon cancer 1 (MACC1) in oxaliplatin-resistant CRC cells.

Conclusion: Our findings establish FOXA3 as a potent tumor suppressor in CRC, which may disrupt the maintenance of stemness and modulate sensitivity to oxaliplatin by inhibiting the transcription of MACC1 within CRC cells.

Keywords: Colorectal cancer (CRC), cancer stem-like cells (CSCs), forkhead-box A3 (FOXA3), metastasis-associated in colon cancer 1 (MACC1), oxaliplatin, apoptosis.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 3
Year: 2021
Published on: 26 April, 2021
Page: [254 - 267]
Pages: 14
DOI: 10.2174/1568009620666201207150632
Price: $65

Article Metrics

PDF: 20