A Comprehensive Analysis of Unique and Recurrent Copy Number Variations in Alzheimer’s Disease and its Related Disorders

Author(s): Fadia El Bitar*, Nourah Al Sudairy, Najeeb Qadi, Saad Al Rajeh, Fatimah Alghamdi, Hala Al Amari, Ghadeer Al Dawsari, Sahar Alsubaie, Mishael Al Sudairi, Sara Abdulaziz, Nada Al Tassan

Journal Name: Current Alzheimer Research

Volume 17 , Issue 10 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Copy number variations (CNVs) play an important role in the genetic etiology of various neurological disorders, including Alzheimer’s disease (AD). Type 2 diabetes mellitus (T2DM) and major depressive disorder (MDD) were shown to have share mechanisms and signaling pathways with AD.

Objective: We aimed to assess CNVs regions that may harbor genes contributing to AD, T2DM, and MDD in 67 Saudi familial and sporadic AD patients, with no alterations in the known genes of AD and genotyped previously for APOE.

Methods: DNA was analyzed using the CytoScan-HD array. Two layers of filtering criteria were applied. All the identified CNVs were checked in the Database of Genomic Variants (DGV).

Results: A total of 1086 CNVs (565 gains and 521 losses) were identified in our study. We found 73 CNVs harboring genes that may be associated with AD, T2DM or MDD. Nineteen CNVs were novel. Most importantly, 42 CNVs were unique in our studied cohort existing only in one patient. Two large gains on chromosomes 1 and 13 harbored genes implicated in the studied disorders. We identified CNVs in genes that encode proteins involved in the metabolism of amyloid-β peptide (AGRN, APBA2, CR1, CR2, IGF2R, KIAA0125, MBP, RER1, RTN4R, VDR and WISPI) or Tau proteins (CACNAIC, CELF2, DUSP22, HTRA1 and SLC2A14).

Conclusion: The present work provided information on the presence of CNVs related to AD, T2DM, and MDD in Saudi Alzheimer’s patients.

Keywords: Alzheimer’s disease, copy number variation, type 2 diabetes mellitus, major depressive disorder, unique and recurrent variants, dementia.

[1]
Wimo A, Guerchet M, Ali GC, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017; 13(1): 1-7.
[http://dx.doi.org/10.1016/j.jalz.2016.07.150 ] [PMID: 27583652]
[2]
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 1986; 261(13): 6084-9.
[PMID: 3084478]
[3]
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000; 33(1): 95-130.
[http://dx.doi.org/10.1016/S0165-0173(00)00019-9 ] [PMID: 10967355]
[4]
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4 ] [PMID: 6375662]
[5]
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985; 82(12): 4245-9.
[http://dx.doi.org/10.1073/pnas.82.12.4245 ] [PMID: 3159021]
[6]
Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest 2005; 115(6): 1449-57.
[http://dx.doi.org/10.1172/JCI24761 ] [PMID: 15931380]
[7]
Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995; 375(6534): 754-60.
[http://dx.doi.org/10.1038/375754a0 ] [PMID: 7596406]
[8]
Cruts M, Backhovens H, Theuns J, et al. Genetic and physical characterization of the early-onset Alzheimer’s disease AD3 locus on chromosome 14q24.3. Hum Mol Genet 1995; 4(8): 1355-64.
[http://dx.doi.org/10.1093/hmg/4.8.1355 ] [PMID: 7581374]
[9]
Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995; 269(5226): 973-7.
[http://dx.doi.org/10.1126/science.7638622 ] [PMID: 7638622]
[10]
Tanzi RE, Gusella JF, Watkins PC, et al. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 1987; 235(4791): 880-4.
[http://dx.doi.org/10.1126/science.2949367 ] [PMID: 2949367]
[11]
Goate A. Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer’s disease. J Alzheimers Dis 2006; 9(3): 341-7.
[http://dx.doi.org/10.3233/JAD-2006-9S338 ] [PMID: 16914872]
[12]
Campion D, Dumanchin C, Hannequin D, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999; 65(3): 664-70.
[http://dx.doi.org/10.1086/302553 ] [PMID: 10441572]
[13]
Wingo TS, Lah JJ, Levey AI, Cutler DJ. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol 2012; 69(1): 59-64.
[http://dx.doi.org/10.1001/archneurol.2011.221 ] [PMID: 21911656]
[14]
Jones L, Harold D, Williams J. Genetic evidence for the involvement of lipid metabolism in Alzheimer’s disease. Biochim Biophys Acta 2010; 1801(8): 754-61.
[http://dx.doi.org/10.1016/j.bbalip.2010.04.005 ] [PMID: 20420935]
[15]
Gatz M, Reynolds CA, Fratiglioni L, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 2006; 63(2): 168-74.
[http://dx.doi.org/10.1001/archpsyc.63.2.168 ] [PMID: 16461860]
[16]
Cuccaro D, De Marco EV, Cittadella R, Cavallaro S. Copy number variants in Alzheimer’s disease. J Alzheimers Dis 2017; 55(1): 37-52.
[http://dx.doi.org/10.3233/JAD-160469 ] [PMID: 27662298]
[17]
Rovelet-Lecrux A, Hannequin D, Raux G, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 2006; 38(1): 24-6.
[http://dx.doi.org/10.1038/ng1718 ] [PMID: 16369530]
[18]
Hooli BV, Mohapatra G, Mattheisen M, et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology 2012; 78(16): 1250-7.
[http://dx.doi.org/10.1212/WNL.0b013e3182515972 ] [PMID: 22491860]
[19]
Crook R, Verkkoniemi A, Perez-Tur J, et al. A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med 1998; 4(4): 452-5.
[http://dx.doi.org/10.1038/nm0498-452 ] [PMID: 9546792]
[20]
Smith MJ, Kwok JB, McLean CA, et al. Variable phenotype of Alzheimer’s disease with spastic paraparesis. Ann Neurol 2001; 49(1): 125-9.
[http://dx.doi.org/10.1002/1531-8249(200101)49:1<125::AID-ANA21>3.0.CO;2-1 ] [PMID: 11198283]
[21]
Kunkle BW, Grenier-Boley B, Sims R, et al. Alzheimer Disease Genetics Consortium (ADGC); European Alzheimer’s Disease Initiative (EADI); Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE); Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 2019; 51(3): 414-30.
[http://dx.doi.org/10.1038/s41588-019-0358-2 ] [PMID: 30820047]
[22]
Brouwers N, Van Cauwenberghe C, Engelborghs S, et al. Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry 2012; 17(2): 223-33.
[http://dx.doi.org/10.1038/mp.2011.24 ] [PMID: 21403675]
[23]
Chapman J, Rees E, Harold D, et al. GERAD1 Consortium. A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer’s disease risk. Hum Mol Genet 2013; 22(4): 816-24.
[http://dx.doi.org/10.1093/hmg/dds476 ] [PMID: 23148125]
[24]
Szigeti K, Lal D, Li Y, et al. Texas Alzheimer Research and Care Consortium. Genome-wide scan for copy number variation association with age at onset of Alzheimer’s disease. J Alzheimers Dis 2013; 33(2): 517-23.
[http://dx.doi.org/10.3233/JAD-2012-121285 ] [PMID: 23202439]
[25]
Swaminathan S, Shen L, Kim S, et al. Alzheimer’s Disease Neuroimaging Initiative; NIA-LOAD/NCRAD Family Study Group. Analysis of copy number variation in Alzheimer’s disease: the NIALOAD/NCRAD Family Study. Curr Alzheimer Res 2012; 9(7): 801-14.
[http://dx.doi.org/10.2174/156720512802455331 ] [PMID: 22486522]
[26]
Bae JS, Cheong HS, Kim JH, et al. The genetic effect of copy number variations on the risk of type 2 diabetes in a Korean population. PLoS One 2011; 6(4)e19091
[http://dx.doi.org/10.1371/journal.pone.0019091 ] [PMID: 21526130]
[27]
Yan YX, Li JJ, Xiao HB, Wang S, He Y, Wu LJ. Association analysis of copy number variations in type 2 diabetes-related susceptible genes in a Chinese population. Acta Diabetol 2018; 55(9): 909-16.
[http://dx.doi.org/10.1007/s00592-018-1168-1 ] [PMID: 29858661]
[28]
Sohrabifar N, Ghaderian SMH, Vakili H, et al. MicroRNA-copy number variations in coronary artery disease patients with or without type 2 diabetes mellitus. Arch Physiol Biochem 2019; 1-7.
[http://dx.doi.org/10.1080/13813455.2019.1651340 ] [PMID: 31392905]
[29]
Lew AR, Kellermayer TR, Sule BP, Szigeti K. Copy number variations in adult-onset neuropsychiatric diseases. Curr Genomics 2018; 19(6): 420-30.
[http://dx.doi.org/10.2174/1389202919666180330153842 ] [PMID: 30258274]
[30]
Mittal K, Katare DP. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: a review. Diabetes Metab Syndr 2016; 10(2)(Suppl. 1): S144-9.
[http://dx.doi.org/10.1016/j.dsx.2016.01.021 ] [PMID: 26907971]
[31]
Herbert J, Lucassen PJ. Depression as a risk factor for Alzheimer’s disease: genes, steroids, cytokines and neurogenesis - what do we need to know? Front Neuroendocrinol 2016; 41: 153-71.
[http://dx.doi.org/10.1016/j.yfrne.2015.12.001 ] [PMID: 26746105]
[32]
Kopf D, Frölich L. Risk of incident Alzheimer’s disease in diabetic patients: a systematic review of prospective trials. J Alzheimers Dis 2009; 16(4): 677-85.
[http://dx.doi.org/10.3233/JAD-2009-1011 ] [PMID: 19387104]
[33]
Schrijvers EM, Witteman JC, Sijbrands EJ, Hofman A, Koudstaal PJ, Breteler MM. Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology 2010; 75(22): 1982-7.
[http://dx.doi.org/10.1212/WNL.0b013e3181ffe4f6 ] [PMID: 21115952]
[34]
Hölscher C, Li L. New roles for insulin-like hormones in neuronal signalling and protection: new hopes for novel treatments of Alzheimer’s disease? Neurobiol Aging 2010; 31(9): 1495-502.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.023 ] [PMID: 18930564]
[35]
Green RC, Cupples LA, Kurz A, et al. Depression as a risk factor for Alzheimer disease: the MIRAGE Study. Arch Neurol 2003; 60(5): 753-9.
[http://dx.doi.org/10.1001/archneur.60.5.753 ] [PMID: 12756140]
[36]
Sweet RA, Hamilton RL, Butters MA, et al. Neuropathologic correlates of late-onset major depression. Neuropsychopharmacology 2004; 29(12): 2242-50.
[http://dx.doi.org/10.1038/sj.npp.1300554]
[37]
Xia M, Yang L, Sun G, Qi S, Li B. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology (Berl) 2017; 234(3): 365-79.
[http://dx.doi.org/10.1007/s00213-016-4473-9 ] [PMID: 27837334]
[38]
Ahluwalia TS, Allin KH, Sandholt CH, et al. Discovery of coding genetic variants influencing diabetes-related serum biomarkers and their impact on risk of type 2 diabetes. J Clin Endocrinol Metab 2015; 100(4): E664-71.
[http://dx.doi.org/10.1210/jc.2014-3677 ] [PMID: 25599387]
[39]
Prokopenko I, Poon W, Mägi R, et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet 2014; 10(4): e1004235.
[http://dx.doi.org/10.1371/journal.pgen.1004235 ] [PMID: 24699409]
[40]
Chanprasertyothin S, Jongjaroenprasert W, Ongphiphadhanakul B. The association of soluble IGF2R and IGF2R gene polymorphism with type 2 diabetes. J Diabetes Res 2015; 2015216383
[http://dx.doi.org/10.1155/2015/216383 ] [PMID: 25922844]
[41]
Puangpetch A, Srisawasdi P, Unaharassamee W, et al. Association between polymorphisms of LEP, LEPR, DRD2, HTR2A and HTR2C genes and risperidone- or clozapine-induced hyperglycemia. Pharm Genomics Pers Med 2019; 12: 155-66.
[http://dx.doi.org/10.2147/PGPM.S210770 ] [PMID: 31496784]
[42]
Zhang S, Jamaspishvili E, Tong H, et al. East Asian Genome-wide association study derived loci in relation to type 2 diabetes in the Han Chinese population. Acta Biochim Pol 2019; 66(2): 159-65.
[http://dx.doi.org/10.18388/abp.2018_2632 ] [PMID: 31145772]
[43]
Wang XF, Lin X, Li DY, et al. Linking Alzheimer’s disease and type 2 diabetes: novel shared susceptibility genes detected by cFDR approach. J Neurol Sci 2017; 380: 262-72.
[http://dx.doi.org/10.1016/j.jns.2017.07.044 ] [PMID: 28870582]
[44]
Julian LJ, Vella L, Frankel D, Minden SL, Oksenberg JR, Mohr DC. ApoE alleles, depression and positive affect in multiple sclerosis. Mult Scler 2009; 15(3): 311-5.
[http://dx.doi.org/10.1177/1352458508099478 ] [PMID: 19244396]
[45]
Hamilton G, Evans KL, Macintyre DJ, et al. Alzheimer’s disease risk factor complement receptor 1 is associated with depression. Neurosci Lett 2012; 510(1): 6-9.
[http://dx.doi.org/10.1016/j.neulet.2011.12.059 ] [PMID: 22244847]
[46]
Milenkovic VM, Sarubin N, Hilbert S, et al. Macrophage-derived chemokine: a putative marker of pharmacological therapy response in major depression? Neuroimmunomodulation 2017; 24(2): 106-12.
[http://dx.doi.org/10.1159/000479739 ] [PMID: 28898872]
[47]
Mahajan GJ, Vallender EJ, Garrett MR, et al. Altered neuro-inflammatory gene expression in hippocampus in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82: 177-86.
[http://dx.doi.org/10.1016/j.pnpbp.2017.11.017 ] [PMID: 29175309]
[48]
Ni H, Xu M, Zhan GL, et al. The GWAS risk genes for depression may be actively involved in Alzheimer’s Disease. J Alzheimers Dis 2018; 64(4): 1149-61.
[http://dx.doi.org/10.3233/JAD-180276 ] [PMID: 30010129]
[49]
El Bitar F, Qadi N, Al Rajeh S, et al. Genetic study of Alzheimer’s disease in Saudi population. J Alzheimers Dis 2019; 67(1): 231-42.
[http://dx.doi.org/10.3233/JAD-180415 ] [PMID: 30636737]
[50]
Reiman EM, McKhann GM, Albert MS, Sperling RA, Petersen RC, Blacker D. Clinical impact of updated diagnostic and research criteria for Alzheimer’s disease. J Clin Psychiatry 2011; 72(12): e37.
[http://dx.doi.org/10.4088/JCP.10087tx2c ] [PMID: 22244033]
[51]
Uddin M, Thiruvahindrapuram B, Walker S, et al. A high-resolution copy-number variation resource for clinical and population genetics. Genet Med Off J Am Coll Med Genet 2015; 17(9): 747-52.
[http://dx.doi.org/10.1038/gim.2014.178]
[52]
Amarillo IE, Nievera I, Hagan A, et al. Integrated small copy number variations and epigenome maps of disorders of sex development. Hum Genome Var 2016; 3: 16012.
[http://dx.doi.org/10.1038/hgv.2016.12 ] [PMID: 27340555]
[53]
MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 2014; 42(Database issue): D986-92.
[http://dx.doi.org/10.1093/nar/gkt958 ] [PMID: 24174537]
[54]
International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455(7210): 237-41.
[http://dx.doi.org/10.1038/nature07239 ] [PMID: 18668038]
[55]
Heinzen EL, Radtke RA, Urban TJ, et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet 2010; 86(5): 707-18.
[http://dx.doi.org/10.1016/j.ajhg.2010.03.018 ] [PMID: 20398883]
[56]
Kirov G, Grozeva D, Norton N, et al. International Schizophrenia Consortium. Wellcome Trust Case Control Consortium. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18(8): 1497-503.
[http://dx.doi.org/10.1093/hmg/ddp043 ] [PMID: 19181681]
[57]
Cooper GM, Coe BP, Girirajan S, et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011; 43(9): 838-46.
[http://dx.doi.org/10.1038/ng.909 ] [PMID: 21841781]
[58]
Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009; 41(10): 1088-93.
[http://dx.doi.org/10.1038/ng.440 ] [PMID: 19734902]
[59]
Hollingworth P, Harold D, Sims R, et al. Alzheimer’s Disease Neuroimaging Initiative; CHARGE consortium; EADI1 consortium. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 2011; 43(5): 429-35.
[http://dx.doi.org/10.1038/ng.803 ] [PMID: 21460840]
[60]
Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. European Alzheimer’s Disease Initiative (EADI); Genetic and Environmental Risk in Alzheimer’s Disease; Alzheimer’s Disease Genetic Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013; 45(12): 1452-8.
[http://dx.doi.org/10.1038/ng.2802 ] [PMID: 24162737]
[61]
Naj AC, Jun G, Beecham GW, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011; 43(5): 436-41.
[http://dx.doi.org/10.1038/ng.801 ] [PMID: 21460841]
[62]
Seshadri S, Fitzpatrick AL, Ikram MA, et al. CHARGE Consortium. GERAD1 Consortium; EADI1 Consortium. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 2010; 303(18): 1832-40.
[http://dx.doi.org/10.1001/jama.2010.574 ] [PMID: 20460622]
[63]
Zou W, Feng R, Yang Y. Changes in the serum levels of inflammatory cytokines in antidepressant drug-naïve patients with major depression. PLoS One 2018; 13(6): e0197267.
[http://dx.doi.org/10.1371/journal.pone.0197267 ] [PMID: 29856741]
[64]
Culbert AA, Skaper SD, Howlett DR, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem 2006; 281(33): 23658-67.
[http://dx.doi.org/10.1074/jbc.M513646200 ] [PMID: 16774924]
[65]
Ma XW, Chang ZW, Qin MZ, Sun Y, Huang HL, He Y. Decreased expression of complement regulatory proteins, CD55 and CD59, on peripheral blood leucocytes in patients with type 2 diabetes and macrovascular diseases. Chin Med J (Engl) 2009; 122(18): 2123-8.
[PMID: 19781296]
[66]
Rauch SM, Huen K, Miller MC, et al. Changes in brain β-amyloid deposition and aquaporin 4 levels in response to altered agrin expression in mice. J Neuropathol Exp Neurol 2011; 70(12): 1124-37.
[http://dx.doi.org/10.1097/NEN.0b013e31823b0b12 ] [PMID: 22082664]
[67]
Chaufty J, Sullivan SE, Ho A. Intracellular amyloid precursor protein sorting and amyloid-β secretion are regulated by Src-mediated phosphorylation of Mint2. J Neurosci 2012; 32(28): 9613-25.
[http://dx.doi.org/10.1523/JNEUROSCI.0602-12.2012 ] [PMID: 22787047]
[68]
da Costa IB, de Labio RW, Rasmussen LT, et al. Change in INSR, APBA2 and IDE Gene Expressions in Brains of Alzheimer’s Disease Patients. Curr Alzheimer Res 2017; 14(7): 760-5.
[http://dx.doi.org/10.2174/1567205014666170203100734 ] [PMID: 28164769]
[69]
Mizwicki MT, Menegaz D, Zhang J, et al. Genomic and nongenomic signaling induced by 1α,25(OH)2-vitamin D3 promotes the recovery of amyloid-β phagocytosis by Alzheimer’s disease macrophages. J Alzheimers Dis 2012; 29(1): 51-62.
[http://dx.doi.org/10.3233/JAD-2012-110560 ] [PMID: 22207005]
[70]
Park HJ, Shabashvili D, Nekorchuk MD, et al. Retention in endoplasmic reticulum 1 (RER1) modulates amyloid-β (Aβ) production by altering trafficking of γ-secretase and amyloid precursor protein (APP). J Biol Chem 2012; 287(48): 40629-40.
[http://dx.doi.org/10.1074/jbc.M112.418442 ] [PMID: 23043097]
[71]
Kotarba AE, Aucoin D, Hoos MD, Smith SO, Van Nostrand WE. Fine mapping of the amyloid β-protein binding site on myelin basic protein. Biochemistry 2013; 52(15): 2565-73.
[http://dx.doi.org/10.1021/bi4001936 ] [PMID: 23510371]
[72]
Pascual-Lucas M, Viana da Silva S, Di Scala M, et al. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol Med 2014; 6(10): 1246-62.
[http://dx.doi.org/10.15252/emmm.201404228 ] [PMID: 25100745]
[73]
Coe BP, Witherspoon K, Rosenfeld JA, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 2014; 46(10): 1063-71.
[http://dx.doi.org/10.1038/ng.3092 ] [PMID: 25217958]
[74]
Jiang Y, Xu B, Chen J, et al. Micro-RNA-137 Inhibits tau hyperphosphorylation in Alzheimer’s disease and targets the CACNA1C gene in transgenic mice and human neuroblastoma SH-SY5Y Cells. Med Sci Monit 2018; 24: 5635-44.
[http://dx.doi.org/10.12659/MSM.908765 ] [PMID: 30102687]
[75]
Ladd AN. CUG-BP, Elav-like family (CELF)-mediated alternative splicing regulation in the brain during health and disease. Mol Cell Neurosci 2013; 56: 456-64.
[http://dx.doi.org/10.1016/j.mcn.2012.12.003 ] [PMID: 23247071]
[76]
Sanchez-Mut JV, Aso E, Heyn H, et al. Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer’s disease. Hippocampus 2014; 24(4): 363-8.
[http://dx.doi.org/10.1002/hipo.22245 ] [PMID: 24436131]
[77]
Tennstaedt A, Pöpsel S, Truebestein L, et al. Human high temperature requirement serine protease A1 (HTRA1) degrades tau protein aggregates. J Biol Chem 2012; 287(25): 20931-41.
[http://dx.doi.org/10.1074/jbc.M111.316232 ] [PMID: 22535953]
[78]
Shulman JM, Chipendo P, Chibnik LB, et al. Functional screening of Alzheimer pathology genome-wide association signals in Drosophila. Am J Hum Genet 2011; 88(2): 232-8.
[http://dx.doi.org/10.1016/j.ajhg.2011.01.006 ] [PMID: 21295279]
[79]
Wang W, Yu JT, Zhang W, et al. Genetic association of SLC2A14 polymorphism with Alzheimer’s disease in a Han Chinese population. J Mol Neurosci 2012; 47(3): 481-4.
[http://dx.doi.org/10.1007/s12031-012-9748-y ] [PMID: 22421804]
[80]
Chang JY, Chang NS. WWOX dysfunction induces sequential aggregation of TRAPPC6AΔ, TIAF1, tau and amyloid β, and causes apoptosis. Cell Death Discov 2015; 1: 15003.
[http://dx.doi.org/10.1038/cddiscovery.2015.3 ] [PMID: 27551439]
[81]
Boscher E, Husson T, Quenez O, et al. FREX consortium. Copy number variants in miR-138 as a potential risk factor for early-onset Alzheimer’s disease. J Alzheimers Dis 2019; 68(3): 1243-55.
[http://dx.doi.org/10.3233/JAD-180940 ] [PMID: 30909216]
[82]
Le Guennec K, Quenez O, Nicolas G, et al. 17q21.31 duplication causes prominent tau-related dementia with increased MAPT expression. Mol Psychiatry 2017; 22(8): 1119-25.
[http://dx.doi.org/10.1038/mp.2016.226 ] [PMID: 27956742]
[83]
de Jesús Ascencio-Montiel I, Pinto D, Parra EJ, et al. Characterization of large copy number variation in mexican type 2 diabetes subjects. Sci Rep 2017; 7(1): 17105.
[http://dx.doi.org/10.1038/s41598-017-17361-7 ] [PMID: 29213072]
[84]
Saxena R, Saleheen D, Been LF, et al. DIAGRAM; MuTHER; AGEN. Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes 2013; 62(5): 1746-55.
[http://dx.doi.org/10.2337/db12-1077 ] [PMID: 23300278]
[85]
Chen M, Zhang X, Fang Q, Wang T, Li T, Qiao H. Three single nucleotide polymorphisms associated with type 2 diabetes mellitus in a Chinese population. Exp Ther Med 2017; 13(1): 121-6.
[http://dx.doi.org/10.3892/etm.2016.3920 ] [PMID: 28123479]
[86]
Folch J, Patraca I, Martínez N, et al. The role of leptin in the sporadic form of Alzheimer’s disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin. Life Sci 2015; 140: 19-28.
[http://dx.doi.org/10.1016/j.lfs.2015.05.002 ] [PMID: 25998028]
[87]
Daneshpajooh M, Eliasson L, Bacos K, Ling C. MC1568 improves insulin secretion in islets from type 2 diabetes patients and rescues β-cell dysfunction caused by Hdac7 upregulation. Acta Diabetol 2018; 55(12): 1231-5.
[http://dx.doi.org/10.1007/s00592-018-1201-4 ] [PMID: 30088095]
[88]
Okamoto K, Iwasaki N, Doi K, et al. Inhibition of glucose-stimulated insulin secretion by KCNJ15, a newly identified susceptibility gene for type 2 diabetes. Diabetes 2012; 61(7): 1734-41.
[http://dx.doi.org/10.2337/db11-1201 ] [PMID: 22566534]
[89]
Hedman ÅK, Zilmer M, Sundström J, Lind L, Ingelsson E. DNA methylation patterns associated with oxidative stress in an ageing population. BMC Med Genomics 2016; 9(1): 72.
[http://dx.doi.org/10.1186/s12920-016-0235-0 ] [PMID: 27884142]
[90]
Thomsen SK, Ceroni A, van de Bunt M, et al. Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants. Diabetes 2016; 65(12): 3805-11.
[http://dx.doi.org/10.2337/db16-0361 ] [PMID: 27554474]
[91]
Chaudhry M, Wang X, Bamne MN, et al. Genetic variation in imprinted genes is associated with risk of late-onset Alzheimer’s disease. J Alzheimers Dis 2015; 44(3): 989-94.
[http://dx.doi.org/10.3233/JAD-142106 ] [PMID: 25391383]
[92]
Wang D, Di X, Fu L, et al. Analysis of serum β-amyloid peptides, α2-macroglobulin, complement factor H, and clusterin levels in APP/PS1 transgenic mice during progression of Alzheimer’s disease. Neuroreport 2016; 27(15): 1114-9.
[http://dx.doi.org/10.1097/WNR.0000000000000661 ] [PMID: 27541273]
[93]
McIntosh EC, Nation DA. Alzheimer’s Disease Neuroimaging Initiative. Importance of treatment status in links between type 2 diabetes and Alzheimer’s disease. Diabetes Care 2019; 42(5): 972-9.
[http://dx.doi.org/10.2337/dc18-1399 ] [PMID: 30833374]
[94]
Morin RT, Insel P, Nelson C, et al. ADNI Depression Project. Latent classes of cognitive functioning among depressed older adults without dementia. J Int Neuropsychol Soc 2019; 25(8): 811-20.
[http://dx.doi.org/10.1017/S1355617719000596 ] [PMID: 31232250]
[95]
Jun G, Ibrahim-Verbaas CA, Vronskaya M, et al. IGAP Consortium. A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry 2016; 21(1): 108-17.
[http://dx.doi.org/10.1038/mp.2015.23 ] [PMID: 25778476]
[96]
Coryell W, Young E, Carroll B. Hyperactivity of the hypothalamic-pituitary-adrenal axis and mortality in major depressive disorder. Psychiatry Res 2006; 142(1): 99-104.
[http://dx.doi.org/10.1016/j.psychres.2005.08.009 ] [PMID: 16631257]
[97]
Czéh B, Lucassen PJ. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 2007; 257(5): 250-60.
[http://dx.doi.org/10.1007/s00406-007-0728-0 ] [PMID: 17401728]
[98]
Arlt S, Demiralay C, Tharun B, et al. Genetic risk factors for depression in Alzheimer’s disease patients. Curr Alzheimer Res 2013; 10(1): 72-81.
[http://dx.doi.org/10.2174/156720513804871435 ] [PMID: 23157339]
[99]
Gragnoli C. Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome. Appl Clin Genet 2014; 7: 43-53.
[http://dx.doi.org/10.2147/TACG.S39993 ] [PMID: 24817815]
[100]
Mikolas P, Tozzi L, Doolin K, Farrell C, O’Keane V, Frodl T. Effects of early life adversity and FKBP5 genotype on hippocampal subfields volume in major depression. J Affect Disord 2019; 252: 152-9.
[http://dx.doi.org/10.1016/j.jad.2019.04.054 ] [PMID: 30986730]
[101]
Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol 2008; 23(7): 571-85.
[http://dx.doi.org/10.1002/hup.964 ] [PMID: 18680211]
[102]
Rath MF, Coon SL, Amaral FG, Weller JL, Møller M, Klein DC. Melatonin synthesis: acetylserotonin O-methyltransferase (ASMT) is strongly expressed in a subpopulation of pinealocytes in the male rat pineal gland. Endocrinology 2016; 157(5): 2028-40.
[http://dx.doi.org/10.1210/en.2015-1888 ] [PMID: 26950199]
[103]
Sushma, Mondal AC. Role of GPCR signaling and calcium dysregulation in Alzheimer’s disease. Mol Cell Neurosci 2019; 101: 103414.
[http://dx.doi.org/10.1016/j.mcn.2019.103414 ] [PMID: 31655116]
[104]
Lutz MW, Sprague D, Barrera J, Chiba-Falek O. Shared genetic etiology underlying Alzheimer’s disease and major depressive disorder. Transl Psychiatry 2020; 10(1): 88.
[http://dx.doi.org/10.1038/s41398-020-0769-y ] [PMID: 32152295]
[105]
Brzezińska A, Bourke J, Rivera-Hernández R, Tsolaki M, Woźniak J, Kaźmierski J. Depression in dementia or dementia in depression? Systematic review of studies and hypotheses. Curr Alzheimer Res 2020; 17(1): 16-28.
[http://dx.doi.org/10.2174/1567205017666200217104114 ] [PMID: 32065103]
[106]
Malki K, Pain O, Tosto MG, Du Rietz E, Carboni L, Schalkwyk LC. Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes. Transl Psychiatry 2015; 5(3): e519.
[http://dx.doi.org/10.1038/tp.2015.15 ] [PMID: 25734512]
[107]
Li L, Pan Z, Yang X. Key genes and co-expression network analysis in the livers of type 2 diabetes patients. J Diabetes Investig 2019; 10(4): 951-62.
[http://dx.doi.org/10.1111/jdi.12998 ] [PMID: 30592156]
[108]
Zhan H, Huang F, Yan F, et al. Alterations in splenic function and gene expression in mice with depressive-like behavior induced by exposure to corticosterone. Int J Mol Med 2017; 39(2): 327-36.
[http://dx.doi.org/10.3892/ijmm.2017.2850 ] [PMID: 28075471]
[109]
Ottosson-Laakso E, Krus U, Storm P, et al. Glucose-induced changes in gene expression in human pancreatic islets: causes or consequences of chronic hyperglycemia. Diabetes 2017; 66(12): 3013-28.
[http://dx.doi.org/10.2337/db17-0311 ] [PMID: 28882899]
[110]
Zou L, Yan S, Guan X, Pan Y, Qu X. Hypermethylation of the PRKCZ gene in type 2 diabetes mellitus. J Diabetes Res 2013; 2013: 721493.
[http://dx.doi.org/10.1155/2013/721493 ] [PMID: 23671888]
[111]
Shi Y, Yuan Y, Xu Z, et al. Genetic variation in the calcium/calmodulin-dependent protein kinase (CaMK) pathway is associated with antidepressant response in females. J Affect Disord 2012; 136(3): 558-66.
[http://dx.doi.org/10.1016/j.jad.2011.10.030 ] [PMID: 22119081]
[112]
Lambert JC, Heath S, Even G, et al. European Alzheimer’s disease Initiative Investigators. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 2009; 41(10): 1094-9.
[http://dx.doi.org/10.1038/ng.439 ] [PMID: 19734903]
[113]
Arbor SC, LaFontaine M, Cumbay M. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. Yale J Biol Med 2016; 89(1): 5-21.
[PMID: 27505013]
[114]
Ansoleaga B, Jové M, Schlüter A, et al. Deregulation of purine metabolism in Alzheimer’s disease. Neurobiol Aging 2015; 36(1): 68-80.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.08.004 ] [PMID: 25311278]
[115]
Baglietto-Vargas D, Prieto GA, Limon A, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer’s disease. Aging Cell 2018; 17(4): e12791.
[http://dx.doi.org/10.1111/acel.12791 ] [PMID: 29877034]
[116]
Dou KX, Zhang C, Tan CC, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Genome-wide association study identifies CBFA2T3 affecting the rate of CSF Aβ42 decline in non-demented elders. Aging (Albany NY) 2019; 11(15): 5433-44.
[http://dx.doi.org/10.18632/aging.102125 ] [PMID: 31370031]
[117]
Goetzl EJ, Schwartz JB, Abner EL, Jicha GA, Kapogiannis D. High complement levels in astrocyte-derived exosomes of Alzheimer disease. Ann Neurol 2018; 83(3): 544-52.
[http://dx.doi.org/10.1002/ana.25172 ] [PMID: 29406582]
[118]
Yan J, Kim S, Nho K, et al. Alzheimer’s Disease Neuroimaging Initiative. Hippocampal transcriptome-guided genetic analysis of correlated episodic memory phenotypes in Alzheimer’s disease. Front Genet 2015; 6: 117.
[http://dx.doi.org/10.3389/fgene.2015.00117 ] [PMID: 25859259]
[119]
Lancour D, Naj A, Mayeux R, et al. One for all and all for one: improving replication of genetic studies through network diffusion. PLoS Genet 2018; 14(4): e1007306.
[http://dx.doi.org/10.1371/journal.pgen.1007306 ] [PMID: 29684019]
[120]
Sekar S, McDonald J, Cuyugan L, et al. Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes. Neurobiol Aging 2015; 36(2): 583-91.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.027 ] [PMID: 25448601]
[121]
Zelaya MV, Pérez-Valderrama E, de Morentin XM, et al. Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies. Oncotarget 2015; 6(37): 39437-56.
[http://dx.doi.org/10.18632/oncotarget.6254 ] [PMID: 26517091]
[122]
Ghani M, Sato C, Lee JH, et al. Evidence of recessive Alzheimer disease loci in a Caribbean Hispanic data set: genome-wide survey of runs of homozygosity. JAMA Neurol 2013; 70(10): 1261-7.
[http://dx.doi.org/10.1001/jamaneurol.2013.3545 ] [PMID: 23978990]
[123]
Ge X, Zhang Y, Zuo Y, et al. Transcriptomic analysis reveals the molecular mechanism of Alzheimer-related neuropathology induced by sevoflurane in mice. J Cell Biochem 2019; 120(10): 17555-65.
[http://dx.doi.org/10.1002/jcb.29020 ] [PMID: 31134678]
[124]
Ling J, Yang S, Huang Y, Wei D, Cheng W. Identifying key genes, pathways and screening therapeutic agents for manganese-induced Alzheimer disease using bioinformatics analysis. Medicine (Baltimore) 2018; 97(22): e10775.
[http://dx.doi.org/10.1097/MD.0000000000010775 ] [PMID: 29851783]
[125]
Cameron B, Tse W, Lamb R, Li X, Lamb BT, Landreth GE. Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid pathology and alters microglial phenotype in a mouse model of Alzheimer’s disease. J Neurosci 2012; 32(43): 15112-23.
[http://dx.doi.org/10.1523/JNEUROSCI.1729-12.2012 ] [PMID: 23100432]
[126]
Uhrig M, Ittrich C, Wiedmann V, et al. New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering. PLoS One 2009; 4(8): e6779.
[http://dx.doi.org/10.1371/journal.pone.0006779 ] [PMID: 19707560]
[127]
Zhan X, Jickling GC, Ander BP, et al. Myelin basic protein associates with AβPP, Aβ1-42, and amyloid plaques in cortex of Alzheimer’s disease brain. J Alzheimers Dis 2015; 44(4): 1213-29.
[http://dx.doi.org/10.3233/JAD-142013 ] [PMID: 25697841]
[128]
Xiao Q, Yu W, Tian Q, et al. Chitinase1 contributed to a potential protection via microglia polarization and Aβ oligomer reduction in D-galactose and aluminum-induced rat model with cognitive impairments. Neuroscience 2017; 355: 61-70.
[http://dx.doi.org/10.1016/j.neuroscience.2017.04.050 ] [PMID: 28499970]
[129]
Lin KP, Chen SY, Lai LC, et al. Genetic polymorphisms of a novel vascular susceptibility gene, Ninjurin2 (NINJ2), are associated with a decreased risk of Alzheimer’s disease. PLoS One 2011; 6(6): e20573.
[http://dx.doi.org/10.1371/journal.pone.0020573 ] [PMID: 21674003]
[130]
Xu C, Liu G, Ji H, et al. Elevated methylation of OPRM1 and OPRL1 genes in Alzheimer’s disease. Mol Med Rep 2018; 18(5): 4297-302.
[http://dx.doi.org/10.3892/mmr.2018.9424 ] [PMID: 30152845]
[131]
Wang X, Lopez OL, Sweet RA, et al. Genetic determinants of disease progression in Alzheimer’s disease. J Alzheimers Dis 2015; 43(2): 649-55.
[http://dx.doi.org/10.3233/JAD-140729 ] [PMID: 25114068]
[132]
Liu C, Chyr J, Zhao W, et al. Alzheimer’s Disease Neuroimaging Initiative. Genome-wide association and mechanistic studies indicate that immune response contributes to Alzheimer’s disease development. Front Genet 2018; 9: 410.
[http://dx.doi.org/10.3389/fgene.2018.00410 ] [PMID: 30319691]
[133]
Wilcock DM. Neuroinflammation in the aging down syndrome brain; lessons from Alzheimer’s disease. Curr Gerontol Geriatr Res 2012; 2012: 170276.
[http://dx.doi.org/10.1155/2012/170276 ] [PMID: 22454637]
[134]
Zhou X, Hu X, He W, et al. Interaction between amyloid precursor protein and Nogo receptors regulates amyloid deposition. FASEB J 2011; 25(9): 3146-56.
[http://dx.doi.org/10.1096/fj.11-184325 ] [PMID: 21670066]
[135]
Saykin AJ, Shen L, Foroud TM, et al. Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement 2010; 6(3): 265-73.
[http://dx.doi.org/10.1016/j.jalz.2010.03.013 ] [PMID: 20451875]
[136]
Kumar S, Reddy PH. MicroRNA-455-3p as a potential biomarker for Alzheimer’s disease: an update. Front Aging Neurosci 2018; 10: 41.
[http://dx.doi.org/10.3389/fnagi.2018.00041 ] [PMID: 29527164]
[137]
Wang L, Hara K, Van Baaren JM, et al. Vitamin D receptor and Alzheimer’s disease: a genetic and functional study. Neurobiol Aging 2012; 33(8): 1844.e1-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.12.038 ] [PMID: 22306846]
[138]
Shang YC, Chong ZZ, Wang S, Maiese K. Wnt1 inducible signaling pathway protein 1 (WISP1) targets PRAS40 to govern β-amyloid apoptotic injury of microglia. Curr Neurovasc Res 2012; 9(4): 239-49.
[http://dx.doi.org/10.2174/156720212803530618 ] [PMID: 22873724]
[139]
Zheng X, Demirci FY, Barmada MM, et al. Genome-wide copy-number variation study of psychosis in Alzheimer’s disease. Transl Psychiatry 2015; 5(6): e574.
[http://dx.doi.org/10.1038/tp.2015.64 ] [PMID: 26035058]
[140]
Xu S, Duan P, Li J, et al. Zinc finger and X-linked factor (ZFX) binds to human SET transcript 2 promoter and transactivates SET expression. Int J Mol Sci 2016; 17(10): E1737.
[http://dx.doi.org/10.3390/ijms17101737 ] [PMID: 27775603]
[141]
Sun L, Ma J, Mao Q, et al. Association of single nucleotide polymorphisms in CACNA 1A/CACNA 1C/CACNA 1H calcium channel genes with diabetic peripheral neuropathy in Chinese population. Biosci Rep 2018; 38(3): BSR20171670.
[http://dx.doi.org/10.1042/BSR20171670 ] [PMID: 29581247]
[142]
Somani R, Richardson VR, Standeven KF, Grant PJ, Carter AM. Elevated properdin and enhanced complement activation in first-degree relatives of South Asian subjects with type 2 diabetes. Diabetes Care 2012; 35(4): 894-9.
[http://dx.doi.org/10.2337/dc11-1483 ] [PMID: 22338105]
[143]
Strawbridge RJ, Hilding A, Silveira A, et al. IMPROVE Study Group. Soluble CD93 is involved in metabolic dysregulation but does not influence carotid intima-media thickness. Diabetes 2016; 65(10): 2888-99.
[http://dx.doi.org/10.2337/db15-1333 ] [PMID: 27659228]
[144]
Han D, Moon S, Kim H, et al. Detection of differential proteomes associated with the development of type 2 diabetes in the Zucker rat model using the iTRAQ technique. J Proteome Res 2011; 10(2): 564-77.
[http://dx.doi.org/10.1021/pr100759a ] [PMID: 21117707]
[145]
Hara K, Fujita H, Johnson TA, et al. DIAGRAM consortium. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet 2014; 23(1): 239-46.
[http://dx.doi.org/10.1093/hmg/ddt399 ] [PMID: 23945395]
[146]
Qadir MI, Ahmed Z. Lep expression and its role in obesity and type-2 diabetes. Crit Rev Eukaryot Gene Expr 2017; 27(1): 47-51.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2017019386 ] [PMID: 28436331]
[147]
Yan J, Tie G, Wang S, et al. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun 2018; 9(1): 33.
[http://dx.doi.org/10.1038/s41467-017-02425-z ] [PMID: 29295997]
[148]
Goldsworthy M, Absalom NL, Schröter D, et al. Mutations in Mll2, an H3K4 methyltransferase, result in insulin resistance and impaired glucose tolerance in mice. PLoS One 2013; 8(6): e61870.
[http://dx.doi.org/10.1371/journal.pone.0061870 ] [PMID: 23826075]
[149]
Kerr AG, Sinha I, Dadvar S, Arner P, Dahlman I. Epigenetic regulation of diabetogenic adipose morphology. Mol Metab 2019; 25: 159-67.
[http://dx.doi.org/10.1016/j.molmet.2019.04.009 ] [PMID: 31031182]
[150]
Yang SM, Ka SM, Wu HL, et al. Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-κB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis. Diabetologia 2014; 57(2): 424-34.
[http://dx.doi.org/10.1007/s00125-013-3115-6 ] [PMID: 24317792]
[151]
van de Bunt M, Manning Fox JE, Dai X, et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet 2015; 11(12): e1005694.
[http://dx.doi.org/10.1371/journal.pgen.1005694 ] [PMID: 26624892]
[152]
Talarowska M, Szemraj J, Zajączkowska M, Gałecki P. ASMT gene expression correlates with cognitive impairment in patients with recurrent depressive disorder. Med Sci Monit 2014; 20: 905-12.
[http://dx.doi.org/10.12659/MSM.890160 ] [PMID: 24881886]
[153]
Griffin JWD, Liu Y, Bradshaw PC, Wang K. In Silico preliminary association of ammonia metabolism genes GLS, CPS1, and GLUL with risk of Alzheimer’s disease, major depressive disorder, and type 2 diabetes. J Mol Neurosci 2018; 64: 385-96.
[154]
Chang LC, Jamain S, Lin CW, Rujescu D, Tseng GC, Sibille E. A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies. PLoS One 2014; 9(3): e90980.
[http://dx.doi.org/10.1371/journal.pone.0090980 ] [PMID: 24608543]
[155]
Gray AL, Hyde TM, Deep-Soboslay A, Kleinman JE, Sodhi MS. Sex differences in glutamate receptor gene expression in major depression and suicide. Mol Psychiatry 2015; 20(9): 1057-68.
[http://dx.doi.org/10.1038/mp.2015.91 ] [PMID: 26169973]
[156]
Mihailova S, Ivanova-Genova E, Lukanov T, Stoyanova V, Milanova V, Naumova E. A study of TNF-α, TGF-β, IL-10, IL-6, and IFN-γ gene polymorphisms in patients with depression. J Neuroimmunol 2016; 293: 123-8.
[http://dx.doi.org/10.1016/j.jneuroim.2016.03.005 ] [PMID: 27049572]
[157]
Gotter AL, Santarelli VP, Doran SM, et al. TASK-3 as a potential antidepressant target. Brain Res 2011; 1416: 69-79.
[http://dx.doi.org/10.1016/j.brainres.2011.08.021 ] [PMID: 21885038]
[158]
Saavedra K, Molina-Márquez AM, Saavedra N, Zambrano T, Salazar LA. Epigenetic modifications of major depressive disorder. Int J Mol Sci 2016; 17(8): E1279.
[http://dx.doi.org/10.3390/ijms17081279 ] [PMID: 27527165]
[159]
Soleimani L, Roder JC, Dennis JW, Lipina T. Beta N-acetylglucosaminyltransferase V (Mgat5) deficiency reduces the depression-like phenotype in mice. Genes Brain Behav 2008; 7(3): 334-43.
[http://dx.doi.org/10.1111/j.1601-183X.2007.00358.x ] [PMID: 17883406]
[160]
Orru S, Papoulidis I, Siomou E, et al. Autism spectrum disorder, anxiety and severe depression in a male patient with deletion and duplication in the 21q22.3 region: a case report. Biomed Rep 2019; 1(1): 1-5.
[http://dx.doi.org/10.3892/br.2019.1210 ] [PMID: 31258897]
[161]
Ren J, Zhao G, Sun X, et al. Identification of plasma biomarkers for distinguishing bipolar depression from major depressive disorder by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Psychoneuroendocrinology 2017; 86: 17-24.
[http://dx.doi.org/10.1016/j.psyneuen.2017.09.005 ] [PMID: 28910601]
[162]
Senese NB, Rasenick MM, Traynor JR. The role of g-proteins and g-protein regulating proteins in depressive disorders. Front Pharmacol 2018; 9: 1289.
[http://dx.doi.org/10.3389/fphar.2018.01289 ] [PMID: 30483131]
[163]
Campbell CD, Sampas N, Tsalenko A, et al. Population-genetic properties of differentiated human copy-number polymorphisms. Am J Hum Genet 2011; 88(3): 317-32.
[http://dx.doi.org/10.1016/j.ajhg.2011.02.004 ] [PMID: 21397061]
[164]
Auton A, Brooks LD, Durbin RM, et al. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015; 526(7571): 68-74.
[http://dx.doi.org/10.1038/nature15393 ] [PMID: 26432245]
[165]
Locke DP, Sharp AJ, McCarroll SA, et al. Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am J Hum Genet 2006; 79(2): 275-90.
[http://dx.doi.org/10.1086/505653 ] [PMID: 16826518]
[166]
Perry GH, Ben-Dor A, Tsalenko A, et al. The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet 2008; 82(3): 685-95.
[http://dx.doi.org/10.1016/j.ajhg.2007.12.010 ] [PMID: 18304495]
[167]
Simon-Sanchez J, Scholz S, Fung HC, et al. Genome-wide SNP assay reveals structural genomic variation, extended homozygosity and cell-line induced alterations in normal individuals. Hum Mol Genet 2007; 16(1): 1-14.
[http://dx.doi.org/10.1093/hmg/ddl436 ] [PMID: 17116639]
[168]
Jakobsson M, Scholz SW, Scheet P, et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 2008; 451(7181): 998-1003.
[http://dx.doi.org/10.1038/nature06742 ] [PMID: 18288195]
[169]
Pinto D, Marshall C, Feuk L, Scherer SW. Copy-number variation in control population cohorts. Human Molecular Genetics 2007; 16(2): 168-73.
[170]
Levy S, Sutton G, Ng PC, et al. The diploid genome sequence of an individual human. PLoS Biol 2007; 5(10)e254
[http://dx.doi.org/10.1371/journal.pbio.0050254 ] [PMID: 17803354]
[171]
de Smith AJ, Tsalenko A, Sampas N, et al. Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males: implications for association studies of complex diseases. Hum Mol Genet 2007; 16(23): 2783-94.
[http://dx.doi.org/10.1093/hmg/ddm208 ] [PMID: 17666407]
[172]
Park H, Kim JI, Ju YS, et al. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat Genet 2010; 42(5): 400-5.
[http://dx.doi.org/10.1038/ng.555 ] [PMID: 20364138]
[173]
Suktitipat B, Naktang C, Mhuantong W, et al. Copy number variation in Thai population. PLoS One 2014; 9(8)e104355
[http://dx.doi.org/10.1371/journal.pone.0104355 ] [PMID: 25118596]
[174]
Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature 2006; 444(7118): 444-54.
[http://dx.doi.org/10.1038/nature05329 ] [PMID: 17122850]
[175]
McCarroll SA, Kuruvilla FG, Korn JM, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 2008; 40(10): 1166-74.
[http://dx.doi.org/10.1038/ng.238 ] [PMID: 18776908]
[176]
Shaikh TH, Gai X, Perin JC, et al. High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Res 2009; 19(9): 1682-90.
[http://dx.doi.org/10.1101/gr.083501.108 ] [PMID: 19592680]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 10
Year: 2020
Page: [926 - 938]
Pages: 13
DOI: 10.2174/1567205017666201130111424
Price: $65

Article Metrics

PDF: 27
HTML: 1