Calcium Carbonate Microparticles as Carriers of 224Ra: Impact of Specific Activity in Mice with Intraperitoneal Ovarian Cancer

Author(s): Ruth Gong Li, Elisa Napoli, Ida Sofie Jorstad, Tina Bjørnlund Bønsdorff, Asta Juzeniene, Øyvind Sverre Bruland, Roy Hartvig Larsen, Sara Westrøm*

Journal Name: Current Radiopharmaceuticals

Volume 14 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Patients with advanced-stage ovarian cancer face a poor prognosis because of recurrent peritoneal cavity metastases following surgery and chemotherapy. Alpha-emitters may enable the efficient treatment of such disseminated diseases because of their short range and highly energetic radiation. Radium-224 is a candidate α-emitter due to its convenient 3.6-day half-life, with more than 90% of the decay energy originating from α-particles. However, its inherent skeletal accumulation must be overcome to facilitate intraperitoneal delivery of the radiation dose. Therefore, 224Ra-labeled CaCO3 microparticles have been developed.

Objective: The antitumor effect of CaCO3 microparticles as a carrier for 224Ra was investigated, with an emphasis on the ratio of activity to mass dose of CaCO3, that is, specific activity.

Methods: Nude athymic mice were inoculated intraperitoneally with human ovarian cancer cells (ES-2) and treated with a single intraperitoneal injection of 224Ra-labeled CaCO3 microparticles with varying combinations of mass and activity dose, or cationic 224Ra in solution. Survival and ascites volume at sacrifice were evaluated.

Results: Significant therapeutic effect was achieved for all tested specific activities ranging from 0.4 to 4.6 kBq/mg. Although treatment with a mean activity dose of 1305 kBq/kg of cationic 224Ra prolonged the survival compared with the control, equivalent median survival could be achieved with 224Ra-labeled microparticles with a mean dose of only 420 kBq/kg. The best outcome was achieved with the highest specific activities (2.6 and 4.6 kBq/mg).

Conclusion: Radium-224-labeled CaCO3 microparticles present a promising therapy against cancer dissemination in body cavities.

Keywords: Alpha therapy, calcium carbonate, microparticles, radium-224, 224Ra, peritoneal carcinomatosis, intraperitoneal, ovarian cancer.

[1]
Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo E Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P. CONCORD Working Group. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075.
[http://dx.doi.org/10.1016/S0140-6736(17)33326-3] [PMID: 29395269]
[2]
Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; Chen, H.S.; Feuer, E.J.; Cronin, K.A. SEER Cancer Statistics Review 2016, https://seer.cancer.gov/csr/1975_2016/
[3]
Ushijima, K. Treatment for recurrent ovarian cancer-at first relapse. J. Oncol., 2010, 2010, 497429.
[http://dx.doi.org/10.1155/2010/497429] [PMID: 20066162]
[4]
Karam, A.; Ledermann, J.A.; Kim, J-W.; Sehouli, J.; Lu, K.; Gourley, C.; Katsumata, N.; Burger, R.A.; Nam, B-H.; Bacon, M.; Ng, C.; Pfisterer, J.; Bekkers, R.L.M.; Casado Herráez, A.; Redondo, A.; Fujiwara, H.; Gleeson, N.; Rosengarten, O.; Scambia, G.; Zhu, J.; Okamoto, A.; Stuart, G.; Ochiai, K. participants of the 5th Ovarian Cancer Consensus Conference. Fifth Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup: first-line interventions. Ann. Oncol., 2017, 28(4), 711-717.
[http://dx.doi.org/10.1093/annonc/mdx011] [PMID: 28327917]
[6]
Azaïs, H.; Estevez, J.P.; Foucher, P.; Kerbage, Y.; Mordon, S.; Collinet, P. Dealing with microscopic peritoneal metastases of epithelial ovarian cancer. A surgical challenge. Surg. Oncol., 2017, 26(1), 46-52.
[http://dx.doi.org/10.1016/j.suronc.2017.01.001] [PMID: 28317584]
[7]
Rosenshein, N.B.; Leichner, P.K.; Vogelsang, G. Radiocolloids in the treatment of ovarian cancer. Obstet. Gynecol. Surv., 1979, 34(9), 708-720.
[http://dx.doi.org/10.1097/00006254-197909000-00028] [PMID: 386194]
[8]
Stewart, J.S.; Hird, V.; Snook, D.; Sullivan, M.; Hooker, G.; Courtenay-Luck, N.; Sivolapenko, G.; Griffiths, M.; Myers, M.J.; Lambert, H.E. Intraperitoneal radioimmunotherapy for ovarian cancer: pharmacokinetics, toxicity, and efficacy of I-131 labeled monoclonal antibodies. Int. J. Radiat. Oncol. Biol. Phys., 1989, 16(2), 405-413.
[http://dx.doi.org/10.1016/0360-3016(89)90337-4] [PMID: 2921145]
[9]
Jacobs, A.J.; Fer, M.; Su, F.M.; Breitz, H.; Thompson, J.; Goodgold, H.; Cain, J.; Heaps, J.; Weiden, P. A phase I trial of a rhenium 186-labeled monoclonal antibody administered intraperitoneally in ovarian carcinoma: toxicity and clinical response. Obstet. Gynecol., 1993, 82(4 Pt 1), 586-593.
[PMID: 8377986]
[10]
Alvarez, R.D.; Partridge, E.E.; Khazaeli, M.B.; Plott, G.; Austin, M.; Kilgore, L.; Russell, C.D.; Liu, T.; Grizzle, W.E.; Schlom, J.; LoBuglio, A.F.; Meredith, R.F. Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. Gynecol. Oncol., 1997, 65(1), 94-101.
[http://dx.doi.org/10.1006/gyno.1996.4577] [PMID: 9103398]
[11]
Alvarez, R.D.; Huh, W.K.; Khazaeli, M.B.; Meredith, R.F.; Partridge, E.E.; Kilgore, L.C.; Grizzle, W.E.; Shen, S.; Austin, J.M.; Barnes, M.N.; Carey, D.; Schlom, J.; LoBuglio, A.F. A Phase I study of combined modality 90Yttrium-CC49 intraperitoneal radioimmunotherapy for ovarian cancer. Clin. Cancer Res., 2002, 8(9), 2806-2811.
[PMID: 12231520]
[12]
Verheijen, R.H.; Massuger, L.F.; Benigno, B.B.; Epenetos, A.A.; Lopes, A.; Soper, J.T.; Markowska, J.; Vyzula, R.; Jobling, T.; Stamp, G.; Spiegel, G.; Thurston, D.; Falke, T.; Lambert, J.; Seiden, M.V. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J. Clin. Oncol., 2006, 24(4), 571-578.
[http://dx.doi.org/10.1200/JCO.2005.02.5973] [PMID: 16446329]
[13]
Vergote, I.B.; Vergote-De Vos, L.N.; Abeler, V.M.; Aas, M.; Lindegaard, M.W.; Kjørstad, K.E.; Tropé, C.G. Randomized trial comparing cisplatin with radioactive phosphorus or whole-abdomen irradiation as adjuvant treatment of ovarian cancer. Cancer, 1992, 69(3), 741-749.
[http://dx.doi.org/10.1002/1097-0142(19920201)69:3<741::AID-CNCR2820690322>3.0.CO;2-G] [PMID: 1730124]
[14]
Bakri, Y.N.; Given, F.T., Jr; Peeples, W.J.; Frazier, A.B. Complications from intraperitoneal radioactive phosphorus in ovarian malignancies. Gynecol. Oncol., 1985, 21(3), 294-299.
[http://dx.doi.org/10.1016/0090-8258(85)90266-5] [PMID: 4040049]
[15]
Vergote, I.; Larsen, R.H.; de Vos, L.; Nesland, J.M.; Bruland, O.; Bjørgum, J.; Alstad, J.; Tropé, C.; Nustad, K. Therapeutic efficacy of the α-emitter 211At bound on microspheres compared with 90Y and 32P colloids in a murine intraperitoneal tumor model. Gynecol. Oncol., 1992, 47(3), 366-372.
[http://dx.doi.org/10.1016/0090-8258(92)90141-5] [PMID: 1473751]
[16]
Bloomer, W.D.; McLaughlin, W.H.; Lambrecht, R.M.; Atcher, R.W.; Mirzadeh, S.; Madara, J.L.; Milius, R.A.; Zalutsky, M.R.; Adelstein, S.J.; Wolf, A.P. 211At radiocolloid therapy: further observations and comparison with radiocolloids of 32P, 165Dy, and 90Y. Int. J. Radiat. Oncol. Biol. Phys., 1984, 10(3), 341-348.
[http://dx.doi.org/10.1016/0360-3016(84)90052-X] [PMID: 6706730]
[17]
Seidl, C.; Zöckler, C.; Beck, R.; Quintanilla-Martinez, L.; Bruchertseifer, F.; Senekowitsch-Schmidtke, R. 177Lu-immunotherapy of experimental peritoneal carcinomatosis shows comparable effectiveness to 213Bi-immunotherapy, but causes toxicity not observed with 213Bi. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(2), 312-322.
[http://dx.doi.org/10.1007/s00259-010-1639-2] [PMID: 21072513]
[18]
Meredith, R.F.; Torgue, J.J.; Rozgaja, T.A.; Banaga, E.P.; Bunch, P.W.; Alvarez, R.D.; Straughn, J.M.; Dobelbower, M.C.; Lowy, A.M. Safety and Outcome Measures of First-in-human Intraperitoneal α Radioimmunotherapy with 212Pb-TCMC-Trastuzumab. Am. J. Clin. Oncol., 2018, 41(7), 716-721.
[PMID: 27906723]
[19]
Andersson, H.; Cederkrantz, E.; Bäck, T.; Divgi, C.; Elgqvist, J.; Himmelman, J.; Horvath, G.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Palm, S.; Hultborn, R. Intraperitoneal α-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab’)2- a phase I study. J. Nucl. Med., 2009, 50(7), 1153-1160.
[http://dx.doi.org/10.2967/jnumed.109.062604] [PMID: 19525452]
[20]
Hallqvist, A.; Bergmark, K.; Bäck, T.; Andersson, H.; Dahm-Kähler, P.; Johansson, M.; Lindegren, S.; Jensen, H.; Jacobsson, L.; Hultborn, R.; Palm, S.; Albertsson, P. Intraperitoneal α-Emitting Radioimmunotherapy with 211At in Relapsed Ovarian Cancer: Long-Term Follow-up with Individual Absorbed Dose Estimations. J. Nucl. Med., 2019, 60(8), 1073-1079.
[http://dx.doi.org/10.2967/jnumed.118.220384] [PMID: 30683761]
[21]
Humm, J.L.; Sartor, O.; Parker, C.; Bruland, Ø.S.; Macklis, R. Radium-223 in the treatment of osteoblastic metastases: a critical clinical review. Int. J. Radiat. Oncol. Biol. Phys., 2015, 91(5), 898-906.
[http://dx.doi.org/10.1016/j.ijrobp.2014.12.061] [PMID: 25832684]
[22]
Henriksen, G.; Hoff, P.; Larsen, R.H. Evaluation of potential chelating agents for radium. Appl. Radiat. Isot., 2002, 56(5), 667-671.
[http://dx.doi.org/10.1016/S0969-8043(01)00282-2] [PMID: 11993940]
[23]
Chen, X.; Ji, M.; Fisher, D.R.; Wai, C.M. Ionizable Calixarene-Crown Ethers with High Selectivity for Radium over Light Alkaline Earth Metal Ions. Inorg. Chem., 2009, 38(23), 5449-5452.
[http://dx.doi.org/10.1021/ic990135+] [PMID: 21494420]
[24]
Gott, M.; Yang, P.; Kortz, U.; Stephan, H.; Pietzsch, H-J.; Mamat, C. A 224Ra-labeled polyoxopalladate as a putative radiopharmaceutical. Chem. Commun. (Camb.), 2019, 55(53), 7631-7634.
[http://dx.doi.org/10.1039/C9CC02587A] [PMID: 31197298]
[25]
Rojas, J.V.; Woodward, J.D.; Chen, N.; Rondinone, A.J.; Castano, C.H.; Mirzadeh, S. Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for 223Ra and 225Ra for targeted alpha therapy. Nucl. Med. Biol., 2015, 42(7), 614-620.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.03.007] [PMID: 25900730]
[26]
Piotrowska, A.; Męczyńska-Wielgosz, S.; Majkowska-Pilip, A.; Koźmiński, P.; Wójciuk, G.; Cędrowska, E.; Bruchertseifer, F.; Morgenstern, A.; Kruszewski, M.; Bilewicz, A. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy. Nucl. Med. Biol., 2017, 47, 10-18.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.11.005] [PMID: 28043005]
[27]
Piotrowska, A.; Leszczuk, E.; Bruchertseifer, F.; Morgenstern, A.; Bilewicz, A. Functionalized NaA nanozeolites labeled with 224,225Ra for targeted alpha therapy. J. Nanopart. Res., 2013, 15, 2082.
[http://dx.doi.org/10.1007/s11051-013-2082-7] [PMID: 24307862]
[28]
Reissig, F.; Hübner, R.; Steinbach, J.; Pietzsch, H-J.; Mamat, C. Facile preparation of radium-doped, functionalized nanoparticles as carriers for targeted alpha therapy. Inorg. Chem. Front., 2019, 6, 1341-1349.
[http://dx.doi.org/10.1039/C9QI00208A]
[29]
Kozempel, J.; Vlk, M.; Málková, E.; Bajzíková, A.; Bárta, J.; Santos-Oliveira, R.; Rossi, A.M. Prospective carriers of 223Ra for targeted alpha particle therapy. J. Radioanal. Nucl. Chem., 2015, 304, 443-447.
[http://dx.doi.org/10.1007/s10967-014-3615-y]
[30]
Vasiliev, A.N.; Severin, A.; Lapshina, E.; Chernykh, E.; Ermolaev, S.; Kalmykov, S. Hydroxyapatite particles as carriers for 223Ra. J. Radioanal. Nucl. Chem., 2017, 311, 1503-1509.
[http://dx.doi.org/10.1007/s10967-016-5007-y]
[31]
Henriksen, G.; Schoultz, B.W.; Michaelsen, T.E.; Bruland, Ø.S.; Larsen, R.H. Sterically stabilized liposomes as a carrier for α-emitting radium and actinium radionuclides. Nucl. Med. Biol., 2004, 31(4), 441-449.
[http://dx.doi.org/10.1016/j.nucmedbio.2003.11.004] [PMID: 15093814]
[32]
Jonasdottir, T.J.; Fisher, D.R.; Borrebaek, J.; Bruland, O.S.; Larsen, R.H. First in vivo evaluation of liposome-encapsulated 223Ra as a potential alpha-particle-emitting cancer therapeutic agent. Anticancer Res., 2006, 26(4B), 2841-2848.
[PMID: 16886603]
[33]
Cooks, T.; Arazi, L.; Schmidt, M.; Marshak, G.; Kelson, I.; Keisari, Y. Growth retardation and destruction of experimental squamous cell carcinoma by interstitial radioactive wires releasing diffusing alpha-emitting atoms. Int. J. Cancer, 2008, 122(7), 1657-1664.
[http://dx.doi.org/10.1002/ijc.23268] [PMID: 18059026]
[34]
Cooks, T.; Schmidt, M.; Bittan, H.; Lazarov, E.; Arazi, L.; Kelson, I.; Keisari, Y. Local control of lung derived tumors by diffusing alpha-emitting atoms released from intratumoral wires loaded with radium-224. Int. J. Radiat. Oncol. Biol. Phys., 2009, 74(3), 966-973.
[http://dx.doi.org/10.1016/j.ijrobp.2009.02.063] [PMID: 19480976]
[35]
Cooks, T.; Tal, M.; Raab, S.; Efrati, M.; Reitkopf, S.; Lazarov, E.; Etzyoni, R.; Schmidt, M.; Arazi, L.; Kelson, I.; Keisari, Y. Intratumoral 224Ra-loaded wires spread alpha-emitters inside solid human tumors in athymic mice achieving tumor control. Anticancer Res., 2012, 32(12), 5315-5321.
[PMID: 23225432]
[36]
Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I. Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters. Phys. Med. Biol., 2007, 52(16), 5025-5042.
[http://dx.doi.org/10.1088/0031-9155/52/16/021] [PMID: 17671351]
[37]
Bellia, S.R.; Feliciani, G.; Duca, M.D.; Monti, M.; Turri, V.; Sarnelli, A.; Romeo, A.; Kelson, I.; Keisari, Y.; Popovtzer, A.; Ibrahim, T.; Paganelli, G.; Stanganelli, I. Clinical evidence of abscopal effect in cutaneous squamous cell carcinoma treated with diffusing alpha emitters radiation therapy: a case report. J. Contemp. Brachytherapy, 2019, 11(5), 449-457.
[http://dx.doi.org/10.5114/jcb.2019.88138] [PMID: 31749854]
[38]
Popovtzer, A.; Rosenfeld, E.; Mizrachi, A.; Bellia, S.R.; Ben-Hur, R.; Feliciani, G.; Sarnelli, A.; Arazi, L.; Deutsch, L.; Kelson, I. others. Initial Safety and Tumor Control Results from a “First-in-Human” Multicenter Prospective Trial Evaluating a Novel Alpha-Emitting Radionuclide for the Treatment of Locally Advanced Recurrent Squamous Cell Carcinomas of the Skin and Head and Neck. Int. J. Radiat. Oncol. Biol. Phys., 2019.
[PMID: 31759075]
[39]
Westrøm, S.; Malenge, M.; Jorstad, I.S.; Napoli, E.; Bruland, Ø.S.; Bønsdorff, T.B.; Larsen, R.H. Ra-224 labeling of calcium carbonate microparticles for internal α-therapy: Preparation, stability, and biodistribution in mice. J. Labelled Comp. Radiopharm., 2018, 61(6), 472-486.
[http://dx.doi.org/10.1002/jlcr.3610] [PMID: 29380410]
[40]
Westrøm, S.; Bønsdorff, T.B.; Bruland, Ø.S.; Larsen, R.H. Therapeutic Effect of α-Emitting 224Ra-Labeled Calcium Carbonate Microparticles in Mice with Intraperitoneal Ovarian Cancer. Transl. Oncol., 2018, 11(2), 259-267.
[http://dx.doi.org/10.1016/j.tranon.2017.12.011] [PMID: 29413758]
[41]
Shaw, T.J.; Senterman, M.K.; Dawson, K.; Crane, C.A.; Vanderhyden, B.C. Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol. Ther., 2004, 10(6), 1032-1042.
[http://dx.doi.org/10.1016/j.ymthe.2004.08.013] [PMID: 15564135]
[42]
Coosemans, A.N.; Baert, T.; D’Heygere, V.; Wouters, R.; DE Laet, L.; VAN Hoylandt, A.; Thirion, G.; Ceusters, J.; Laenen, A.; Vandecaveye, V.; Vergote, I. Increased Immunosuppression Is Related to Increased Amounts of Ascites and Inferior Prognosis in Ovarian Cancer. Anticancer Res., 2019, 39(11), 5953-5962.
[http://dx.doi.org/10.21873/anticanres.13800] [PMID: 31704820]
[43]
Larsen, R.H.; Hoff, P.; Vergote, I.B.; Bruland, Ø.S.; Aas, M.; De Vos, L.; Nustad, K. α-particle radiotherapy with 211At-labeled monodisperse polymer particles, 211At-labeled IgG proteins, and free 211At in a murine intraperitoneal tumor model. Gynecol. Oncol., 1995, 57(1), 9-15.
[http://dx.doi.org/10.1006/gyno.1995.1093] [PMID: 7705707]
[44]
Elgqvist, J.; Andersson, H.; Haglund, E.; Jensen, H.; Kahu, H.; Lindegren, S.; Warnhammar, E.; Hultborn, R. Intraperitoneal alpha-radioimmunotherapy in mice using different specific activities. Cancer Biother. Radiopharm., 2009, 24(4), 509-513.
[http://dx.doi.org/10.1089/cbr.2009.0618] [PMID: 19694586]
[45]
Napoli, E.; Westrøm, S.; Bønsdorff, T.B.; Bruland, Ø. S; Larsen, R. H. OP-022: Re-localization of 212Pb from 224Ra sources due to thoron (220Rn) diffusion period Annual Congress of the European Association of Nuclear Medicine , , 134 -135 .2017,


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 2
Year: 2021
Published on: 30 November, 2020
Page: [145 - 153]
Pages: 9
DOI: 10.2174/1874471013666201201102056

Article Metrics

PDF: 59
HTML: 1
EPUB: 1
PRC: 1