Diverse Thiophenes as Scaffolds in Anti-cancer Drug Development: A Concise Review

Author(s): Neha V. Bhilare*, Pratibha B. Auti, Vinayak S. Marulkar, Vilas J. Pise

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 21 , Issue 2 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Thiophenes are one of the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover, various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin, thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives, etc. In this review, we specifically explore the chemotherapeutic potential of a variety of structures consisting of thiophene scaffolds as prospective anticancer agents.

Keywords: Thiophenes, anticancer, structure activity relationship, mechanism of action, anti-tumor, cytotoxic.

Chaudhary, A.; Jha, K.; Kumar, S. Biological diversity of thiophene: A review J. Adv. Sci. Res., 2012, 3, 03-10..
Mishra, R.; Sharma, P. A review on synthesis and medicinal importance of thiophene. Int. J. Eng. Al. Sci., 2015, 1, 46-59.
Meyer, V. Ueber den begleiter des benzolsimsteinkohlentheer Ber.Dtschn. Chem. Ges., 1883, 1465-1478..
Shridar, D.; Jogibhukta, M.; Shanthon Rao, P.; Handa, V.; Jones, R. Extended heterocyclic systems 2. The synthesis and characterisation of (2-furyl)pyridines, (2-thienyl)pyridines, and furan-pyridine and thiophene-pyridine oligomers. Tetra., 1997, 53, 11529-11540.
Freeman, F.; Lee, M.; Lue, H.; Wang, X.; Rodriguez, E. 1-Thia-Cope Rearrangements during the Thionation of 2-endo-3-endo-Bis(aroyl)bicyclo[2.2.1]hept-5-enes. J. Org. Chem., 1994, 50, 3695.
Paal, C. Synthese von Thiophen-und Pyrrolderivaten. Chem. Ber., 1885, 18, 367.
Li, J. Name reactions in heterocyclic chemistry; John Wiley & Sons, 2004.
Campaigne, E.; Foye, W. The Synthesis of 2,5-Diarylthiophenes. J. Org. Chem., 1952, 17, 1405.
Woodward, R.B.; Eastman, R.H. Tetrahydrothiophene (thiophane) derivatives. J. Am. Chem. Soc., 1946, 68(11), 2229-2235.
[http://dx.doi.org/10.1021/ja01215a034] [PMID: 21002227]
Gewald, K.; Schinke, E.; Bottcher, H. Heterocyclenaus CH‐acidenNitrilen, VIII. 2‐Amino‐thiophene ausmethylenaktivenNitrilen. Carbonylverbindungen und Schwefel. Chem. Ber., 1966, 99, 94.
Peet, N.; Sunder, S.; Barbuch, R.; Vinogradoff, A. Mechanistic observations in the gewald syntheses of 2‐aminothiophenes. J. Heterocycl. Chem., 1986, 23, 129.
Tehranchian, S.; Akbarzadeh, T.; Fazeli, M.R.; Jamalifar, H.; Shafiee, A. Synthesis and antibacterial activity of 1-[1,2,4-triazol-3-yl] and 1-[1,3,4-thiadiazol-2-yl]-3-methylthio-6,7-dihydrobenzo[c] thiophen-4(5H)ones. Bioorg. Med. Chem. Lett., 2005, 15(4), 1023-1025.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.039] [PMID: 15686905]
Pillai, A.D.; Rathod, P.D.; Xavier, F.P.; Padh, H.; Sudarsanam, V.K.; Vasu, K. Tetra substituted thiophenes as anti-inflammatory agents: exploitation of analogue-based drug design. Bioorg. Med. Chem., 2005, 13(24), 6685-6692.
[http://dx.doi.org/10.1016/j.bmc.2005.07.044] [PMID: 16125391]
Russell, R.K.; Press, J.B.; Rampulla, R.A.; McNally, J.J.; Falotico, R.; Keiser, J.A.; Bright, D.A.; Tobia, A. Thiophene systems. 9. Thienopyrimidinedione derivatives as potential antihypertensive agents. J. Med. Chem., 1988, 31(9), 1786-1793.
[http://dx.doi.org/10.1021/jm00117a019] [PMID: 2842504]
Bhilare, N.; Dhaneshwar, S. Synthesis and evaluation of morpholinoethyl ester conjugate of N-acetylcysteine in ovalbumin-induced airway hyperresponsiveness in sprague dawley rats. Lett. Drug Des. Discov., 2017, 14, 209-215.
Bhilare, N.V.; Dhaneshwar, S.S.; Mahadik, K.R. Amelioration of hepatotoxicity by biocleavable aminothiol chimeras of isoniazid: Design, synthesis, kinetics and pharmacological evaluation. World J. Hepatol., 2018, 10(7), 496-508.
[http://dx.doi.org/10.4254/wjh.v10.i7.496] [PMID: 30079136]
Abdel Reheim, M.A.M.; Baker, S.M. Synthesis, characterization and in vitro antimicrobial activity of novel fused pyrazolo[3,4-c]pyridazine, pyrazolo[3,4-d]pyrimidine, thieno[3,2-c]pyrazole and pyrazolo[3′,4′:4,5]thieno[2,3-d]pyrimidine derivatives. Chem. Cent. J., 2017, 11(1), 112-124.
[http://dx.doi.org/10.1186/s13065-017-0339-4] [PMID: 29098473]
Sharkawy, K.; Sehrawi, H.; Ibrahim, R. The reaction of 2-amino- 4,5,6,7-tetrahydrobenzo[b]thiophenes with benzoyl-isothiocyanate: synthesis of annulated thiophene derivatives and their antitumor evaluations. Int. J. Org. Chem. (Irvine), 2012, 2, 126-134.
Seley, K.L.; Januszczyk, P.; Hagos, A.; Zhang, L.; Dransfield, D.T. Synthesis and antitumor activity of thieno-separated tricyclic purines. J. Med. Chem., 2000, 43(25), 4877-4883.
[http://dx.doi.org/10.1021/jm000326i] [PMID: 11123997]
Priyanka, S.; Jha, K. Benzothiazole: The molecule of diverse biological activities Int. J. Curr. Pharm. Res., 2010, 2, 01-06..
Bhilare, N.V.; Dhaneshwar, S.S.; Mahadik, K.R.; Dasgupta, A. Co-drug of isoniazid and sulfur containing antioxidant for attenuation of hepatotoxicity and treatment of tuberculosis. Drug Chem. Toxicol., 2020, 1-11.
[http://dx.doi.org/10.1080/01480545.2020.1778021] [PMID: 32543916]
Mazimba, O. Antimicrobial activities of heterocycles derived fromthienylchalcones. J. King Saud Uni. Sci., 2015, 27, 42-48.
Vos, T.; Allen, C.; Arora, M.; Barber, R.; Bhutta, Z.; Brown, A.; Carter, A.; Casey, D.; Charlson, F.; Chen, A.; Coggeshall, M. GBD 2015 Disease and injury incidence and prevalence collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet, 2016, 388(10053), 1545-1602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752.
[PMID: 28393696]
Shah, R.; Verma, P.K. Therapeutic importance of synthetic thiophene. Chem. Cent. J., 2018, 12(1), 137.
[http://dx.doi.org/10.1186/s13065-018-0511-5] [PMID: 30564984]
Valavanidis, A. Nobel Prize 2018. Discovery of cancer therapy by inhibition of negative immune regulation. New class of drugs for activated immune system as an effective strategy for harnessing attacks on cancerous cells. Pharmakeftiki., 2020, 31, 169-178.
Cai, G.; Wang, S.; Zhao, L.; Sun, Y.; Yang, D.; Lee, R.J.; Zhao, M.; Zhang, H.; Zhou, Y. Thiophene derivatives as anticancer agents and their delivery to tumor cells using albumin nanoparticles. Molecules, 2019, 24(1), 192.
[http://dx.doi.org/10.3390/molecules24010192] [PMID: 30621360]
Hafez, H.N.; Alsalamah, S.A.; El-Gazzar, A.B.A. Synthesis of thiophene and N-substituted thieno[3,2-d] pyrimidine derivatives as potent antitumor and antibacterial agents. Acta Pharm., 2017, 67(3), 275-292.
[http://dx.doi.org/10.1515/acph-2017-0028] [PMID: 28858838]
Gong, J.; Zheng, Y.; Wang, Y.; Sheng, W.; Li, Y.; Liu, X.; Si, S.; Shao, R.; Zhen, Y. A new compound of thiophenylatedpyridazinone IMB5043 showing potent antitumor efficacy through ATM-Chk2 pathway. PLoS One, 2018, 13, 1-17.
Thomas, J.; Jecic, A.; Vanstreels, E.; van Berckelaer, L.; Romagnoli, R.; Dehaen, W.; Liekens, S.; Balzarini, J. Pronounced anti-proliferative activity and tumor cell selectivity of 5-alkyl-2-amino-3-methylcarboxylate thiophenes. Eur. J. Med. Chem., 2017, 132, 219-235.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.044] [PMID: 28365318]
Fouad, M.M.; El-Bendary, E.R.; Suddek, G.M.; Shehata, I.A.; El-Kerdawy, M.M. Synthesis and in vitro antitumor evaluation of some new thiophenes and thieno[2,3-d]pyrimidine derivatives. Bioorg. Chem., 2018, 81, 587-598.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.022] [PMID: 30248510]
Mohareb, R.; Hilmy, K.; Elshehawy, Y. Discovery of new thiophene, pyrazole, isoxazole derivatives as antitumor, c-Met, tyrosine kinase and Pim-1 kinase inhibitors. Bull. Chem. Soc. Ethiop., 2018, 32, 285-308.
Mohareb, R.M.; Abdo, N.Y.; Al-Farouk, F.O. Synthesis, cytotoxic and anti-proliferative activity of novel thiophene, thieno [2, 3-b] pyridine and pyran derivatives derived from 4, 5, 6, 7-tetrahydrobenzo [b] thiophene derivative. Acta Chim. Slov., 2017, 64(1), 117-128.
[http://dx.doi.org/10.17344/acsi.2016.2920] [PMID: 28380235]
Gomha, S.M.; Edrees, M.M.; Muhammad, Z.A.; El-Reedy, A.A. 5-(Thiophen-2-yl)-1,3,4-thiadiazole derivatives: Synthesis, molecular docking and in vitro cytotoxicity evaluation as potential anticancer agents. Drug Des. Devel. Ther., 2018, 12, 1511-1523.
[http://dx.doi.org/10.2147/DDDT.S165276] [PMID: 29881258]
Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça, Junior, F.J.B.; de Lima, M.D.C.A.; Pitta, M.G.D.R.; Pitta, I.D.R.; de Melo Rêgo, M.J.B.; da Rocha Pitta, M.G.; da Rocha, P.; Galdino, M. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs, 2018, 29(2), 157-166.
[PMID: 29256900]
Shams, H.Z.; Mohareb, R.M.; Helal, M.H.; Mahmoud, A.E. Novel synthesis and antitumor evaluation of polyfunctionally substituted heterocyclic compounds derived from 2-cyano-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-acetamide. Molecules, 2010, 16(1), 52-73.
[http://dx.doi.org/10.3390/molecules16010052] [PMID: 21187817]
Zhao, H.; Yan, B.; Peterson, L.B.; Blagg, B.S. 3-Arylcoumarin derivatives manifest anti-proliferative activity through Hsp90 inhibition. ACS Med. Chem. Lett., 2012, 3(4), 327-331.
[http://dx.doi.org/10.1021/ml300018e] [PMID: 23316269]
Ghorab, M.M.; Al-Dhfyan, A.; Al-Dosari, M.S.; El-Gazzar, M.G.; AlSaid, M.S. Antiproliferative activity of novel thiophene and thienopyrimidine derivatives. Drug Res. (Stuttg.), 2014, 64(6), 313-320.
[PMID: 24227473]
Ghorab, M.M.; Alsaid, M.S.; Al-Dosari, M.S.; Ragab, F.A.; Al-Mishari, A.A.; Almoqbil, A.N. Novel quinolines carrying pyridine, thienopyridine, isoquinoline, thiazolidine, thiazole and thiophene moieties as potential anticancer agents. Acta Pharm., 2016, 66(2), 155-171.
[http://dx.doi.org/10.1515/acph-2016-0016] [PMID: 27279061]
Alsaid, M.S.; El-Gazzar, M.G.; Ghorab, M.M. Anticancer activity of novel thiophenes containing a biological active diphenylsulfone, diazepin, piperidine, oxazepine, acryladehyde and sulfonamide moieties. Drug Res. (Stuttg.), 2013, 63(5), 263-269.
[http://dx.doi.org/10.1055/s-0033-1337928] [PMID: 23529721]
Bashandy, M.S.; Alsaid, M.S.; Arafa, R.K.; Ghorab, M.M. Design, synthesis and molecular docking of novel N,N-dimethylbenzenesulfonamide derivatives as potential antiproliferative agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 619-627.
[http://dx.doi.org/10.3109/14756366.2013.833197] [PMID: 24090422]
Ismail, M.A.; Arafa, R.K.; Youssef, M.M.; El-Sayed, W.M. Anticancer, antioxidant activities, and DNA affinity of novel monocationic bithiophenes and analogues. Drug Des. Devel. Ther., 2014, 8, 1659-1672.
[http://dx.doi.org/10.2147/DDDT.S68016] [PMID: 25302019]
Said, M.; Elshihawy, H. Synthesis, anticancer activity and structure-activity relationship of some anticancer agents based on cyclopenta (b) thiophene scaffold. Pak. J. Pharm. Sci., 2014, 27(4), 885-892.
[PMID: 25015456]
Mohareb, R.; Al-Farouk, F. Anti-Tumor and Anti-Leishmanial Evaluations of Novel Thiophene Derivatives Derived from the Reaction of Cyclopentanone with Elemental Sulphur and Cyano-Methylene Reagents. Org. Chem. Curr. Res., 2012, 1, 2-61.
Haggam, R.; Assy, M.; Sherif, M.; Galahom, M. A series of 1, 3-imidazoles and triazole-3-thiones based thiophene-2-carboxamides as anticancer agents: Synthesis and anticancer activity. Eur. J. Chem., 2018, 9, 99-106.
Romagnoli, R.; Baraldi, P.G.; Kimatrai Salvador, M.; Preti, D.; Aghazadeh Tabrizi, M.; Bassetto, M.; Brancale, A.; Hamel, E.; Castagliuolo, I.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzo[b]thiophenes and thieno[2,3-b]pyridines as new potent anticancer agents. J. Med. Chem., 2013, 56(6), 2606-2618.
[http://dx.doi.org/10.1021/jm400043d] [PMID: 23445496]
Romagnoli, R.; Baraldi, P.G.; Cara, C.L.; Hamel, E.; Basso, G.; Bortolozzi, R.; Viola, G. Synthesis and biological evaluation of 2-(3′,4′,5′-trimethoxybenzoyl)-3-aryl/arylaminobenzo[b]thiophene derivatives as a novel class of antiproliferative agents. Eur. J. Med. Chem., 2010, 45(12), 5781-5791.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.038] [PMID: 20933308]
Romagnoli, R.; Kimatrai Salvador, M.; Schiaffino Ortega, S.; Baraldi, P.G.; Oliva, P.; Baraldi, S.; Lopez-Cara, L.C.; Brancale, A.; Ferla, S.; Hamel, E.; Balzarini, J.; Liekens, S.; Mattiuzzo, E.; Basso, G.; Viola, G. 2-Alkoxycarbonyl-3-arylamino-5-substituted thiophenes as a novel class of antimicrotubule agents: Design, synthesis, cell growth and tubulin polymerization inhibition. Eur. J. Med. Chem., 2018, 143, 683-698.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.096] [PMID: 29220790]
Romagnoli, R.; Baraldi, P.G.; Cruz-Lopez, O.; Tolomeo, M.; Di Cristina, A.; Pipitone, R.M.; Grimaudo, S.; Balzarini, J.; Brancale, A.; Hamel, E. Synthesis of novel antimitotic agents based on 2-amino-3-aroyl-5-(hetero)arylethynyl thiophene derivatives. Bioorg. Med. Chem. Lett., 2011, 21(9), 2746-2751.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.083] [PMID: 21146985]
Abdel-Rahman, S.; El-Gohary, N.; El-Bendary, E.; El-Ashry, S. Synthesis and Antitumor Evaluation of New Cyclohepta. Thiophene Analogs. J. Am. Sci., 2016, 12, 55-61.
Mohan, R.; Rastogi, N.; Namboothiri, I.N.; Mobin, S.M.; Panda, D. Synthesis and evaluation of α-hydroxymethylated conjugated nitroalkenes for their anticancer activity: inhibition of cell proliferation by targeting microtubules. Bioorg. Med. Chem., 2006, 14(23), 8073-8085.
[http://dx.doi.org/10.1016/j.bmc.2006.07.035] [PMID: 16891118]
Venkataramireddy, V.; Shankaraiah, V.; Rao, A.; Kalyani, C.; Narasu, M.; Varala, R.; Jayashree, A. Synthesis and anti-cancer activity of novel 3-aryl thiophene-2-carbaldehydes and their aryl/heteroarylchalcone derivatives. Rasayan J. Chem., 2016, 9, 31-39.
Liao, X.; Huang, J.; Lin, W.; Long, Z.; Xie, Y.; Ma, W. APTM, a Thiophene heterocyclic compound, inhibits human colon cancer HCT116 cell proliferation through p53-dependent induction of apoptosis. DNA Cell Biol., 2018, 37(2), 70-77.
[http://dx.doi.org/10.1089/dna.2017.3962] [PMID: 29215922]
Mabkhot, Y.; Kheder, N.; Barakat, A.; Choudhary, M.; Yousuf, S.; Frey, W. Synthesis, antimicrobial, anti-cancer and molecular docking of two novel hitherto unreported thiophenes. RSC Advances, 2016, 6, 63724-63729.
Shafeeque, S.; Mohan, S.; Manjunatha, K. Synthesis and biological evaluation of thiophene [3,2-b] pyrrole derivatives as potential anti-inflammatory agents. Indian J. Heterocycl. Chem., 1999, 8, 297-300.
Kumar, P.R.; Raju, S.; Goud, P.S.; Sailaja, M.; Sarma, M.R.; Reddy, G.O.; Kumar, M.P.; Reddy, V.V.; Suresh, T.; Hegde, P. Synthesis and biological evaluation of thiophene [3,2-b] pyrrole derivatives as potential anti-inflammatory agents. Bioorg. Med. Chem., 2004, 12(5), 1221-1230.
[http://dx.doi.org/10.1016/j.bmc.2003.11.003] [PMID: 14980634]
Pillai, A.D.; Rathod, P.D.; Xavier, F.P.; Vasu, K.K.; Padh, H.; Sudarsanam, V. Design, synthesis, and pharmacological evaluation of some 2-[4-morpholino]-3-aryl-5-substituted thiophenes as novel anti-inflammatory agents: generation of a novel anti-inflammatory pharmacophore. Bioorg. Med. Chem., 2004, 12(17), 4667-4671.
[http://dx.doi.org/10.1016/j.bmc.2004.06.028] [PMID: 15358292]
Laddi, U.; Talawar, M.; Desai, S.; Somannavar, Y.; Bennur, R.; Bennur, S.; Srinivas, V.; Srinivas, B. Antiinflammatory activity of 3-substituted-4-amino-5-piperidino-4 (H)-1, 2, 4-triazoles. Indian Drugs, 1998, 35, 509-513.
Mabkhot, Y.N.; Kheder, N.A.; Farag, A.M. Synthesis and antimicrobial activity of some new thieno[2,3-b]thiophene derivatives. Molecules, 2013, 18(4), 4669-4678.
[http://dx.doi.org/10.3390/molecules18044669] [PMID: 23603949]
Mabkhot, Y.N.; Alatibi, F.; El-Sayed, N.N.; Kheder, N.A.; Al-Showiman, S.S. Synthesis and structure-activity relationship of some new thiophene-based heterocycles as potential antimicrobial agents. Molecules, 2016, 21(8), 1036.
[http://dx.doi.org/10.3390/molecules21081036] [PMID: 27517888]
Gadad, A.; Kumar, H.; Shishoo, C.; Mkhazi, I.; Mahajanshetti, C. Synthesis of some 2-aminoacetylamino-3- carbethoxy/anilido-4,5,6,7-tetrahydrobenzo [b] thiophenes for local anesthetic activity. J. Indian Chem. Soc., 1994, 33, 298-301.
Ryu, C.K.; Lee, S.K.; Han, J.Y.; Jung, O.J.; Lee, J.Y.; Jeong, S.H. Synthesis and antifungal activity of 5-arylamino-4,7-dioxobenzo[b]thiophenes. Bioorg. Med. Chem. Lett., 2005, 15(10), 2617-2620.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.042] [PMID: 15863328]
Mabkhot, Y.; Aldawsari, F.; Al-Showiman, S.; Barakat, A.; Soliman, S.; Choudhary, M.; Yousuf, S.; Ben Hadda, T.; Mubarak, M. Synthesis, molecular structure optimization, and cytotoxicity assay of a novel 2-Acetyl-3-amino-5-[(2-oxopropyl) sulfanyl]-4-cyanothiophene. Molecules, 2016, 21, 214.
El-Metwally, S.A.; Khalil, A.K.; El-Naggar, A.M.; El-Sayed, W.M. novel tetrahydrobenzo [b] thiophene compounds exhibit anticancer activity through enhancing apoptosis and inhibiting tyrosine kinase. Anticancer. Agents Med. Chem., 2018, 18(12), 1761-1769.
[http://dx.doi.org/10.2174/1871520618666180813120558] [PMID: 30101717]
Patel, V.; Singh, A.; Jain, D.; Patel, P.; Veerasamy, R.; Sharma, P.; Rajak, H. Combretastatin A-4 based thiophene derivatives as antitumor agent: Development of structure activity correlation model using 3D-QSAR, pharmacophore and docking studies. Future J. Pharmaceut. Sci., 2017, 3, 71-78.
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
Wilson, L.; Jordan, M.A. Microtubule dynamics: taking aim at a moving target. Chem. Biol., 1995, 2(9), 569-573.
[http://dx.doi.org/10.1016/1074-5521(95)90119-1] [PMID: 9383460]
Islam, M.N.; Iskander, M.N. Microtubulin binding sites as target for developing anticancer agents. Mini Rev. Med. Chem., 2004, 4(10), 1077-1104.
[http://dx.doi.org/10.2174/1389557043402946] [PMID: 15579115]
Attard, G.; Greystoke, A.; Kaye, S.; De Bono, J. Update on tubulin-binding agents. Pathol. Biol. (Paris), 2006, 54(2), 72-84.
[http://dx.doi.org/10.1016/j.patbio.2005.03.003] [PMID: 16545633]
Beckers, T.; Mahboobi, A. Natural semi synthetic and synthetic microtubule inhibitors for cancer therapy. Drugs Future, 2003, 28, 767-785.
Li, Q.; Sham, H. Discovery and development of antimitotic agents that inhibit tubulin polymerisation for the treatment of cancer. Expert Opin. Ther., 2002, 12, 1663-1702.
Prinz, H. Recent advances in the field of tubulin polymerization inhibitors. Expert Rev. Anticancer Ther., 2002, 2(6), 695-708.
[http://dx.doi.org/10.1586/14737140.2.6.695] [PMID: 12503216]
Checchi, P.M.; Nettles, J.H.; Zhou, J.; Snyder, J.P.; Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci., 2003, 24(7), 361-365.
[http://dx.doi.org/10.1016/S0165-6147(03)00161-5] [PMID: 12871669]
AbdElhameid; M.K.; Labib, M.B.; Negmeldin, A.T.; Al-Shorbagy, M.; Mohammed, M.R. Design, synthesis, and screening of ortho-amino thiophene carboxamide derivatives on hepatocellular carcinomaas VEGFR-2Inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1472-1493.
[http://dx.doi.org/10.1080/14756366.2018.1503654] [PMID: 30191744]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 01 December, 2020
Page: [217 - 232]
Pages: 16
DOI: 10.2174/1389557520666201202113333
Price: $65

Article Metrics

PDF: 25