A Review of Recent Developments in Nanocellulose-Based Conductive Hydrogels

Author(s): Iman Yousefi, Wen Zhong*

Journal Name: Current Nanoscience

Volume 17 , Issue 4 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Nanocellulose has attracted much research interest owing to its biocompatibility, low density, environmental sustainability, flexibility, ease of surface modification, excellent mechanical properties and ultrahigh surface areas. Recently, lots of research efforts have focused on nanocellulose- based conductive hydrogels for different practical applications, including electronic devices, energy storage, sensors, composites, tissue engineering and other biomedical applications. A wide variety of conductive hydrogels have been developed from nanocellulose, which can be in the form of cellulose nanofibers (CNF), cellulose nanocrystals (CNC) or bacterial cellulose (BC). This review presents the recent progress in the development of nanocellulose-based conductive hydrogels, their advanced functions, including 3D printability, self-healing capacity and high mechanical performances, as well as applications of the conductive nanocellulose hydrogels.

Keywords: Nanocellulose, conductive hydrogels, cellulose nanofibers, cellulose nanocrystals, 3D printing, bacterial cellulose.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2021
Published on: 26 November, 2020
Page: [620 - 633]
Pages: 14
DOI: 10.2174/1573413716999201127111627
Price: $65

Article Metrics

PDF: 147