Ligand Decorated Primaquine Loaded Nanocarriers for Liver Targeting for Triggered Anti-Malarial Activity

Author(s): Paramjot Mehan, Ashish Garg, Kumar Ajay, Neeraj Mishra*

Journal Name: Current Molecular Pharmacology

Volume 14 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: The aim of the current research is to formulate a nano delivery system for effective delivery of primaquine for liver targeting to achieve the potential anti-malarial activity. Another objective of current development is to formulate a lactobionic acid conjugated polyphosphazene based nano delivery of primaquine for liver targeting to distinguish anti-malarial activity.

Method: The particle size, entrapment efficiency, in-vitro drug release pattern, hepatotoxicity, MTT assay, erythrocyte toxicity assay, histopathology study, HepG2 cell uptake study, anti-- malarial study, and organ-distribution was also carried out to estimate the activity and potential features of a nanoparticle system.

Results: The results obtained from the above analysis justify the efficiency and effectiveness of the system. The NMR studies confirm the conjugation pattern and the TEM represents the spherical morphological features of nanoparticles. The controlled release pattern from the in-vitro release study was observed and found to be 73.25% of drug release in 20 hrs and in the nano-size range (61.6± 1.56 nm) by particle size analysis.SGOT level, SGPT, ALP, and Parasitemia level of optimized drug-loaded PEGylated lactobionic acid conjugated polyphosphazene derivatized nanoparticles (FF) was found to lie in the safe range, showing that the formulation is non-toxic to the liver. Primaquine drug-loaded PEGylated lactobionic acid conjugated polyphosphazene polymeric nanoparticles showed higher cell uptake on HepG2 cell lines as compared to the drug-loaded in PEGylated polyphosphazene polymeric nanoparticles and plain drug.Percentage cell viability of drugloaded PEGylated lactobionic acid conjugated polyphosphazene derivatized nanoparticles was decreased by enhancing the concentration of prepared nanoparticle system accessed by MTT assay.

Conclusion: From the studies, it can be concluded that the optimized formulation of drug-loaded PEGylated lactobionic acid conjugated polyphosphazene derivatized nanoparticles showed high liver targeting, least toxicity to the liver, controlled release of the drug, higher anti-malarial activity against hepatocytes at a low dose, more effectiveness, and can be treated as a potential candidate for anti-malarial therapy.

Keywords: Nanoparticles, malaria, hepatotoxicity, organ distribution, primaquine, lactobionic acid, histopathology.

[1]
World Health Organization. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. World Health Organization., 2003.
[2]
Oliva, C.F.; Vreysen, M.J.; Dupé, S.; Lees, R.S.; Gilles, J.R.; Gouagna, L.C.; Chhem, R. Current status and future challenges for controlling malaria with the sterile insect technique: technical and social perspectives. Acta Trop., 2014, 132(Suppl.), S130-S139.
[http://dx.doi.org/10.1016/j.actatropica.2013.11.019] [PMID: 24295892]
[3]
Phillips, R.S. Current status of malaria and potential for control. Clin. Microbiol. Rev., 2001, 14(1), 208-226.
[http://dx.doi.org/10.1128/CMR.14.1.208-226.2001] [PMID: 11148010]
[4]
Goswami, P.; Murty, U.S.; Mutheneni, S.R.; Krishnan, S.T. Relative roles of weather variables and change in human population in malaria: comparison over different states of India. PLoS One, 2014, 9(6)e99867
[http://dx.doi.org/10.1371/journal.pone.0099867] [PMID: 24971510]
[5]
Guerin, P.J.; Olliaro, P.; Nosten, F.; Druilhe, P.; Laxminarayan, R.; Binka, F.; Kilama, W.L.; Ford, N.; White, N.J. Malaria: current status of control, diagnosis, treatment, and a proposed agenda for research and development. Lancet Infect. Dis., 2002, 2(9), 564-573.
[http://dx.doi.org/10.1016/S1473-3099(02)00372-9] [PMID: 12206972]
[6]
Snow, R.W.; Guerra, C.A.; Noor, A.M.; Myint, H.Y.; Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 2005, 434(7030), 214-217.
[http://dx.doi.org/10.1038/nature03342] [PMID: 15759000]
[7]
Daily, J.P.; Scanfeld, D.; Pochet, N.; Le Roch, K.; Plouffe, D.; Kamal, M.; Sarr, O.; Mboup, S.; Ndir, O.; Wypij, D.; Levasseur, K.; Thomas, E.; Tamayo, P.; Dong, C.; Zhou, Y.; Lander, E.S.; Ndiaye, D.; Wirth, D.; Winzeler, E.A.; Mesirov, J.P.; Regev, A. Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature, 2007, 450(7172), 1091-1095.
[http://dx.doi.org/10.1038/nature06311] [PMID: 18046333]
[8]
Hay, S.I.; Cox, J.; Rogers, D.J.; Randolph, S.E.; Stern, D.I.; Shanks, G.D.; Myers, M.F.; Snow, R.W. Climate change and the resurgence of malaria in the East African highlands. Nature, 2002, 415(6874), 905-909.
[http://dx.doi.org/10.1038/415905a] [PMID: 11859368]
[9]
Baird, J.K.; Hoffman, S.L. Primaquine therapy for malaria. Clin. Infect. Dis., 2004, 39(9), 1336-1345.
[http://dx.doi.org/10.1086/424663] [PMID: 15494911]
[10]
Fernando, S.D.; Rodrigo, C.; Rajapakse, S. Chemoprophylaxis in malaria: drugs, evidence of efficacy and costs. Asian Pac. J. Trop. Med., 2011, 4(4), 330-336.
[http://dx.doi.org/10.1016/S1995-7645(11)60098-9] [PMID: 21771482]
[11]
Hill, D.R.; Baird, J.K.; Parise, M.E.; Lewis, L.S.; Ryan, E.T.; Magill, A.J. Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I. Am. J. Trop. Med. Hyg., 2006, 75(3), 402-415.
[http://dx.doi.org/10.4269/ajtmh.2006.75.402] [PMID: 16968913]
[12]
Fernando, D.; Rodrigo, C.; Rajapakse, S. Primaquine in vivax malaria: an update and review on management issues. Malar. J., 2011, 10, 351.
[http://dx.doi.org/10.1186/1475-2875-10-351] [PMID: 22152065]
[13]
Baird, J.K.; Rieckmann, K.H. Can primaquine therapy for vivax malaria be improved? Trends Parasitol., 2003, 19(3), 115-120.
[http://dx.doi.org/10.1016/S1471-4922(03)00005-9] [PMID: 12643993]
[14]
Alving, A.; Anold, J.; Hockwald, R. Prevention of curative action of primaquine in vivax malaria by quinine and chloroquine. J. Lab. Clin. Med., 1985, 4, 301-306.
[15]
Singh, K.K.; Vingkar, S.K. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int. J. Pharm., 2008, 347(1-2), 136-143.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.035] [PMID: 17709216]
[16]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[17]
Peters, W.; Robinson, B.L.; Tovey, G.; Rossier, J.C.; Jefford, C.W. The chemotherapy of rodent malaria. L. The activities of some synthetic 1,2,4-trioxanes against chloroquine-sensitive and chloroquine-resistant parasites. Part 3: Observations on ‘Fenozan-50F’, a difluorinated 3,3′-spirocyclopentane 1,2,4-trioxane. Ann. Trop. Med. Parasitol., 1993, 87(2), 111-123.
[http://dx.doi.org/10.1080/00034983.1993.11812745] [PMID: 8561518]
[18]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[19]
Devalapally, H.; Chakilam, A.; Amiji, M.M. Role of nanotechnology in pharmaceutical product development. J. Pharm. Sci., 2007, 96(10), 2547-2565.
[http://dx.doi.org/10.1002/jps.20875] [PMID: 17688284]
[20]
Essential Malariology.John Wiley and Sons: New York, 1980, pp. 46-59.
[21]
Fontana, M.C.; Rezer, J.F.P.; Coradini, K.; Leal, D.B.; Beck, R.C. Improved efficacy in the treatment of contact dermatitis in rats by a dermatological nanomedicine containing clobetasol propionate. Eur. J. Pharm. Biopharm., 2011, 79(2), 241-249.
[http://dx.doi.org/10.1016/j.ejpb.2011.05.002] [PMID: 21605671]
[22]
Hombreiro Pérez, M.; Zinutti, C.; Lamprecht, A.; Ubrich, N.; Astier, A.; Hoffman, M.; Bodmeier, R.; Maincent, P. The preparation and evaluation of poly(ϵ-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug. J. Control. Release, 2000, 65(3), 429-438.
[http://dx.doi.org/10.1016/S0168-3659(99)00253-9] [PMID: 10699300]
[23]
Smith, G. Bioanalytical method validation: notable points in the 2009 draft EMA Guideline and differences with the 2001 FDA Guidance. Bioanalysis, 2010, 2(5), 929-935.
[http://dx.doi.org/10.4155/bio.10.42] [PMID: 21083222]
[24]
Sung, J.C.; Padilla, D.J.; Garcia-Contreras, L.; Verberkmoes, J.L.; Durbin, D.; Peloquin, C.A.; Elbert, K.J.; Hickey, A.J.; Edwards, D.A. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm. Res., 2009, 26(8), 1847-1855.
[http://dx.doi.org/10.1007/s11095-009-9894-2] [PMID: 19407933]
[25]
Tomoda, K.; Ohkoshi, T.; Hirota, K.; Sonavane, G.S.; Nakajima, T.; Terada, H.; Komuro, M.; Kitazato, K.; Makino, K. Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer. Colloids Surf. B Biointerfaces, 2009, 71(2), 177-182.
[http://dx.doi.org/10.1016/j.colsurfb.2009.02.001] [PMID: 19264458]
[26]
Varelas, C.G.; Dixon, D.G.; Steiner, C.A. Zero-order release from biphasic polymer hydrogels. J. Control. Release, 1995, 34(3), 185-192.
[http://dx.doi.org/10.1016/0168-3659(94)00085-9]
[27]
Shakeel, K.; Raisuddin, S.; Ali, S.; Imam, S.S.; Rahman, M.A.; Jain, G.K.; Ahmad, F.J. Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J. Liposome Res., 2019, 29(1), 35-43.
[http://dx.doi.org/10.1080/08982104.2017.1410173] [PMID: 29179636]
[28]
Gowda, S.; Desai, P.B.; Hull, V.V.; Math, A.A.K.; Vernekar, S.N.; Kulkarni, S.S. A review on laboratory liver function tests. Pan Afr. Med. J., 2009, 3, 17.
[PMID: 21532726]
[29]
Dua, P.; Gude, R.P. Antiproliferative and antiproteolytic activity of pentoxifylline in cultures of B16F10 melanoma cells. Cancer Chemother. Pharmacol., 2006, 58(2), 195-202.
[http://dx.doi.org/10.1007/s00280-005-0155-8] [PMID: 16331498]
[30]
Goel, P.N.; Gude, R.P. Unravelling the antimetastatic potential of pentoxifylline, a methylxanthine derivative in human MDA-MB-231 breast cancer cells. Mol. Cell. Biochem., 2011, 358(1-2), 141-151.
[http://dx.doi.org/10.1007/s11010-011-0929-8] [PMID: 21725843]
[31]
Waugh, R.; Evans, E.A. Thermoelasticity of red blood cell membrane. Biophys. J., 1979, 26(1), 115-131.
[http://dx.doi.org/10.1016/S0006-3495(79)85239-X] [PMID: 262408]
[32]
Jumaa, M.; Kleinebudde, P.; Muller, B.W. Physicochemical properties and hemolytic effect of different lipid emulsion formulations using a mixture of emulsifiers. Pharm. Acta Helv., 1999, 76, 293-301.
[http://dx.doi.org/10.1016/S0031-6865(99)00003-5]
[33]
Hewitt, S.G. Manual for veterinary investigation, hematology and laboratory techniques, 3rd edtion; Bulleting of Ministry of Agric. Fishery, Food and Hematology, 1984, pp. 77-79.
[34]
El-Din, T.A.S.; Mohamed, M.B.; Kamel, H.M.; Kader, M.A. Magnetite nanoparticles as a single dose treatment for iron deficiency anemia. WO2010034319A1, 2010.
[35]
Rensen, P.C.; Sliedregt, L.A.; Ferns, M.; Kieviet, E.; van Rossenberg, S.M.; van Leeuwen, S.H.; van Berkel, T.J.; Biessen, E.A. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J. Biol. Chem., 2001, 276(40), 37577-37584.
[http://dx.doi.org/10.1074/jbc.M101786200] [PMID: 11479285]
[36]
Wang, S.N.; Deng, Y.H.; Xu, H.; Wu, H.B.; Qiu, Y.K.; Chen, D.W. Synthesis of a novel galactosylated lipid and its application to the hepatocyte-selective targeting of liposomal doxorubicin. Eur. J. Pharm. Biopharm., 2006, 62(1), 32-38.
[http://dx.doi.org/10.1016/j.ejpb.2005.07.004] [PMID: 16226883]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 3
Year: 2021
Published on: 25 November, 2020
Page: [412 - 427]
Pages: 16
DOI: 10.2174/1874467213999201125220729
Price: $65

Article Metrics

PDF: 148