Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Enoyl-Acyl Carrier Protein Reductase (INHA): A Remarkable Target to Exterminate Tuberculosis

Author(s): Surabhi Jain*, Smriti Sharma, Dhrubo J. Sen and Saurabh S. Pandya

Volume 19, Issue 3, 2021

Published on: 01 December, 2020

Page: [252 - 266] Pages: 15

DOI: 10.2174/2211352518999201201114426

Price: $65

Abstract

Tuberculosis is an epidemic requiring new molecules with high potency and minimum side effects for its treatment. In the same respect, this review emphasises on important target enoyl-acyl carrier protein reductase or INHA crucial in the completion of the FAS II cycle. INHA has retained its fame since the inception of the drug Isoniazid, as inhibitors have a long residence time hence good activity. One of the causes of the failure of conventional drugs is resistance towards activating or target genes. Here, we propose direct inhibitors that do not need prior activation by Kat G. Some of the categories are Aryl amide, Piperazine, Thiadiazole, Benzamide, etc., that are specifically active against INHA, along with their structure-activity relationship. Many of them are efficient in micromolar concentration, whereas Pyrazole carboxamide is active in nanomolar concentration and derivative of 4-hydroxy pyridones was effective in vivo. Natural products are also in the way to combat tuberculosis. Furthermore, from available proteins of wild and mutant strains, new leads can be designed successfully by utilizing information of co-crystallized ligands.

Keywords: Tuberculosis, enoyl-acyl carrier protein reductase, direct inhibitors, FAS II cycle, pyridomycin, KAT G, Thiadiazole.

Graphical Abstract
[1]
Rawal, T.; Butani, S. Combating Tuberculosis Infection: A Forbidding Challenge. Indian J. Pharm. Sci., 2016, 78(1), 8-16.
[http://dx.doi.org/10.4103/0250-474X.180243] [PMID: 27168676]
[2]
Kakkar, A.K.; Dahiya, N. Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis (Edinb.), 2014, 94(4), 357-362.
[http://dx.doi.org/10.1016/j.tube.2014.04.001] [PMID: 24841672]
[3]
Sharma, S.; Sharma, P.K.; Kumar, N.; Dudhe, R. A review on various heterocyclic moieties and their antitubercular activity. Biomed. Pharmacother., 2011, 65(4), 244-251.
[http://dx.doi.org/10.1016/j.biopha.2011.04.005] [PMID: 21715130]
[4]
Rivers, E.C.; Mancera, R.L. New anti-tuberculosis drugs in clinical trials with novel mechanisms of action. Drug Discov. Today, 2008, 13(23-24), 1090-1098.
[http://dx.doi.org/10.1016/j.drudis.2008.09.004] [PMID: 18840542]
[5]
Smith, T.; Wolff, K.A.; Nguyen, L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol., 2013, 374(4), 53-80.
[PMID: 23179675]
[6]
WHO India Profile. (Available from: www.who.int/country/ind/en)
[7]
Jain, A.; Mondal, R. Extensively drug-resistant tuberculosis: current challenges and threats. FEMS Immunol. Med. Microbiol., 2008, 53(2), 145-150.
[http://dx.doi.org/10.1111/j.1574-695X.2008.00400.x] [PMID: 18479439]
[8]
van Heeswijk, R.P.; Dannemann, B.; Hoetelmans, R.M.W. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J. Antimicrob. Chemother., 2014, 69(9), 2310-2318.
[http://dx.doi.org/10.1093/jac/dku171] [PMID: 24860154]
[9]
Velayati, A.A.; Farnia, P.; Masjedi, M.R. The totally drug resistant tuberculosis (TDR-TB). Int. J. Clin. Exp. Med., 2013, 6(4), 307-309.
[PMID: 23641309]
[10]
Kremer, L.; Dover, L.G.; Carrère, S.; Nampoothiri, K.M.; Lesjean, S.; Brown, A.K.; Brennan, P.J.; Minnikin, D.E.; Locht, C.; Besra, G.S. Mycolic acid biosynthesis and enzymic characterization of the β-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochem. J., 2002, 364(Pt 2), 423-430.
[http://dx.doi.org/10.1042/bj20011628] [PMID: 12023885]
[11]
Massengo-Tiassé, R.P.; Cronan, J.E. Diversity in enoyl-acyl carrier protein reductases. Cell. Mol. Life Sci., 2009, 66(9), 1507-1517.
[http://dx.doi.org/10.1007/s00018-009-8704-7] [PMID: 19151923]
[12]
Anthony, K.G.; Strych, U.; Yeung, K.R.; Shoen, C.S.; Perez, O.; Krause, K.L.; Cynamon, M.H.; Aristoff, P.A.; Koski, R.A. New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis. PLoS One, 2011, 6(5), e20374.
[http://dx.doi.org/10.1371/journal.pone.0020374] [PMID: 21637807]
[13]
Azam, M.A.; Jayaram, U. Inhibitors of alanine racemase enzyme: a review. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 517-526.
[http://dx.doi.org/10.3109/14756366.2015.1050010] [PMID: 26024289]
[14]
Soni, V.; Suryadevara, P.; Sriram, D.; Kumar, S.; Nandicoori, V.K.; Yogeeswari, P. Structure-based design of diverse inhibitors of Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase: combined molecular docking, dynamic simulation, and biological activity. J. Mol. Model., 2015, 21(7), 174-186.
[http://dx.doi.org/10.1007/s00894-015-2704-3] [PMID: 26078037]
[15]
Manina, G.; Pasca, M.R.; Buroni, S.; De Rossi, E.; Riccardi, G. Decaprenylphosphoryl-β-D-ribose 2′-epimerase from Mycobacterium tuberculosis is a magic drug target. Curr. Med. Chem., 2010, 17(27), 3099-3108.
[http://dx.doi.org/10.2174/092986710791959693] [PMID: 20629622]
[16]
Leiba, J.; Syson, K.; Baronian, G.; Zanella-Cléon, I.; Kalscheuer, R.; Kremer, L.; Bornemann, S.; Molle, V. Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation. J. Biol. Chem., 2013, 288(23), 16546-16556.
[http://dx.doi.org/10.1074/jbc.M112.398503] [PMID: 23609448]
[17]
Wang, S.; Eisenberg, D. Crystal structure of the pantothenate synthetase from Mycobacterium tuberculosis, snapshots of the enzyme in action. Biochemistry, 2006, 45(6), 1554-1561.
[http://dx.doi.org/10.1021/bi051873e] [PMID: 16460002]
[18]
Novoa-Aponte, L.; Soto Ospina, C.Y. Mycobacterium tuberculosis P-type ATPases: possible targets for drug or vaccine development. BioMed Res. Int., 2014, •••, 2014296986.
[http://dx.doi.org/10.1155/2014/296986] [PMID: 25110669]
[19]
Nagaraja, V.; Godbole, A.A.; Henderson, S.R.; Maxwell, A. DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov. Today, 2017, 22(3), 510-518.
[http://dx.doi.org/10.1016/j.drudis.2016.11.006] [PMID: 27856347]
[20]
Koehn, E.M.; Kohen, A. Flavin-dependent thymidylate synthase: a novel pathway towards thymine. Arch. Biochem. Biophys., 2010, 493(1), 96-102.
[http://dx.doi.org/10.1016/j.abb.2009.07.016] [PMID: 19643076]
[21]
Olaleye, O.; Raghunand, T.R.; Bhat, S.; He, J.; Tyagi, S.; Lamichhane, G.; Gu, P.; Zhou, J.; Zhang, Y.; Grosset, J.; Bishai, W.R.; Liu, J.O. Methionine aminopeptidases from Mycobacterium tuberculosis as novel antimycobacterial targets. Chem. Biol., 2010, 17(1), 86-97.
[http://dx.doi.org/10.1016/j.chembiol.2009.12.014] [PMID: 20142044]
[22]
Dutta, N.K.; He, R.; Pinn, M.L.; He, Y.; Burrows, F.; Zhang, Z.Y.; Karakousis, P.C. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infect. Dis., 2016, 2(3), 231-239.
[http://dx.doi.org/10.1021/acsinfecdis.5b00133] [PMID: 27478867]
[23]
Lee, Y-V.; Wahab, H.A.; Choong, Y.S. Potential Inhibitors for IsocitrateLyase of Mycobacterium Tuberculosis and Non- M. Tuberculosis : A Summary. BioMed Res. Int., 2015, 2015, 1-20.
[24]
Prisic, S.; Husson, R.N. Mycobacterium tuberculosis Serine/Threonine Protein Kinases. Microbiol. Spectr., 2014, 2(5), 1-42.
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0006-2013] [PMID: 25429354]
[25]
Parandhaman, D.K.; Hanna, L.E.; Narayanan, S. PknE, a serine/threonine protein kinase of Mycobacterium tuberculosis initiates survival crosstalk that also impacts HIV coinfection. PLoS One, 2014, 9(1), e83541.
[http://dx.doi.org/10.1371/journal.pone.0083541] [PMID: 24421891]
[26]
Pichota, A.; Duraiswamy, J.; Yin, Z.; Keller, T.H.; Alam, J.; Liung, S.; Lee, G.; Ding, M.; Wang, G.; Chan, W.L.; Schreiber, M.; Ma, I.; Beer, D.; Ngew, X.; Mukherjee, K.; Nanjundappa, M.; Teo, J.W.P.; Thayalan, P.; Yap, A.; Dick, T.; Meng, W.; Xu, M.; Koehn, J.; Pan, S.H.; Clark, K.; Xie, X.; Shoen, C.; Cynamon, M. Peptide deformylase inhibitors of Mycobacterium tuberculosis: synthesis, structural investigations, and biological results. Bioorg. Med. Chem. Lett., 2008, 18(24), 6568-6572.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.040] [PMID: 19008098]
[27]
Borsari, C.; Ferrari, S.; Venturelli, A.; Costi, M.P. Target-based approaches for the discovery of new antimycobacterial drugs. Drug Discov. Today, 2017, 22(3), 576-584.
[http://dx.doi.org/10.1016/j.drudis.2016.11.014] [PMID: 27890671]
[28]
Khanapur, M.; Alvala, M.; Prabhakar, M.; Shiva Kumar, K.; Edwin, R.K.; Sri Saranya, P.S.V.K.; Patel, R.K.; Bulusu, G.; Misra, P.; Pal, M. Mycobacterium tuberculosis chorismate mutase: A potential target for TB. Bioorg. Med. Chem., 2017, 25(6), 1725-1736.
[http://dx.doi.org/10.1016/j.bmc.2017.02.001] [PMID: 28202315]
[29]
Abrahams, K.A.; Besra, G.S. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology, 2018, 145(2), 116-133.
[http://dx.doi.org/10.1017/S0031182016002377] [PMID: 27976597]
[30]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M-A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[31]
Kelley, C.L.; Rouse, D.A.; Morris, S.L. Analysis of ahpC gene mutations in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1997, 41(9), 2057-2058.
[http://dx.doi.org/10.1128/AAC.41.9.2057] [PMID: 9303417]
[32]
Takayama, K.; Wang, C.; Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev., 2005, 18(1), 81-101.
[http://dx.doi.org/10.1128/CMR.18.1.81-101.2005] [PMID: 15653820]
[33]
Morlock, G.P.; Metchock, B.; Sikes, D.; Crawford, J.T.; Cooksey, R.C. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother., 2003, 47(12), 3799-3805.
[http://dx.doi.org/10.1128/AAC.47.12.3799-3805.2003] [PMID: 14638486]
[34]
Lee, A.S.G.; Teo, A.S.M.; Wong, S.Y. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother., 2001, 45(7), 2157-2159.
[http://dx.doi.org/10.1128/AAC.45.7.2157-2159.2001] [PMID: 11408244]
[35]
Tran, S.L.; Cook, G.M. The F1Fo-ATP synthase of Mycobacterium smegmatis is essential for growth. J. Bacteriol., 2005, 187(14), 5023-5028.
[http://dx.doi.org/10.1128/JB.187.14.5023-5028.2005] [PMID: 15995221]
[36]
Argyrou, A.; Vetting, M.W.; Blanchard, J.S. New insight into the mechanism of action of and resistance to isoniazid: interaction of Mycobacterium tuberculosis enoyl-ACP reductase with INH-NADP. J. Am. Chem. Soc., 2007, 129(31), 9582-9583.
[http://dx.doi.org/10.1021/ja073160k] [PMID: 17636923]
[37]
Safi, H.; Sayers, B.; Hazbón, M.H.; Alland, D. Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin. Antimicrob. Agents Chemother., 2008, 52(6), 2027-2034.
[http://dx.doi.org/10.1128/AAC.01486-07] [PMID: 18378710]
[38]
Vilchèze, C.; Morbidoni, H.R.; Weisbrod, T.R.; Iwamoto, H.; Kuo, M.; Sacchettini, J.C.; Jacobs, W.R., Jr Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol., 2000, 182(14), 4059-4067.
[http://dx.doi.org/10.1128/JB.182.14.4059-4067.2000] [PMID: 10869086]
[39]
Matviiuk, T.; Rodriguez, F.; Saffon, N.; Mallet-Ladeira, S.; Gorichko, M.; de Jesus Lopes Ribeiro, A.L.; Pasca, M.R.; Lherbet, C.; Voitenko, Z.; Baltas, M. Design, chemical synthesis of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives and biological activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2013, 70, 37-48.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.041] [PMID: 24140915]
[40]
Holas, O.; Ondrejcek, P.; Dolezal, M. Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors as potential antituberculotics: development in the past decade. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 629-648.
[http://dx.doi.org/10.3109/14756366.2014.959512] [PMID: 25383419]
[41]
Manjunatha, U.H.; S Rao, S.P. Kondreddi, R.R.; Noble, C.G.; Camacho, L.R.; Tan, B.H.; Ng, S.H.; Ng, P.S.; Ma, N.L.; Lakshminarayana, S.B.; Herve, M.; Barnes, S.W.; Yu, W.; Kuhen, K.; Blasco, F.; Beer, D.; Walker, J.R.; Tonge, P.J.; Glynne, R.; Smith, P.W.; Diagana, T.T. Direct inhibitors of InhA are active against Mycobacterium tuberculosis. Sci. Transl. Med., 2015, 7(269), 269ra3.
[http://dx.doi.org/10.1126/scitranslmed.3010597] [PMID: 25568071]
[42]
Pedgaonkar, G.S.; Sridevi, J.P.; Jeankumar, V.U.; Saxena, S.; Devi, P.B.; Renuka, J.; Yogeeswari, P.; Sriram, D. Development of 2-(4-oxoquinazolin-3(4H)-yl)acetamide derivatives as novel enoyl-acyl carrier protein reductase (InhA) inhibitors for the treatment of tuberculosis. Eur. J. Med. Chem., 2014, 86, 613-627.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.028] [PMID: 25218910]
[43]
Xin, H.; Alian, A. Montellano, P.R.O.de. Pyrrolidine Carboxamides as a Novel Class of Inhibitors of Enoyl Acyl Carrier Protein Reductase (InhA) from Mycobacterium Tuberculosis. J. Med. Chem., 2006, 49(21), 6308-6323.
[http://dx.doi.org/10.1021/jm060715y] [PMID: 17034137]
[44]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1)235-242.www.rcsb.org
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[45]
Joshi, S.D.; Dixit, S.R.; Kulkarni, V.H.; Lherbet, C.; Nadagouda, M.N.; Aminabhavi, T.M. Synthesis, biological evaluation and in silico molecular modeling of pyrrolyl benzohydrazide derivatives as enoyl ACP reductase inhibitors. Eur. J. Med. Chem., 2017, 126, 286-297.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.032] [PMID: 27889632]
[46]
He, X.; Alian, A.; Ortiz de Montellano, P.R. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg. Med. Chem., 2007, 15(21), 6649-6658.
[http://dx.doi.org/10.1016/j.bmc.2007.08.013] [PMID: 17723305]
[47]
Menendez, C.; Gau, S.; Lherbet, C.; Rodriguez, F.; Inard, C.; Pasca, M.R.; Baltas, M. Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 2011, 46(11), 5524-5531.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.013] [PMID: 21944473]
[48]
Rotta, M.; Pissinate, K.; Villela, A.D.; Back, D.F.; Timmers, L.F.S.M.; Bachega, J.F.R.; de Souza, O.N. Santos, D. S.; Basso, L. A.; Machado, P. Piperazine Derivatives: Synthesis, Inhibition of the Mycobacterium Tuberculosis Enoylacyl Carrier Protein Reductase and SAR Studies. Eur. J. Med. Chem., 2015, 90, 436-447.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.034] [PMID: 25461892]
[49]
Kuo, M.R.; Morbidoni, H.R.; Alland, D.; Sneddon, S.F.; Gourlie, B.B.; Staveski, M.M.; Leonard, M.; Gregory, J.S.; Janjigian, A.D.; Yee, C.; Musser, J.M.; Kreiswirth, B.; Iwamoto, H.; Perozzo, R.; Jacobs, W.R., Jr; Sacchettini, J.C.; Fidock, D.A. Targeting tuberculosis and malaria through inhibition of Enoyl reductase: compound activity and structural data. J. Biol. Chem., 2003, 278(23), 20851-20859.
[http://dx.doi.org/10.1074/jbc.M211968200] [PMID: 12606558]
[50]
Guardia, A.; Gulten, G.; Fernandez, R.; Gómez, J.; Wang, F.; Convery, M.; Blanco, D.; Martínez, M.; Pérez-Herrán, E.; Alonso, M.; Ortega, F.; Rullás, J.; Calvo, D.; Mata, L.; Young, R.; Sacchettini, J.C.; Mendoza-Losana, A.; Remuiñán, M.; Ballell Pages, L.; Castro-Pichel, J. N-Benzyl-4-((heteroaryl)methyl)benzamides: A New Class of Direct NADH-Dependent 2-trans Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors with Antitubercular Activity. ChemMedChem, 2016, 11(7), 687-701.
[http://dx.doi.org/10.1002/cmdc.201600020] [PMID: 26934341]
[51]
Saharan, V.D.; Mahajan, S.S. Development of gallic acid formazans as novel enoyl acyl carrier protein reductase inhibitors for the treatment of tuberculosis. Bioorg. Med. Chem. Lett., 2017, 27(4), 808-815.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.026] [PMID: 28117201]
[52]
Wang, T.; Tang, Y.; Yang, Y.; An, Q.; Sang, Z.; Yang, T.; Liu, P.; Zhang, T.; Deng, Y.; Luo, Y. Discovery of novel anti-tuberculosis agents with pyrrolo[1,2-a]quinoxaline-based scaffold. Bioorg. Med. Chem. Lett., 2018, 28(11), 2084-2090.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.043] [PMID: 29748048]
[53]
Wall, M.D.; Oshin, M.; Chung, G.A.C.; Parkhouse, T.; Gore, A.; Herreros, E.; Cox, B.; Duncan, K.; Evans, B.; Everett, M.; Mendoza, A. Evaluation of N-(phenylmethyl)-4-[5-(phenylmethyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-4-yl]benzamide inhibitors of Mycobacterium tuberculosis growth. Bioorg. Med. Chem. Lett., 2007, 17(10), 2740-2744.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.078] [PMID: 17418567]
[54]
Encinas, L.; O’Keefe, H.; Neu, M.; Remuiñán, M.J.; Patel, A.M.; Guardia, A.; Davie, C.P.; Pérez-Macías, N.; Yang, H.; Convery, M.A.; Messer, J.A.; Pérez-Herrán, E.; Centrella, P.A.; Alvarez-Gómez, D.; Clark, M.A.; Huss, S.; O’Donovan, G.K.; Ortega-Muro, F.; McDowell, W.; Castañeda, P.; Arico-Muendel, C.C.; Pajk, S.; Rullás, J.; Angulo-Barturen, I.; Alvarez-Ruíz, E.; Mendoza-Losana, A.; Ballell Pages, L.; Castro-Pichel, J.; Evindar, G. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA. J. Med. Chem., 2014, 57(4), 1276-1288.
[http://dx.doi.org/10.1021/jm401326j] [PMID: 24450589]
[55]
Pajk, S.; Živec, M.; Šink, R.; Sosič, I.; Neu, M.; Chung, C.W.; Martínez-Hoyos, M.; Pérez-Herrán, E.; Álvarez-Gómez, D.; Álvarez-Ruíz, E.; Mendoza-Losana, A.; Castro-Pichel, J.; Barros, D.; Ballell-Pages, L.; Young, R.J.; Convery, M.A.; Encinas, L.; Gobec, S. New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. Eur. J. Med. Chem., 2016, 112, 252-257.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.008] [PMID: 26900657]
[56]
Parikh, S.L.; Xiao, G.; Tonge, P.J. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry, 2000, 39(26), 7645-7650.
[http://dx.doi.org/10.1021/bi0008940] [PMID: 10869170]
[57]
Stewart, M.J.; Parikh, S.; Xiao, G.; Tonge, P.J.; Kisker, C. Structural basis and mechanism of enoyl reductase inhibition by triclosan. J. Mol. Biol., 1999, 290(4), 859-865.
[http://dx.doi.org/10.1006/jmbi.1999.2907] [PMID: 10398587]
[58]
Luckner, S.R.; Liu, N. am Ende, C.W.; Tonge, P.J.; Kisker, C. A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis. J. Biol. Chem., 2010, 285(19), 14330-14337.
[http://dx.doi.org/10.1074/jbc.M109.090373] [PMID: 20200152]
[59]
Kar, S.S.; Bhat G, V.; Rao, P.P.N.; Shenoy, V.P.; Bairy, I.; Shenoy, G.G. Rational design and synthesis of novel diphenyl ether derivatives as antitubercular agents. Drug Des. Devel. Ther., 2016, 10, 2299-2310.
[http://dx.doi.org/10.2147/DDDT.S104037] [PMID: 27486307]
[60]
Pan, P.; Tonge, P.J.; Targeting Inh, A. Targeting InhA, the FASII enoyl-ACP reductase: SAR studies on novel inhibitor scaffolds. Curr. Top. Med. Chem., 2012, 12(7), 672-693.
[http://dx.doi.org/10.2174/156802612799984535] [PMID: 22283812]
[61]
Li, H.J.; Lai, C.T.; Pan, P.; Yu, W.; Liu, N.; Bommineni, G.R.; Garcia-Diaz, M.; Simmerling, C.; Tonge, P.J. A structural and energetic model for the slow-onset inhibition of the Mycobacterium tuberculosis enoyl-ACP reductase InhA. ACS Chem. Biol., 2014, 9(4), 986-993.
[http://dx.doi.org/10.1021/cb400896g] [PMID: 24527857]
[62]
Stec, J.; Vilchèze, C.; Lun, S.; Perryman, A.L.; Wang, X.; Freundlich, J.S.; Bishai, W.; Jacobs, W.R., Jr; Kozikowski, A.P. Biological evaluation of potent triclosan-derived inhibitors of the enoyl-acyl carrier protein reductase InhA in drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis. ChemMedChem, 2014, 9(11), 2528-2537.
[http://dx.doi.org/10.1002/cmdc.201402255] [PMID: 25165007]
[63]
Tonge, P.J.; Sullivan, T.; Johnson, F. Research Foundation of State University of New York. Diphenyl ether antimicrobial compounds. US2006/0041025 A1. 2006.
[64]
Sullivan, T.J.; Truglio, J.J.; Boyne, M.E.; Novichenok, P.; Zhang, X.; Stratton, C.F.; Li, H.J.; Kaur, T.; Amin, A.; Johnson, F.; Slayden, R.A.; Kisker, C.; Tonge, P.J. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol., 2006, 1(1), 43-53.
[http://dx.doi.org/10.1021/cb0500042] [PMID: 17163639]
[65]
Šink, R.; Sosič, I.; Živec, M.; Fernandez-Menendez, R.; Turk, S.; Pajk, S.; Alvarez-Gomez, D.; Lopez-Roman, E.M.; Gonzales-Cortez, C.; Rullas-Triconado, J.; Angulo-Barturen, I.; Barros, D.; Ballell-Pages, L.; Young, R.J.; Encinas, L.; Gobec, S. Design, synthesis, and evaluation of new thiadiazole-based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis. J. Med. Chem., 2015, 58(2), 613-624.
[http://dx.doi.org/10.1021/jm501029r] [PMID: 25517015]
[66]
Pedgaonkar, G.S.; Sridevi, J.P.; Jeankumar, V.U.; Saxena, S.; Devi, P.B.; Renuka, J.; Yogeeswari, P.; Sriram, D. Development of benzo[d]oxazol-2(3H)-ones derivatives as novel inhibitors of Mycobacterium tuberculosis InhA. Bioorg. Med. Chem., 2014, 22(21), 6134-6145.
[http://dx.doi.org/10.1016/j.bmc.2014.08.031] [PMID: 25282650]
[67]
Hartkoorn, R.C.; Sala, C.; Neres, J.; Pojer, F.; Magnet, S.; Mukherjee, R.; Uplekar, S.; Boy-Röttger, S.; Altmann, K.H.; Cole, S.T. Towards a new tuberculosis drug: pyridomycin - nature’s isoniazid. EMBO Mol. Med., 2012, 4(10), 1032-1042.
[http://dx.doi.org/10.1002/emmm.201201689] [PMID: 22987724]
[68]
Hartkoorn, R.C.; Pojer, F.; Read, J.A.; Gingell, H.; Neres, J.; Horlacher, O.P.; Altmann, K.H.; Cole, S.T. Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. Nat. Chem. Biol., 2014, 10(2), 96-98.
[http://dx.doi.org/10.1038/nchembio.1405] [PMID: 24292073]
[69]
Rozman, K.; Sosic, I.; Fernandez, R.; Young, R.; Mendoza, A.; Gobec, S.; Encinas, L. A new ‘golden age’ for the antitubercular target InhA. Drug Discov. Today, 2017, 22(3), 492-502.
[PMID: 27663094]
[70]
Borad, M.A.; Bhoi, M.N.; Rathwa, S.K.; Vasava, M.S.; Patel, H.D.; Patel, C.N.; Pandya, H.A.; Pithawala, E.A.; Georrge, J.J. Microwave-Assisted ZrSiO2 Catalysed Synthesis, Characterization and Computational Study of Novel Spiro[Indole-Thiazolidines] Derivatives as Anti-tubercular Agents. Interdiscip. Sci., 2018, 10(2), 411-418.
[http://dx.doi.org/10.1007/s12539-016-0195-2] [PMID: 27837427]
[71]
Khan, G.A.; War, J.A.; Kumar, A.; Sheik, I.A.; Saxena, A.; Das, R. A facile synthesis of some novel indole derivatives as potential antitubercular agents. J. Taibah Univ. Sci, 2017, 11, 910-921.
[http://dx.doi.org/10.1016/j.jtusci.2016.09.002]
[72]
Khan, G.A.; War, J.A.; Naikoo, G.A.; Pandit, U.J.; Das, R. 2-Porous CuO catalyzed green synthesis of some novel 3-alkylated indoles as potent antitubercular agent. J. Saudi Chem. Soc., 2018, 22, 6-15.
[http://dx.doi.org/10.1016/j.jscs.2016.03.009]
[73]
Desai, N.C.; Somani, H.; Trivedi, A.; Bhatt, K.; Nawale, L.; Khedkar, V.M.; Jha, P.C.; Sarkar, D. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(7), 1776-1783.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.043] [PMID: 26920799]
[74]
Rathod, A.S.; Godipurge, S.S. Microwave Assisted, Solvent-Free, “Green” Synthesis of Novel Indole Analogs as Potent Antitubercular and Antimicrobial Agents and Their Molecular Docking Studies. Russ. J. Gen. Chem., 2018, 88, 1238-1246.
[http://dx.doi.org/10.1134/S1070363218060324]
[75]
Lu, X.; Huang, K.; You, Q. Enoyl acyl carrier protein reductase inhibitors: a patent review (2006 - 2010). Expert Opin. Ther. Pat., 2011, 21(7), 1007-1022.
[http://dx.doi.org/10.1517/13543776.2011.581227] [PMID: 21651455]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy