Spectrophotometric Techniques: A Versatile Tool for Bioprocess Monitoring

Author(s): Chandni Chandarana*, Jyoti Suthar, Aman Goyal

Journal Name: Current Biotechnology

Volume 10 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Online analysis of bioprocesses by analytical spectroscopic methods is used to produce fast sample analysis. Bio-transformations are directly controlled by continuous process It improves management of Quality. Various methods for online analysis have been reported. This review article majorly covers applications for infrared [NIR and MIR]; Fluorescence; Ultraviolet [UV] Spectroscopy and Raman Spectroscopy for online monitoring of bioprocesses. The use of Uv- Vis spectroscopy in bioprocess monitoring to measure different chemicals compound present in sample. The measurement of proteins and other large molecule, where light is absorbed by functional group of molecules, resulting in non-specific uv-vis spectra. Raman spectroscopy is supportive to MIR, yielding different intensities and selectivity. Raman measures inelastic scattering from a monochromatic radiation source. Fluorescence spectroscopy monitoring and automation of fluorescence can be improved by using in combination with chemometric model for cultivation of e-coli. The application of spectroscopic methods for the analysis of bioprocess result in complex spectra. The methods under discussion produce datasets which overlapping spectra for all of these components which requires multivariate data analysis method, such as Partial least square (PLS), regression or principal component regression for data analysis also the use of calibration dataset and chemometric algorithms which is beyond the scope of review.

Keywords: UV Spectrophotometry, IR spectrophotometry, raman spectrophotometry, fluorimetry, bioprocess, infrared.

[1]
Scheper T, Hilmer J, Lammers F, Mueller C, Reinecke M. Biosensors in bioprocess monitoring. J Chromat 1996; 725: 3-12.
[http://dx.doi.org/10.1016/0021-9673(95)00998-1]
[2]
Available from:. https://byjus.com/
[3]
Scott,A.I. Interpretation of Ultraviolet Spectra of Natural Products 1964.
[http://dx.doi.org/10.1016/C2013-0-02266-9]
[4]
Klier K. Investigations of adsorption centers, molecules, surface complexes, and interactions among catalyst components by diffuse reflectance spectroscopy. In: Bell AT, Hair ML, Eds. Vibrational spectroscopies for adsorbed species ACS Symp Ser. 1980; 137..
[5]
MelsheimerJ Ziegler D, Eds. The oxygen electrode reduction in acid solutions on RuO2 electrodes prepared by thermal decomposition method. J Chem Soc Faraday Trans 1987.83(1): 1109..
[6]
Weinstock I, Atalla RH, Agarwal UP, Minor J, Petty C. FT Raman spectroscopic studies of a novel wood pulp bleaching system. SpectrochimicaActa Part A: Molecular Spectroscopy 1993; 49(5-6): 819-29.
[http://dx.doi.org/10.1016/0584-8539(93)80106-K]
[7]
[8]
Kiviharju K, Salonen K, Moilanen U, Meskanen E, Leisola M, Eerikäinen T. On-line biomass measurements in bioreactor cultivations: comparison study of two on-line probes. J Ind Microbiol Biotechnol 2007; 34(8): 561-6.
[http://dx.doi.org/10.1007/s10295-007-0233-5] [PMID: 17582540]
[9]
Soons Z, Streefland M, van Straten G, van Boxtel A. Assessment of near infrared and “software sensor” for biomass monitoring and control. Chemom Intell Lab Syst 2008; 94: 166-74.
[http://dx.doi.org/10.1016/j.chemolab.2008.07.009]
[10]
Arnold SA, Gaensakoo R, Harvey LM, McNeil B. Use of at-line and in-situ near-infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process. Biotechnol Bioeng 2002; 80(4): 405-13.
[http://dx.doi.org/10.1002/bit.10383] [PMID: 12325148]
[11]
Kornmann H, Valentinotti S, Duboc P, Marison I, von Stockar U. Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy. J Biotechnol 2004; 113(1-3): 231-45.
[http://dx.doi.org/10.1016/j.jbiotec.2004.03.029] [PMID: 15380658]
[12]
Sivakesava S, Irudayaraj J, Ali D. Simultaneous determinationof multiple components in lactic acid fermentation using FT-MIR, NIR, and FT-Raman spectroscopic techniques. Process Biochem 2001; 37: 371-8.
[http://dx.doi.org/10.1016/S0032-9592(01)00223-0]
[13]
Crowley J, Arnold S, Wood N, Harvey L, McNeil B. Monitoring a high cell density recombinant Pichia pastoris fed-batch bioprocess using transmission and reflectance near infraredspectroscopy. Enzyme Microb Technol 2005; 36: 621-8.
[http://dx.doi.org/10.1016/j.enzmictec.2003.12.016]
[14]
Mazarevica G, Diewok J, Baena JR, Rosenberg E, Lendl B. On-line fermentation monitoring by mid-infrared spectroscopy. Appl Spectrosc 2004; 58(7): 804-10.
[http://dx.doi.org/10.1366/0003702041389229] [PMID: 15282045]
[15]
Rodrigues LO, Vieira L, Cardoso JP, Menezes JC. The use of NIR as a multi-parametric in situ monitoring technique in filamentous fermentation systems. Talanta 2008; 75(5): 1356-61.
[http://dx.doi.org/10.1016/j.talanta.2008.01.048] [PMID: 18585224]
[16]
Roychoudhury P, Harvey L, McNeil B. At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy. Anal Chim Acta 2006; 561: 218-24.
[http://dx.doi.org/10.1016/j.aca.2006.01.037]
[17]
Navrátil M, Norberg A, Lembrén L, Mandenius CF. On-line multi-analyzer monitoring of biomass, glucose and acetate for growth rate control of a Vibrio cholerae fed-batch cultivation. J Biotechnol 2005; 115(1): 67-79.
[http://dx.doi.org/10.1016/j.jbiotec.2004.07.013] [PMID: 15607226]
[18]
Tosi S, Rossi M, Tamburini E, Vaccari G, Amaretti A, Matteuzzi D. Assessment of in-line near-infrared spectroscopy for continuous monitoring of fermentation processes. Biotechnol Prog 2003; 19(6): 1816-21.
[http://dx.doi.org/10.1021/bp034101n] [PMID: 14656161]
[19]
Paul A, Carl P, Westad F, Voss JP, Maiwald M. TowardsProcessSpectroscopyinComplexFermentation Samples and Mixtures. Chemieingenieurtechnik (Weinh) 2016; 88: 756-63.
[http://dx.doi.org/10.1002/cite.201500118]
[20]
Shi K, Chen G, Pistolozzi M, Xia F, Wu Z. Improved analysis of Monascus pigments based on their pH-sensitive UV-Vis absorption and reactivity properties. Food Addit Contam A Chem Anal Control Expo Risk Assess 2016; 33: 1396-401..
[21]
Zou Y, Li L, Liu C. Physicochemical properties and stability of melanin from AuriculariaAuricula fermentation broths. Carpath J Food Sci Technol 2015; 7: 149-54.
[22]
Li S-W, Song H-P, Leng Y. Rapid determination of lovastatin in the fermentation broth of Aspergillus terreus using dual-wavelength UV spectrophotometry. Pharm Biol 2014; 52(1): 129-35.
[http://dx.doi.org/10.3109/13880209.2013.833947] [PMID: 24093797]
[23]
De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc 2007; 38: 1133-47.
[http://dx.doi.org/10.1002/jrs.1734]
[24]
Narayanan PS. Raman spectrum of potassium di-hydrogen phosphate. Proc Indian Acad Sci Sect A Phys Sci 1951; 33: 240-4.
[http://dx.doi.org/10.1007/BF03039052]
[25]
Wolpert M, Hellwig P. Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm(-1). Spectrochim Acta A Mol Biomol Spectrosc 2006; 64(4): 987-1001.
[http://dx.doi.org/10.1016/j.saa.2005.08.025] [PMID: 16458063]
[26]
Tensmeyer LG, Heathman MA. Analytical applications of Raman spectroscopy in the pharmaceutical field. Trends Analyt Chem 1989; 8(1): 19-24.
[http://dx.doi.org/10.1016/0165-9936(89)80009-3]
[27]
Tensmeyer LG, Shields JE. Raman spectra of crystalline 4Zn, 2Zn, and Na insulin. Proc SPIE 1990; 1336: 222-34.
[http://dx.doi.org/10.1117/12.22913]
[28]
Willis L, Gil GA, Lee HLT, et al. Application of spectroscopic methods for the automation of oil palm culture. J Oil Palm Res 2008; 20: 1-13.
[29]
Lee HLT, Boccazzi P, Gorret N, Ram RJ, Sinskey AJ. In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vib Spectrosc 2004; 35(1–2): 131-7.
[http://dx.doi.org/10.1016/j.vibspec.2003.12.015]
[30]
Cannizzaro C, Rhiel M, Marison I, von Stockar U. On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol Bioeng 2003; 83(6): 668-80.
[http://dx.doi.org/10.1002/bit.10698] [PMID: 12889031]
[31]
Gray SR, Peretti SW, Lamb HH. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy. Biotechnol Bioeng 2013; 110(6): 1654-62.
[http://dx.doi.org/10.1002/bit.24849] [PMID: 23334886]
[32]
Oh SK, Yoo SJ, Jeong DH, Lee JM. Real-time estimation of glucose concentration in algae cultivation system using Raman spectroscopy. Bioresour Technol 2013; 142: 131-7.
[http://dx.doi.org/10.1016/j.biortech.2013.05.008] [PMID: 23735794]
[33]
Clementschitsch F, Jürgen K, Florentina P, Karl B. Sensor combination and chemometric modelling for improved process monitoring in recombinant E. coli fed-batch cultivations. J Biotechnol 2005; 120(2): 183-96.
[http://dx.doi.org/10.1016/j.jbiotec.2005.05.030] [PMID: 16139381]
[34]
Rhee JI, Lee KI, Kim CK, et al. Classification of two-dimensional fluorescence spectra using self-organizing maps. Biochem Eng J 2005; 22: 135-44.
[http://dx.doi.org/10.1016/j.bej.2004.09.008]
[35]
Johansson L, Lidén G. A study of long-term effects on plasmid-containing Escherichia coli in carbon-limited chemostat using 2D-fluorescence spectrofluorimetry. Biotechnol Prog 2006; 22(4): 1132-9.
[http://dx.doi.org/10.1021/bp060061m] [PMID: 16889390]
[36]
Kensy F, Zang E, Faulhammer C, Tan RK, Büchs J. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact 2009; 8: 31.
[http://dx.doi.org/10.1186/1475-2859-8-31] [PMID: 19497126]
[37]
Khanna S, Srivastava AK. On-line characterization of physiological state in poly(β-hydroxybutyrate) production by Wautersia eutropha. Appl Biochem Biotechnol 2009; 157(2): 237-43.
[http://dx.doi.org/10.1007/s12010-008-8395-9] [PMID: 18958410]
[38]
Eliasson Lantz A, Jørgensen P, Poulsen E, Lindemann C, Olsson L. Determination of cell mass and polymyxin using multi-wavelength fluorescence. J Biotechnol 2006; 121(4): 544-54.
[http://dx.doi.org/10.1016/j.jbiotec.2005.08.007] [PMID: 16157411]
[39]
Misturini Rossi D, Solle D, Hitzmann B, Ayub MA. Chemometric modeling and two-dimensional fluorescence analysis of bioprocess with a new strain of Klebsiella pneumoniae to convert residual glycerol into 1,3-propanediol. J Ind Microbiol Biotechnol 2012; 39(5): 701-8.
[http://dx.doi.org/10.1007/s10295-011-1075-8] [PMID: 22252443]
[40]
Haack MB, Lantz AE, Mortensen PP, Olsson L. Chemometric analysis of in-line multi-wavelength fluorescence measurements obtained during cultivations with a lipase producing Aspergillus oryzae strain. Biotechnol Bioeng 2007; 96(5): 904-13.
[http://dx.doi.org/10.1002/bit.21170] [PMID: 16948165]
[41]
Hagedorn A, Legge RL, Budman H. Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations. Biotechnol Bioeng 2003; 83(1): 104-11.
[http://dx.doi.org/10.1002/bit.10649] [PMID: 12740937]
[42]
Ganzlin M, Marose S, Lu X, Hitzmann B, Scheper T, Rinas U. In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures. J Biotechnol 2007; 132(4): 461-8.
[http://dx.doi.org/10.1016/j.jbiotec.2007.08.032] [PMID: 17905460]
[43]
Ju LK, Chen F, Xia Q. Monitoring microaerobic denitrification of Pseudomonas aeruginosa by online NAD(P)H fluorescence. J Ind Microbiol Biotechnol 2005; 32(11-12): 622-8.
[http://dx.doi.org/10.1007/s10295-005-0035-6] [PMID: 16228188]
[44]
Jhala E, Galilee C, Reinisch L. Principal component analysis of fluorescence changes upon growth conditions and washing of Pseudomonas aeruginosa. Appl Opt 2007; 46(22): 5522-8.
[http://dx.doi.org/10.1364/AO.46.005522] [PMID: 17676169]
[45]
Gahlawat G, Srivastava AK. Use of NAD(P)H fluorescence measurement for on-line monitoring of metabolic state of Azohydromonas australica in poly(3-hydroxybutyrate) production. Appl Biochem Biotechnol 2013; 169(3): 821-31.
[http://dx.doi.org/10.1007/s12010-012-0040-y] [PMID: 23274725]
[46]
Mortensen PP, Bro R. Real-time monitoring and chemical profiling of a cultivation process. Chemom Intell Lab Syst 2006; 84: 106-13.
[http://dx.doi.org/10.1016/j.chemolab.2006.04.022]
[47]
Ödman P, Johansen CL, Olsson L, Gernaey KV, Lantz AE. Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations. Appl Microbiol Biotechnol 2010; 86(6): 1745-59.
[http://dx.doi.org/10.1007/s00253-009-2412-y] [PMID: 20135117]
[48]
Rønnest N, Stocks S, Eliasson Lantz A, Gernaey K. Introducing process analytical technology (PAT) in filamentous cultivation process development: Comparison of advanced online sensors for biomass measurement. J Ind Microbiol Biotechnol 2011; 38: 1679-90.
[49]
Surribas A, Amigo JM, Coello J, Montesinos JL, Valero F, Maspoch S. Parallel factor analysis combined with PLS regression applied to the on-line monitoring of Pichia pastoris cultures. Anal Bioanal Chem 2006; 385(7): 1281-8.
[http://dx.doi.org/10.1007/s00216-006-0355-z] [PMID: 16538457]
[50]
Surribas A, Geissler D, Gierse A, et al. State variables monitoring by in situ multi-wavelength fluorescence spectroscopy in heterologous protein production by Pichia pastoris. J Biotechnol 2006; 124(2): 412-9.
[http://dx.doi.org/10.1016/j.jbiotec.2006.01.002] [PMID: 16488501]
[51]
Ödman P, Johansen CL, Olsson L, Gernaey KV, Lantz AE. On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sensors. J Biotechnol 2009; 144(2): 102-12.
[http://dx.doi.org/10.1016/j.jbiotec.2009.08.018] [PMID: 19735680]
[52]
Hagedorn A, Levadoux W, Groleau D, Tartakovsky B. Evaluation of multiwavelength culture fluorescence for monitoring the aroma compound 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF) production. Biotechnol Prog 2004; 20(1): 361-7.
[http://dx.doi.org/10.1021/bp0300321] [PMID: 14763864]
[53]
Boehl D, Solle D, Hitzmann B, Scheper T. Chemometric modelling with two-dimensional fluorescence data for Claviceps purpurea bioprocess characterization. J Biotechnol 2003; 105(1-2): 179-88.
[http://dx.doi.org/10.1016/S0168-1656(03)00189-5] [PMID: 14511918]
[54]
Hisiger S, Jolicoeur M. A multiwavelength fluorescence probe: is one probe capable for on-line monitoring of recombinant protein production and biomass activity? J Biotechnol 2005; 117(4): 325-36.
[http://dx.doi.org/10.1016/j.jbiotec.2005.03.004] [PMID: 15890426]
[55]
Teixeira AP, Portugal CA, Carinhas N, et al. In situ 2D fluorometry and chemometric monitoring of mammalian cell cultures. Biotechnol Bioeng 2009; 102(4): 1098-106.
[http://dx.doi.org/10.1002/bit.22125] [PMID: 18853411]
[56]
Li B, Shanahan M, Calvet A, Leister KJ, Ryder AG. Comprehensive, quantitative bioprocess productivity monitoring using fluorescence EEM spectroscopy and chemometrics. Analyst (Lond) 2014; 139(7): 1661-71.
[http://dx.doi.org/10.1039/C4AN00007B] [PMID: 24504094]
[57]
Ryan PW, Li B, Shanahan M, Leister KJ, Ryder AG. Prediction of cell culture media performance using fluorescence spectroscopy. Anal Chem 2010; 82(4): 1311-7.
[http://dx.doi.org/10.1021/ac902337c] [PMID: 20088547]
[58]
Srivastava S, Harsh S, Srivastava AK. Use of NADH fluorescence measurement for on-line biomass estimation and characterization of metabolic status in bioreactor cultivation of plant cells for azadirachtin (a biopesticide) production. Process Biochem 2008; 43: 1121-3.
[http://dx.doi.org/10.1016/j.procbio.2008.06.008]
[59]
Hisiger S, Jolicoeur M. Plant cell culture monitoring using an in situ multiwavelength fluorescence probe. Biotechnol Prog 2005; 21(2): 580-9.
[http://dx.doi.org/10.1021/bp049726f] [PMID: 15801802]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 1
Year: 2021
Published on: 25 November, 2020
Page: [7 - 12]
Pages: 6
DOI: 10.2174/2211550109999201125202420
Price: $65

Article Metrics

PDF: 141