Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

A Review of Recent Developments in Nanocellulose-Based Conductive Hydrogels

Author(s): Iman Yousefi and Wen Zhong*

Volume 17, Issue 4, 2021

Published on: 27 November, 2020

Page: [620 - 633] Pages: 14

DOI: 10.2174/1573413716999201127111627

Price: $65

Abstract

Nanocellulose has attracted much research interest owing to its biocompatibility, low density, environmental sustainability, flexibility, ease of surface modification, excellent mechanical properties and ultrahigh surface areas. Recently, lots of research efforts have focused on nanocellulose- based conductive hydrogels for different practical applications, including electronic devices, energy storage, sensors, composites, tissue engineering and other biomedical applications. A wide variety of conductive hydrogels have been developed from nanocellulose, which can be in the form of cellulose nanofibers (CNF), cellulose nanocrystals (CNC) or bacterial cellulose (BC). This review presents the recent progress in the development of nanocellulose-based conductive hydrogels, their advanced functions, including 3D printability, self-healing capacity and high mechanical performances, as well as applications of the conductive nanocellulose hydrogels.

Keywords: Nanocellulose, conductive hydrogels, cellulose nanofibers, cellulose nanocrystals, 3D printing, bacterial cellulose.

Graphical Abstract
[1]
Guan, X.; Avci-Adali, M.; Alarçin, E.; Cheng, H.; Kashaf, S. S.; Li, Y.; Chawla, A.; Jang, H. L.; Khademhosseini, A. Development of Hydrogels for Regenerative Engineering Biotechnol. J., 2017, 12(5)
[http://dx.doi.org/10.1002/biot.201600394]
[2]
Guo, Y.; Bae, J.; Zhao, F.; Yu, G. Functional Hydrogels for Next-Generation Batteries and Supercapacitors; Trends in Chemistry, 2019.
[http://dx.doi.org/10.1016/j.trechm.2019.03.005]
[3]
Cao, L.; Yang, M.; Wu, D.; Lyu, F.; Sun, Z.; Zhong, X.; Pan, H.; Liu, H.; Lu, Z. Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage. Chem. Commun. (Camb.), 2017, 53(10), 1615-1618.
[http://dx.doi.org/10.1039/C6CC08658F] [PMID: 28094355]
[4]
Wu, J.; Wu, Z.; Han, S.; Yang, B.R.; Gui, X.; Tao, K.; Liu, C.; Miao, J.; Norford, L.K. Extremely Deformable, Transparent, and High-Performance Gas Sensor Based on Ionic Conductive Hydrogel. ACS Appl. Mater. Interfaces, 2019, 11(2), 2364-2373.
[http://dx.doi.org/10.1021/acsami.8b17437] [PMID: 30596426]
[5]
Bae, J.; Park, J.; Kim, S.; Cho, H.; Kim, H.J.; Park, S.; Shin, D.S. Tailored Hydrogels for Biosensor Applications. J. Ind. Eng. Chem., 2020.
[http://dx.doi.org/10.1016/j.jiec.2020.05.001]
[6]
Rao, K.M.; Kumar, A.; Han, S.S. Polysaccharide-Based Magnetically Responsive Polyelectrolyte Hydrogels for Tissue Engineering Applications. J. Mater. Sci. Technol., 2018.
[http://dx.doi.org/10.1016/j.jmst.2017.10.003]
[7]
Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-Responsive Hydrogels: Theory, Modern Advances, and Applications; Mater. Sci. Eng. R Reports, 2015.
[8]
Aldalbahi, A.; Feng, P.; Alhokbany, N.; Ahamad, T.; Alshehri, S.M. Synthesis, Characterization, and CH4-Sensing Properties of Conducting and Magnetic Biopolymer Nano-Composites. J. Environ. Chem. Eng., 2016.
[http://dx.doi.org/10.1016/j.jece.2016.05.028]
[9]
Dimatteo, R.; Darling, N.J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev., 2018, 127, 167-184.
[http://dx.doi.org/10.1016/j.addr.2018.03.007] [PMID: 29567395]
[10]
Nazouri, M.; Seifzadeh, A.; Masaeli, E. Characterization of polyvinyl alcohol hydrogels as tissue-engineered cartilage scaffolds using a coupled finite element-optimization algorithm. J. Biomech., 2020, 99.
[http://dx.doi.org/10.1016/j.jbiomech.2019.109525] [PMID: 31787260]
[11]
Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured Conductive Polypyrrole Hydrogels as High-Performance, Flexible Supercapacitor Electrodes. J. Mater. Chem. A Mater. Energy Sustain., 2014.
[http://dx.doi.org/10.1039/C4TA00484A]
[12]
Wong, R.S.H.; Dodou, K. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide) Hydrogels for Transdermal Delivery. Polymers (Basel), 2017, 9(7), E286.
[http://dx.doi.org/10.3390/polym9070286] [PMID: 30970963]
[13]
Haigh, J.N.; Chuang, Y.M.; Farrugia, B.; Hoogenboom, R.; Dalton, P.D.; Dargaville, T.R. Hierarchically Structured Porous Poly(2-oxazoline). Hydrogels. Macromol. Rapid Commun., 2016, 37(1), 93-99.
[http://dx.doi.org/10.1002/marc.201500495] [PMID: 26474191]
[14]
Bhadani, R.; Mitra, U.K. Synthesis and Studies on Water Swelling Behaviour of Polyacrylamide Hydrogels. Macromol. Symp., 2016.
[http://dx.doi.org/10.1002/masy.201600051]
[15]
Mahinroosta, M.; Jomeh Farsangi, Z.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications; Materials Today Chemistry, 2018.
[16]
Mohammadzadeh Pakdel, P.; Peighambardoust, S.J. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr. Polym., 2018, 201, 264-279.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.070] [PMID: 30241819]
[17]
Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Devel. Ther., 2018, 12, 3117-3145.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
[18]
Shi, Z.; Gao, X.; Ullah, M.W.; Li, S.; Wang, Q.; Yang, G. Electroconductive natural polymer-based hydrogels. Biomaterials, 2016, 111, 40-54.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.020] [PMID: 27721086]
[19]
Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Md Akil, H. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C, 2015, 57, 414-433.
[http://dx.doi.org/10.1016/j.msec.2015.07.053] [PMID: 26354282]
[20]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[21]
Wang, S.; Lu, A.; Zhang, L. Recent Advances in Regenerated Cellulose Materials. Prog. Polym. Sci., 2016.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.07.003]
[22]
Kabir, S.M.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater., 2018, 7(3), 153-174.
[http://dx.doi.org/10.1007/s40204-018-0095-0] [PMID: 30182344]
[23]
Gandini, A. The Surface and In-Depth Modification of Cellulose Fibers. Adv. Polym. Sci., 2015.
[http://dx.doi.org/10.1007/12_2015_305]
[24]
Capanema, N.S.V.; Mansur, A.A.P.; Mansur, H.S.; de Jesus, A.C.; Carvalho, S.M.; Chagas, P.; de Oliveira, L.C. Eco-Friendly and Biocompatible Cross-Linked Carboxymethylcellulose Hydrogels as Adsorbents for the Removal of Organic Dye Pollutants for Environmental Applications., 2018.
[http://dx.doi.org/10.1080/09593330.2017.1367845]
[25]
De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater., 2017.
[http://dx.doi.org/10.1021/acs.chemmater.7b00531]
[26]
Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci., 2019, 267, 47-61.
[http://dx.doi.org/10.1016/j.cis.2019.03.002] [PMID: 30884359]
[27]
Nascimento, D.M.; Nunes, Y.L.; Figueirêdo, M.C.B.; De Azeredo, H.M.C.; Aouada, F.A.; Feitosa, J.P.A.; Rosa, M.F.; Dufresne, A. Nanocellulose Nanocomposite Hydrogels: Technological and Environmental Issues. Green Chem., 2018.
[http://dx.doi.org/10.1039/C8GC00205C]
[28]
Islam, M. T.; Alam, M. M.; Patrucco, A.; Montarsolo, A.; Zoccola, M. Preparation of Nanocellulose: A Review AATCC J. Res., 2014.
[29]
Miyashiro, D.; Hamano, R.; Umemura, K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials (Basel), 2020, 10(2), E186.
[http://dx.doi.org/10.3390/nano10020186] [PMID: 31973149]
[30]
Shi, Z.; Zhao, W.; Li, S.; Yang, G. Self-powered hydrogels induced by ion transport. Nanoscale, 2017, 9(43), 17080-17090.
[http://dx.doi.org/10.1039/C7NR02962D] [PMID: 29086793]
[31]
Min, J.H.; Patel, M.; Koh, W.G. Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications. Polymers (Basel), 2018, 10(10), E1078.
[http://dx.doi.org/10.3390/polym10101078] [PMID: 30961003]
[32]
Zhao, Y.; Liu, B.; Pan, L.; Yu, G. 3D Nanostructured Conductive Polymer Hydrogels for High-Performance Electrochemical Devices. Energy Environ. Sci., 2013.
[http://dx.doi.org/10.1039/c3ee40997j]
[33]
Zhang, W.; Feng, P.; Chen, J.; Sun, Z.; Zhao, B. Electrically Conductive Hydrogels for Flexible Energy Storage Systems. Prog. Polym. Sci., 2018.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.09.001]
[34]
Parandoush, P.; Lin, D. A Review on Additive Manufacturing of Polymer-Fiber Composites. Compos. Struct., 2017.
[http://dx.doi.org/10.1016/j.compstruct.2017.08.088]
[35]
Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D Printing of Polymer Matrix Composites: A Review and Prospective. Compos., Part B Eng., 2017.
[http://dx.doi.org/10.1016/j.compositesb.2016.11.034]
[36]
Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos., Part B Eng., 2018.
[http://dx.doi.org/10.1016/j.compositesb.2018.02.012]
[37]
Belter, J.T.; Dollar, A.M. Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique. PLoS One, 2015, 10(4)
[http://dx.doi.org/10.1371/journal.pone.0122915] [PMID: 25880807]
[38]
Markstedt, K.; Sundberg, J.; Gatenholm, P. 3D Bioprinting of Cellulose Structures from an Ionic Liquid. 3D Print. Addit. Manuf, 2014.
[39]
Jiang, Y.; Zhou, J.; Feng, C.; Shi, H.; Zhao, G.; Bian, Y. Rheological Behavior, 3D Printability and the Formation of Scaffolds with Cellulose Nanocrystals/Gelatin Hydrogels. J. Mater. Sci., 2020.
[http://dx.doi.org/10.1007/s10853-020-05128-x]
[40]
Sultan, S.; Mathew, A.P. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. J. Vis. Exp., 2019, (146)
[http://dx.doi.org/10.3791/59401] [PMID: 31081812 ]
[41]
Dai, L.; Cheng, T.; Duan, C.; Zhao, W.; Zhang, W.; Zou, X.; Aspler, J.; Ni, Y. 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydr. Polym., 2019, 203, 71-86.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.027] [PMID: 30318237]
[42]
Hydrogels for Biomedical Applications:Cellulose; Chitosan, and Protein/Peptide Derivatives Gels, 2017.
[43]
Trache, D.; Hussin, M.H.; Hui Chuin, C.T.; Sabar, S.; Fazita, M.R.N.; Taiwo, O.F.A.; Hassan, T.M.; Haafiz, M.K.M. Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. Int. J. Biol. Macromol., 2016, 93(Pt A), 789-804.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.056] [PMID: 27645920 ]
[44]
Bethke, K.; Palantöken, S.; Andrei, V.; Roß, M.; Raghuwanshi, V.S.; Kettemann, F.; Greis, K.; Ingber, T.T.K.; Stückrath, J.B.; Valiyaveettil, S.; Rademann, K. Functionalized Cellulose for Water Purification, Antimicrobial Applications, and Sensors. Adv. Funct. Mater., 2018.
[http://dx.doi.org/10.1002/adfm.201800409]
[45]
Tosh, B. Esterification and Etherification of Cellulose: Synthesis and Application of Cellulose Derivatives Cellulose and Cellulose Derivatives: Synthesis; Modification and Applications, 2015.
[46]
Radotić, K.; Mićić, M. Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues, 2016.
[http://dx.doi.org/10.1007/978-1-4939-3185-9_26]
[47]
Gurunathan, T.; Mohanty, S.; Nayak, S.K. A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives. Compos., Part A Appl. Sci. Manuf., 2015.
[http://dx.doi.org/10.1016/j.compositesa.2015.06.007]
[48]
Ummartyotin, S.; Manuspiya, H. A Critical Review on Cellulose: From Fundamental to an Approach on Sensor Technology. Renew. Sustain. Energy Rev., 2015.
[http://dx.doi.org/10.1016/j.rser.2014.08.050]
[49]
Börjesson, M.; Westman, G. Crystalline Nanocellulose — Preparation; Modification, and Properties Cellulose - Fundamental Aspects and Current Trends, 2015.
[50]
Kargarzadeh, H.; Ioelovich, M.; Ahmad, I.; Thomas, S.; Dufresne, A. Methods for Extraction of Nanocellulose from Various Sources.Handbook of Nanocellulose and Cellulose Nanocomposites; , 2017.
[http://dx.doi.org/10.1002/9783527689972.ch1]
[51]
Mudgil, D. The Interaction Between Insoluble and Soluble Fiber. Dietary Fiber for the Prevention of Cardiovascular Disease: Fiber’s Interaction between Gut Micoflora, 2017.
[http://dx.doi.org/10.1016/B978-0-12-805130-6.00003-3]
[52]
Bezerra, R.D.S.; Teixeira, P.R.S.; Teixeira, A.S.N.M.; Eiras, C.; Osajima, J.A.; Filho, E.C.S. Chemical Functionalization of Cellulosic Materials — Main Reactions and Applications in the Contaminants Removal of Aqueous Medium; Cellulose - Fundamental Aspects and Current Trends, 2015.
[53]
Vlaia, L.; Coneac, G.; Olariu, I.; Vlaia, V.; Lupuleasa, D. Cellulose-Derivatives-Based Hydrogels as Vehicles for Dermal and Transdermal Drug Delivery Emerging Concepts in Analysis and Applications of Hydrogels, 2016.
[http://dx.doi.org/10.5772/63953]
[54]
Fang, L.; Zhao, L.; Liang, X.; Xiao, H.; Qian, L. Effects of Oxidant and Dopants on the Properties of Cellulose/PPy Conductive Composite Hydrogels. J. Appl. Polym. Sci., 2016.
[http://dx.doi.org/10.1002/app.43759]
[55]
Shi, X.; Hu, Y.; Tu, K.; Zhang, L.; Wang, H.; Xu, J.; Zhang, H.; Li, J.; Wang, X.; Xu, M. Electromechanical Polyaniline-Cellulose Hydrogels with High Compressive Strength. Soft Matter, 2013.
[http://dx.doi.org/10.1039/c3sm51490k]
[56]
Xu, D.; Fan, L.; Gao, L.; Xiong, Y.; Wang, Y.; Ye, Q.; Yu, A.; Dai, H.; Yin, Y.; Cai, J.; Zhang, L. Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration. ACS Appl. Mater. Interfaces, 2016, 8(27), 17090-17097.
[http://dx.doi.org/10.1021/acsami.6b03555] [PMID: 27314673]
[57]
Sun, Z.; Yang, L.; Zhao, J.; Song, W. Natural Cellulose-Full-Hydrogels Bioinspired Electroactive Artificial Muscles: Highly Conductive Ionic Transportation Channels and Ultrafast Electromechanical Response. J. Electrochem. Soc., 2020.
[http://dx.doi.org/10.1149/1945-7111/ab732e]
[58]
Knopf, G.K.; Sinar, D. Flexible Hydrogel Actuated Graphene-Cellulose Biosensor for Monitoring PH. Proceedings - IEEE International Symposium on Circuits and Systems, 2017.
[http://dx.doi.org/10.1109/ISCAS.2017.8050613]
[59]
Hussain, I.; Sayed, S.M.; Liu, S.; Oderinde, O.; Kang, M.; Yao, F.; Fu, G. Enhancing the Mechanical Properties and Self-Healing Efficiency of Hydroxyethyl Cellulose-Based Conductive Hydrogels via Supramolecular Interactions. Eur. Polym. J., 2018.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.05.025]
[60]
Li, J.; Fang, L.; Tait, W.R.; Sun, L.; Zhao, L.; Qian, L. Preparation of Conductive Composite Hydrogels from Carboxymethyl Cellulose and Polyaniline with a Nontoxic Crosslinking Agent RSC Adv, 2017.
[http://dx.doi.org/10.1039/C7RA10788A]
[61]
Barras, R.; Cunha, I.; Gaspar, D.; Fortunato, E.; Martins, R.; Pereira, L. Printable Cellulose-Based Electroconductive Composites for Sensing Elements in Paper Electronics Flex. Print. Electron., 2017.
[62]
Rastin, H.; Zhang, B.; Bi, J.; Hassan, K.; Tung, T.T.; Losic, D. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(27), 5862-5876.
[http://dx.doi.org/10.1039/D0TB00627K] [PMID: 32558857]
[63]
Chen, Y.; Lu, K.; Song, Y.; Han, J.; Yue, Y.; Biswas, S.K.; Wu, Q.; Xiao, H. A Skin-Inspired Stretchable, Self-Healing and Electro-Conductive Hydrogel with A Synergistic Triple Network for Wearable Strain Sensors Applied in Human-Motion Detection. Nanomaterials (Basel), 2019, 9(12), E1737.
[http://dx.doi.org/10.3390/nano9121737] [PMID: 31817640]
[64]
Chen, C.; Wang, Y.; Meng, T.; Wu, Q.; Fang, L.; Zhao, D.; Zhang, Y.; Li, D. Electrically Conductive Polyacrylamide/Carbon Nanotube Hydrogel: Reinforcing Effect from Cellulose Nanofibers. Cellulose, 2019.
[http://dx.doi.org/10.1007/s10570-019-02710-8]
[65]
Kuzmenko, V.; Karabulut, E.; Pernevik, E.; Enoksson, P.; Gatenholm, P. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr. Polym., 2018, 189, 22-30.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.097] [PMID: 29580403]
[66]
Zheng, C.; Yue, Y.; Gan, L.; Xu, X.; Mei, C.; Han, J. Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials (Basel), 2019, 9(7), E937.
[http://dx.doi.org/10.3390/nano9070937] [PMID: 31261708]
[67]
Ding, Q.; Xu, X.; Yue, Y.; Mei, C.; Huang, C.; Jiang, S.; Wu, Q.; Han, J. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS Appl. Mater. Interfaces, 2018, 10(33), 27987-28002.
[http://dx.doi.org/10.1021/acsami.8b09656] [PMID: 30043614]
[68]
Liu, K.; Chen, L.; Huang, L.; Ni, Y.; Xu, Z.; Lin, S.; Wang, H. A Facile Preparation Strategy for Conductive and Magnetic Agarose Hydrogels with Reversible Restorability Composed of Nanofibrillated Cellulose, Polypyrrole, and Fe3O4. Cellulose, 2018, 25(8), 4565-4575.
[http://dx.doi.org/10.1007/s10570-018-1889-x]
[69]
Liu, K.; Pan, X.; Chen, L.; Huang, L.; Ni, Y.; Liu, J.; Cao, S.; Wang, H. Ultrasoft Self-Healing Nanoparticle-Hydrogel Composites with Conductive and Magnetic Properties. ACS Sustain. Chem.& Eng., 2018, 6(5), 6395-6403.
[http://dx.doi.org/10.1021/acssuschemeng.8b00193]
[70]
Lin, F.; Zheng, R.; Chen, J.; Su, W.; Dong, B.; Lin, C.; Huang, B.; Lu, B. Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels. Carbohydr. Polym., 2019, 205, 244-254.https://doi.org/https://doi.org/10.1016/j.carbpol.2018.10.037
[http://dx.doi.org/10.1016/j.carbpol.2018.10.037] [PMID: 30446101]
[71]
Nyström, G.; Mihranyan, A.; Razaq, A.; Lindström, T.; Nyholm, L.; Strømme, M. A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J. Phys. Chem. B, 2010, 114(12), 4178-4182.
[http://dx.doi.org/10.1021/jp911272m] [PMID: 20205378]
[72]
Li, Y.; Zhu, H.; Wang, Y.; Ray, U.; Zhu, S.; Dai, J.; Chen, C.; Fu, K.; Jang, S-H.; Henderson, D.; Li, T.; Hu, L. Cellulose-Nanofiber- Enabled 3D Printing of a Carbon-Nanotube Microfiber Network. Small Methods, 2017.
[http://dx.doi.org/10.1002/smtd.201700222]
[73]
Håkansson, K. M. O.; Henriksson, I. C.; de la Peña Vázquez, C.; Kuzmenko, V.; Markstedt, K.; Enoksson, P.; Gatenholm, P. Solidification of 3D Printed Nanofibril Hydrogels into Functional 3D Cellulose Structures. Adv. Mater. Technol, 2016.
[74]
Bordoni, M.; Karabulut, E.; Kuzmenko, V.; Fantini, V.; Pansarasa, O.; Cereda, C.; Gatenholm, P. 3D Printed Conductive Nanocellulose Scaffolds for the Differentiation of Human Neuroblastoma Cells. Cells, 2020, 9(3), E682.
[http://dx.doi.org/10.3390/cells9030682] [PMID: 32168750]
[75]
Li, Y.; Zhang, H.; Ni, S.; Xiao, H. In Situ Synthesis of Conductive Nanocrystal Cellulose/Polypyrrole Composite Hydrogel Based on Semi-Interpenetrating Network. Mater. Lett., 2018.
[http://dx.doi.org/10.1016/j.matlet.2018.08.115]
[76]
Liang, X.; Qu, B.; Li, J.; Xiao, H.; He, B.; Qian, L. Preparation of Cellulose-Based Conductive Hydrogels with Ionic Liquid. React. Funct. Polym., 2015.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.11.002]
[77]
Hoeng, F.; Bras, J.; Gicquel, E.; Krosnicki, G.; Denneulin, A. Inkjet Printing of Nanocellulose-Silver Ink onto Nanocellulose Coated Cardboard; RSC Adv, 2017.
[http://dx.doi.org/10.1039/C6RA23667G]
[78]
Alizadehgiashi, M.; Gevorkian, A.; Tebbe, M.; Seo, M.; Prince, E.; Kumacheva, E. 3D-Printed Microfluidic Devices for Materials Science Adv. Mater. Technol., 2018.
[79]
Hsu, H.H.; Liu, Y.; Wang, Y.; Li, B.; Luo, G.; Xing, M.; Zhong, W. Mussel-Inspired Autonomously Self-Healable All-in-One Supercapacitor with Biocompatible Hydrogel. ACS Sustain. Chem.& Eng., 2020.
[http://dx.doi.org/10.1021/acssuschemeng.9b07250]
[80]
Liu, S.; Zheng, Y.; Sun, Y.; Su, L.; Yue, L.; Sen Wang, Y.; Feng, J.; Fan, J. An Oxygen Tolerance Conductive Hydrogel Anode Membrane for Use in a Potentially Implantable Glucose Fuel Cell; RSC Adv, 2016.
[http://dx.doi.org/10.1039/C6RA22702C]
[81]
Mashkour, M.; Rahimnejad, M.; Mashkour, M.; Bakeri, G.; Luque, R.; Oh, S.E. Application of Wet Nanostructured Bacterial Cellulose as a Novel Hydrogel Bioanode for Microbial Fuel Cells. ChemElectroChem, 2017.
[http://dx.doi.org/10.1002/celc.201600868]
[82]
Shi; Z. In Situ Nano-Assembly of Bacterial Cellulose-Polyaniline Composites RSC Adv, 2012.
[83]
Huang, J.; Li, D.; Zhao, M.; Lv, P.; Lucia, L.; Wei, Q. Highly Stretchable and Bio-Based Sensors for Sensitive Strain Detection of Angular Displacements. Cellulose, 2019.
[http://dx.doi.org/10.1007/s10570-019-02313-3]
[84]
Huang, J.; Zhao, M.; Cai, Y.; Zimniewska, M.; Li, D.; Wei, Q. A Dual-Mode Wearable Sensor Based on Bacterial Cellulose Reinforced Hydrogels for Highly Sensitive Strain/Pressure Sensing. Adv. Electron. Mater., 2020.
[http://dx.doi.org/10.1002/aelm.201900934]
[85]
Kim, J.H.; Shim, B.S.; Kim, H.S.; Lee, Y.J.; Min, S.K.; Jang, D.; Abas, Z.; Kim, J. Review of Nanocellulose for Sustainable Future Materials; International Journal of Precision Engineering and Manufacturing - Green Technology, 2015.
[http://dx.doi.org/10.1007/s40684-015-0024-9]
[86]
Onyianta, A.J.; Dorris, M.; Williams, R.L. Aqueous Morpholine Pre-Treatment in Cellulose Nanofibril (CNF) Production: Comparison with Carboxymethylation and TEMPO Oxidisation Pre-Treatment Methods. Cellulose, 2018.
[http://dx.doi.org/10.1007/s10570-017-1631-0]
[87]
Sharma, P.R.; Chattopadhyay, A.; Sharma, S.K.; Geng, L.; Amiralian, N.; Martin, D.; Hsiao, B.S. Nanocellulose from Spinifex as an Effective Adsorbent to Remove Cadmium(II) from Water. ACS Sustain. Chem.& Eng., 2018.
[http://dx.doi.org/10.1021/acssuschemeng.7b03473]
[88]
Liimatainen, H.; Suopajärvi, T.; Sirviö, J.; Hormi, O.; Niinimäki, J. Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatment and their use in colloid aggregation. Carbohydr. Polym., 2014, 103, 187-192.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.042] [PMID: 24528718]
[89]
Okahisa, Y.; Furukawa, Y.; Ishimoto, K.; Narita, C.; Intharapichai, K.; Ohara, H. Comparison of cellulose nanofiber properties produced from different parts of the oil palm tree. Carbohydr. Polym., 2018, 198, 313-319.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.089] [PMID: 30093004]
[90]
Isogai, A. Wood Nanocelluloses: Fundamentals and Applications as New Bio-Based Nanomaterials. J. Wood Sci., 2013.
[http://dx.doi.org/10.1007/s10086-013-1365-z]
[91]
Zhu, H.; Fang, Z.; Preston, C.; Li, Y.; Hu, L. Transparent Paper: Fabrications, Properties, and Device Applications. Energy Environ. Sci., 2014.
[http://dx.doi.org/10.1039/C3EE43024C]
[92]
Sakata, M.; Hongo, C.; Matsumoto, T.; Nishino, T. Cellulose Nanofiber Nanocomposites with Aligned Silver Nanoparticles AU Nanocomposites, 2019, 1-11.
[93]
Wang, Y.; Zhu, Y.; Xue, Y.; Wang, J.; Li, X.; Wu, X.; Qin, Y.; Chen, W. Sequential In-Situ Route to Synthesize Novel Composite Hydrogels with Excellent Mechanical, Conductive, and Magnetic Responsive Properties. Mater. Des., 2020, 108759.
[http://dx.doi.org/10.1016/j.matdes.2020.108759]
[94]
Ilyas Rushdana, A.; Sapuan Salit, M.; Lamin Sanyang, M.; Ridzwan Ishak, M. Nanocrystalline Cellulose As Reinforcement For Polymeric Matrix Nanocomposites And Its Potential Applications: A Review. Curr. Anal. Chem., 2017.
[http://dx.doi.org/10.2174/1573411013666171003155624]
[95]
Domingues, R.M.A.; Gomes, M.E.; Reis, R.L. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 2014, 15(7), 2327-2346.
[http://dx.doi.org/10.1021/bm500524s] [PMID: 24914454]
[96]
Lavoine, N.; Bergström, L. Nanocellulose-Based Foams and Aerogels: Processing, Properties, and Applications. J. Mater. Chem. A Mater. Energy Sustain., 2017.
[http://dx.doi.org/10.1039/C7TA02807E]
[97]
Charreau, H.; Foresti, M.L.; Vazquez, A. Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat. Nanotechnol., 2013, 7(1), 56-80.
[http://dx.doi.org/10.2174/187221013804484854] [PMID: 22747719]
[98]
Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials, International Edition; , 2011.
[99]
Araki, J.; Wada, M.; Kuga, S.; Okano, T. Birefringent Glassy Phase of a Cellulose Microcrystal Suspension. Langmuir, 2000.
[http://dx.doi.org/10.1021/la9911180]
[100]
Treesuppharat, W.; Rojanapanthu, P.; Siangsanoh, C.; Manuspiya, H.; Ummartyotin, S. Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol. Rep. (Amst.), 2017, 15, 84-91.
[http://dx.doi.org/10.1016/j.btre.2017.07.002] [PMID: 28736723]
[101]
Gao, X.; Shi, Z.; Lau, A.; Liu, C.; Yang, G.; Silberschmidt, V.V. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel. Mater. Sci. Eng. C, 2016, 62, 130-136.
[http://dx.doi.org/10.1016/j.msec.2016.01.042] [PMID: 26952406]
[102]
Loh, E.Y.X.; Mohamad, N.; Fauzi, M.B.; Ng, M.H.; Ng, S.F.; Mohd Amin, M.C.I. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep., 2018, 8(1), 2875.
[http://dx.doi.org/10.1038/s41598-018-21174-7] [PMID: 29440678]
[103]
Gao, X.; Shi, Z.; Liu, C.; Yang, G.; Sevostianov, I.; Silberschmidt, V.V. Inelastic Behaviour of Bacterial Cellulose Hydrogel: In Aqua Cyclic Tests. In: Polym. Test; , 2015.
[104]
Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia, 2014.
[http://dx.doi.org/10.1016/j.aaspro.2014.11.017]
[105]
Wang, Q.; Sun, J.; Yao, Q.; Ji, C.; Liu, J.; Zhu, Q. 3D Printing with Cellulose Materials. Cellulose, 2018.
[http://dx.doi.org/10.1007/s10570-018-1888-y]
[106]
Lee, J.Y.; An, J.; Chua, C.K. Fundamentals and Applications of 3D Printing for Novel Materials; Applied Materials Today, 2017.
[http://dx.doi.org/10.1016/j.apmt.2017.02.004]
[107]
Li, H.; Tan, C.; Li, L. Review of 3D Printable Hydrogels and Constructs. Mater. Des., 2018.
[http://dx.doi.org/10.1016/j.matdes.2018.08.023]
[108]
Park, J.S.; Kim, T.; Kim, W.S. Conductive Cellulose Composites with Low Percolation Threshold for 3D Printed Electronics. Sci. Rep., 2017, 7(1), 3246.
[http://dx.doi.org/10.1038/s41598-017-03365-w] [PMID: 28607350]
[109]
Athukoralalage, S.S.; Balu, R.; Dutta, N.K.; Roy Choudhury, N. 3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review. Polymers (Basel), 2019, 11(5), E898.
[http://dx.doi.org/10.3390/polym11050898] [PMID: 31108877]
[110]
Sultan, S.; Siqueira, G.; Zimmermann, T.; Mathew, A.P.D Printing of Nano-Cellulosic Biomaterials for Medical Applications. Curr. Opin. Biomed. Eng, 2017.
[111]
Chen, J.; Peng, Q.; Thundat, T.; Zeng, H. Stretchable, Injectable, and Self-Healing Conductive Hydrogel Enabled by Multiple Hydrogen Bonding toward Wearable Electronics. Chem. Mater., 2019.
[http://dx.doi.org/10.1021/acs.chemmater.9b01239]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy