Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Generative Adversarial Networks in Medical Image Processing

Author(s): Meiqin Gong, Siyu Chen, Qingyuan Chen, Yuanqi Zeng and Yongqing Zhang*

Volume 27, Issue 15, 2021

Published on: 25 November, 2020

Page: [1856 - 1868] Pages: 13

DOI: 10.2174/1381612826666201125110710

Price: $65

Abstract

Background: The emergence of generative adversarial networks (GANs) has provided new technology and framework for the application of medical images. Specifically, a GAN requires little to no labeled data to obtain high-quality data that can be generated through competition between the generator and discriminator networks. Therefore, GANs are rapidly proving to be a state-of-the-art foundation, achieving enhanced performances in various medical applications.

Methods: In this article, we introduce the principles of GANs and their various variants, deep convolutional GAN, conditional GAN, Wasserstein GAN, Info-GAN, boundary equilibrium GAN, and cycle-GAN.

Results: All various GANs have found success in medical imaging tasks, including medical image enhancement, segmentation, classification, reconstruction, and synthesis. Furthermore, we summarize the data processing methods and evaluation indicators. Finally, we note the limitations of existing methods and the existing challenges that need to be addressed in this field.

Conclusion: Although GANs are in the initial stage of development in medical image processing, it will have a great prospect in the future.

Keywords: Generative adversarial networks, medical image processing, deep learning, segmentation, reconstruction, synthesis.

« Previous
[1]
Qiu T, Wen C, Xie K, Wen F, Sheng G, Tang X-G. Efficient medical image enhancement based on CNN-FBB model. IET Image Process 2019; 13(10): 1736-44.
[http://dx.doi.org/10.1049/iet-ipr.2018.6380]
[2]
Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets 2014; 2672-80.
[3]
Zhang Y, Pei Y, Qin H, et al. Masseter muscle segmentation from cone-beam ct images using generative adversarial network ISBI. 2019; 1188-92.
[4]
Larsen ABL, Sønderby SK, Larochelle H, Winther O. Autoencoding beyond pixels using a learned similarity metric 2016; 1558-66.
[5]
Jiang Y, Tan N, Peng T. Optic disc and cup segmentation based on deep convolutional generative adversarial networks. IEEE Access 2019; 7: 64483-93.
[http://dx.doi.org/10.1109/ACCESS.2019.2917508]
[6]
Kuang H, Menon BK, Qiu W. Automated Infarct Segmentation from Follow-up Non-Contrast CT Scans in Patients with Acute Ischemic Stroke Using Dense Multi-Path Contextual Generative Adversarial Network. In: MICCAI. 2019; pp. 856-63.
[http://dx.doi.org/10.1007/978-3-030-32248-9_95]
[7]
Tang Y, Oh S, Tang Y, Xiao J, Summers RM. CT-realistic data augmentation using generative adversarial network for robust lymph node segmentation. Conference: Computer aided diagnosis 2019; 109503V.
[http://dx.doi.org/10.1117/12.2512004]
[8]
Zhang Y, Pei Y, Qin H, et al. tMasseter Muscle Segmentation from Cone-Beam CT Images using Generative Adversarial Network. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) 2019; 1188-92.
[http://dx.doi.org/10.1109/ISBI.2019.8759426]
[9]
Lee MB, Kim YH, Park KR. Conditional generative adversarial network- based data augmentation for enhancement of iris recognition accuracy. IEEE Access 2019; 7: 122134-52.
[http://dx.doi.org/10.1109/ACCESS.2019.2937809]
[10]
Yang J, Zhao Z, Zhang H, Shi Y. Data augmentation for X-ray prohibited item images using generative adversarial networks. IEEE Access 2019; 7: 28894-902.
[http://dx.doi.org/10.1109/ACCESS.2019.2902121]
[11]
Lin Y-J, Chung IF. Medical data augmentation using generative adversarial networks: X-ray image generation for transfer learning of hip fracture detection.2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI). 2019; pp. 1-5.
[12]
Wang P, Hou B, Shao S, Yan R. ecg arrhythmias detection using auxiliary classifier generative adversarial network and residual network. IEEE Access 2019; 7: 100910-22.
[http://dx.doi.org/10.1109/ACCESS.2019.2930882]
[13]
Ghassemi N, Shoeibi A, Rouhani M. Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomed Signal Process Control 2020; 57: 101678.
[http://dx.doi.org/10.1016/j.bspc.2019.101678]
[14]
Onishi Y, Teramoto A, Tsujimoto M, et al. Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks. Int J CARS 2020; 15(1): 173-8.
[http://dx.doi.org/10.1007/s11548-019-02092-z] [PMID: 31732864]
[15]
Gu J, Li Z, Wang Y, Yang H, Qiao Z, Yu J. Deep Generative Adversarial Networks for Thin-Section Infant MR Image Reconstruction. IEEE Access 2019; 7: 68290-304.
[http://dx.doi.org/10.1109/ACCESS.2019.2918926]
[16]
Vasudeva B, Deora P, Bhattacharya S, Pradhan PM. Co-VeGAN: complex-valued generative adversarial network for compressive sensing mr image reconstruction. CoRR 2020.
[17]
Jiang M, Yuan Z, Yang X, et al. Accelerating CS-MRI reconstruction with fine-tuning wasserstein generative adversarial network. IEEE Access 2019; 7: 152347-57.
[http://dx.doi.org/10.1109/ACCESS.2019.2948220]
[18]
Li Z, Zhang T, Wan P, Zhang D. SEGAN: Structure-enhanced generative adversarial network for compressed sensing mri reconstruction. Computer Vision and Pattern Recognition 2019; 1012-9.
[19]
Cai Y, Osman S, Sharma M, Landis M, Li S. Multi-modality vertebra recognition in arbitrary views using 3D deformable hierarchical model. IEEE Trans Med Imaging 2015; 34(8): 1676-93.
[http://dx.doi.org/10.1109/TMI.2015.2392054] [PMID: 25594966]
[20]
Sørensen L, Shaker SB, de Bruijne M. Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging 2010; 29(2): 559-69.
[http://dx.doi.org/10.1109/TMI.2009.2038575] [PMID: 20129855]
[21]
Yap MH, Pons G, Martí J, et al. Moi Hoon Yap. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform 2018; 22(4): 1218-26.
[http://dx.doi.org/10.1109/JBHI.2017.2731873] [PMID: 28796627]
[22]
Rodtook A, Kirimasthong K, Lohitvisate W, Makhanov SS. Automatic initialization of active contours and level set method in ultrasound images of breast abnormalities. Pattern Recognit 2018; 79: 172-82.
[http://dx.doi.org/10.1016/j.patcog.2018.01.032]
[23]
Sirinukunwattana K, Ahmed Raza SE. Yee-Wah Tsang, Snead DRJ, Cree IA, Rajpoot NM. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 2016; 35(5): 1196-206.
[http://dx.doi.org/10.1109/TMI.2016.2525803] [PMID: 26863654]
[24]
Glotsos D, Kalatzis I, Spyridonos P, et al. Improving accuracy in astrocytomas grading by integrating a robust least squares mapping driven support vector machine classifier into a two level grade classification scheme. Comput Methods Programs Biomed 2008; 90(3): 251-61.
[http://dx.doi.org/10.1016/j.cmpb.2008.01.006] [PMID: 18343526]
[25]
Iakovidis DK, Koulaouzidis A. Automatic lesion detection in wireless capsule endoscopy - A simple solution for a complex problem. ICIP 2014; 2236-40.
[26]
Hernandez-Matas C, Zabulis X, Argyros AA. An experimental evaluation of the accuracy of keypoints-based retinal image registration. EMBC 2017; 377-81.
[27]
Azzopardi G, Petkov N. Detection of retinal vascular bifurcations by trainable V4-like filters. CAIP(4) 2011; 451-9.
[28]
Porwal P, Pachade S, Kamble R, et al. Indian Diabetic Retinopathy Image Dataset (IDRiD): A database for diabetic retinopathy screening research. Data 2018; 25.
[29]
Andreopoulos A, Tsotsos JK. Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 2008; 12(3): 335-57.
[http://dx.doi.org/10.1016/j.media.2007.12.003] [PMID: 18313974]
[30]
Andreopoulos A, Tsotsos JK. Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry A 2009; 75(6): 494-509.
[http://dx.doi.org/10.1016/j.media.2007.12.003] [PMID: 18313974]
[31]
Oliveira JEE, Gueld MO, De A, Araújo ADA, Deserno TM. Toward a standard reference database for computer-aided mammography. Proceedings of SPIE 54-64.
[http://dx.doi.org/10.1117/12.770325]
[32]
Subramanian R, Sarkar S. Evaluation of algorithms for orientation invariant inertial gait matching. IEEE Trans Inf Forensics Security 2019; 14(2): 304-18.
[http://dx.doi.org/10.1109/TIFS.2018.2850032]
[33]
Yadav AK, Shah S, Xu Z, Jacobs DW, Goldstein T. Stabilizing Adversarial Nets with Prediction Methods. ICLR 2018.
[34]
Iliyasu AS, Deng H. Semi-supervised encrypted traffic classification with deep convolutional generative adversarial networks. IEEE Access 2020; 8: 118-26.
[http://dx.doi.org/10.1109/ACCESS.2019.2962106]
[35]
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML 2015; 448-56.
[36]
Elibol M, Lei L, Jordan MI. Variance Reduction with Sparse Gradients. CoRR 2020.
[37]
Mirza M, Osindero S. Conditional generative adversarial nets. Comput Sci 2014; 2672-80.
[38]
Reed SE, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H. Generative adversarial text to image synthesis. ICML 2016; 1060-9.
[39]
Larsen ABL, Sønderby SK, Larochelle H, Winther O. Autoencoding beyond pixels using a learned similarity metric. ICML 2016; 1558-66.
[40]
Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. ICML 2017; 214-23.
[41]
Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC. Improved training of wasserstein GANs. NIPS 2017; 5767-77.
[42]
Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P. nfoGAN: interpretable representation learning by information maximizing generative adversarial nets. NIPS 2016; 2172-80.
[43]
Berthelot D, Schumm T, Metz L. BEGAN: boundary equilibrium generative adversarial networks. CoRR 2017.
[44]
Wang Q, Liu Fa, Xing S, Zhao X. Research on CTR prediction based on stacked autoencoder. Appl Intell 2019; 49(8): 2970-81.
[http://dx.doi.org/10.1007/s10489-019-01416-5]
[45]
Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks.2017 IEEE International Conference on Computer Vision (ICCV). 2017; pp. 2242-51.
[http://dx.doi.org/10.1109/ICCV.2017.244]
[46]
Máttyus G, Urtasun R. Matching Adversarial Networks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2018; 8024-32.
[47]
Odena A. Conditional image synthesis with auxiliary classifier gans. 34th International Conference on Machine Learning 6: 4043-55.
[48]
Rubner y CT, Guibas LJ. Earth mover’s distance as a metric for image retrieval. Int J Comput Vis 2000; 40(2): 99-121.
[http://dx.doi.org/10.1023/A:1026543900054]
[49]
Petzka H. On the regularization of Wasserstein GANs. 6th International Conference on Learning Representations.
[50]
Seff A. L. L, Barbu A, Roth H, Shin H-C, Summers R M. Leveraging mid-level semantic boundary cues for automated lymph node detection. International Conference on Medical Image Computing and Computer-Assisted Intervention. 53-61.
[51]
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatablediseases by image-based deep learning. Cell 2018; 172(5): 1122-1131.e9.
[http://dx.doi.org/10.1016/j.cell.2018.02.010] [PMID: 29474911]
[52]
Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 2010; 74(3): 201-9.
[http://dx.doi.org/10.1212/WNL.0b013e3181cb3e25] [PMID: 20042704]
[53]
Brain MRI dataset(BRATS15) 2015 Available from:. https://www.virtualskeleton.ch/BRATS/Start2015#download
[54]
Jha BS, Bharti K. Regenerating retinal pigment epithelial cells to cure blindness: A road towards personalized artificial tissue. Curr Stem Cell Rep 2015; 1(2): 79-91.
[http://dx.doi.org/10.1007/s40778-015-0014-4] [PMID: 26146605]
[56]
Tang Y, Oh S, Tang Y, Xiao J, Summers RM. Summers, CTrealistic data augmentation using generative adversarial network for robust lymph node segmentation. Medical Imaging: Computer- Aided Diagnosis 2019; 109503V.
[57]
Venu SK. Evaluation of Deep Convolutional Generative Adversarial Networks for data augmentation of chest X-ray images. CoRR 2020.
[58]
Konidaris F, Tagaris T, Sdraka M, Stafylopatis A. Generative adversarial networks as an advanced data augmentation technique for MRI data. VISIGRAPP 2019; 48-59.
[59]
Mok TCW, Chung ACS. Learning Data Augmentation for Brain Tumor Segmentation with Coarse-to-Fine Generative Adversarial Networks. BrainLes@MICCAI 2018; 70-80.
[60]
Majurski M, Manescu P, Padi S, et al. Cell image segmentation using generative adversarial networks, transfer learning, and augmentations. CVPR Workshops 2019.
[61]
Yan K, Wang X, Lu L, et al. Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database 2018; 9261-70.
[62]
Chest CT scan of lung nodules(LIDC) Available from:. https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
[63]
Han H, Li L, Han F, Song B, Moore W, Liang Z. Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. IEEE J Biomed Health Inform 2015; 19(2): 648-59.
[http://dx.doi.org/10.1109/JBHI.2014.2328870] [PMID: 25486657]
[64]
Tang Y, Cai J, Lu L, et al. CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation Improvement. Lecture Notes in Computer Science 2018; 46-54.
[65]
Jin D, Xu Z, Tang Y, Harrison AP, Mollura DJ. CT-Realistic lung nodule simulation from 3d conditional generative adversarial networks for robust lung segmentation. MICCAI 2018; 732-40.
[66]
Tan J, Jing L, Huo Y, Tian Y, Akin O. LGAN: Lung segmentation in CT scans using generative adversarial network. CoRR 2019.
[67]
Huo Y, Xu Z, Bao S, et al. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks. Medical Imaging: Image Processing 2018; 1057409.
[68]
Brain MR image Available from:. http://www.oasis-brains.org/
[69]
Mammography X-ray image Available from:. http://marathon.csee.usf.edu/C/Database.html
[70]
Jimenez-Del-Toro O, Muller H, Krenn M, et al. Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans Med Imaging 2016; 35(11): 2459-75.
[http://dx.doi.org/10.1016/j.media.2007.12.003] [PMID: 18313974]
[71]
Wang X. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases.Computer Vision and Pattern Recognition 2017; 2097-106.
[72]
Cardiac MR image dataset Available from:. https://www.ukbiobank.ac.uk/
[73]
Kainz P, Urschler M, Schulter S, Wohlhart P, Lepetit V. You should use regression to detect cells MICCAI 2015; 276-83.
[http://dx.doi.org/10.1007/978-3-319-24574-4_33]
[74]
Bowles C, Gunn RN, Hammers A, Rueckert D. Modelling the progression of Alzheimer's disease in MRI using generative adversarial networks. Medical Imaging: Image Processing 2018; 105741K.
[75]
Kim G, Shim H, Baek J. Feasibility study of deep convolutional generative adversarial networks to generate mammography images Medical Imaging: Image Perception. Observer Performance, and Technology Assessment 2018; p. 105771C.
[76]
Tanner C, Özdemir F, Profanter R, Vishnevsky V, Konukoglu E, Göksel O. Generative adversarial networks for MR-CT deformable image registration. CoRR 2018.
[77]
Bozorgtabar B, Mahapatra D, Teng Hv, et al. Informative sample generation using class aware generative adversarial networks for classification of chest Xrays. Comput Vis Image Underst 2019; 184: 57-65.
[http://dx.doi.org/10.1016/j.cviu.2019.04.007]
[78]
Zhang L, Gooya A, Frangi AF. Semi-supervised Assessment of Incomplete LV Coverage in Cardiac MRI Using Generative Adversarial Nets. SASHIMI@MICCAI 2017; 61-8.
[79]
Hu B, Tang Y, Chang EIC, Fan Y, Lai M, Xu Y. Unsupervised learning for cell-level visual representation in histopathology images with generative adversarial networks. IEEE J Biomed Health Inform 2019; 23(3): 1316-28.
[http://dx.doi.org/10.1109/JBHI.2018.2852639] [PMID: 29994411]
[81]
Retinopathy of prematurity (ROP) images, multi-mode MRI image of glioma Available from:.https://www.virtualskeleton.ch/BRATS/Start2017#download
[82]
Positron emission tomography (PET) image of the brain and lungs Available from:.http://www.loni.ucla.edu/ADNI/Data/http://web.eecs.umich.edu/∼fessler/
[83]
Shin H-C, Tenenholtz NA, Rogers JK, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks. SASHIMI@MICCAI 2018; 1-11.
[84]
Curto JD, Zarza IC. Torre FDl, King I, Lyu MR. High-resolution deep convolutional generative adversarial networks. CoRR 2017.
[85]
Du Q, Qiang Y, Yang W, Wang Y, Ma Y, Zia MB. DRGAN: a deep residual generative adversarial network for PET image reconstruction. IET Image Process 2020; 14(9): 1690-700.
[http://dx.doi.org/10.1049/iet-ipr.2019.1107]
[86]
Ying X, Guo H, Ma K, Wu J, Weng Z, Zheng Y. X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks. Clin Orthop Relat Res 2019; 10619-28.
[88]
Plancoulaine B L A, Herlin P, et al. A methodology for comprehensive breast cancer Ki67 labeling index with intra-tumor heterogeneity appraisal based on hexagonal tiling of digital image analysis data. Virchows Arch 2015; 467(6): 711-22.
[http://dx.doi.org/10.1007/s00428-015-1865-x] [PMID: 25758290]
[89]
Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 2004; 23(4): 501-9.
[http://dx.doi.org/10.1109/TMI.2004.825627] [PMID: 15084075]
[90]
Zhang T, Fu H, Zhao Y, et al. SkrGAN: Sketching-rendering unconditional generative adversarial networks for medical image synthesis.MICCAI 2019; 777-85.
[91]
Senaras Ç, Sahiner B, Tozbikian G, Lozanski G, Gurcan MN. Creating synthetic digital slides using conditional generative adversarial networks: application to Ki67 staining. Medical Imaging: Digital Pathology 2018; 1058103.
[92]
Costa P, Galdran A, Meyer MI, et al. End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging 2018; 37(3): 781-91.
[http://dx.doi.org/10.1109/TMI.2017.2759102] [PMID: 28981409]
[93]
Zhao H, Li H, Maurer-Stroh S, Cheng L. Synthesizing retinal and neuronal images with generative adversarial nets. Med Image Anal 2018; 49: 14-26.
[http://dx.doi.org/10.1016/j.media.2018.07.001] [PMID: 30007254]
[94]
Fox NK, Brenner SE, Chandonia J-M. SCOPe: Structural Classification of Proteins - extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 2014; 42(Database-Issue): 304-9.
[95]
Green fluorescent protein (GFP) image Available from:. http://data.jic.ac.uk/Gfp/
[96]
Yang H, Wang M, Yu Z, Zhao X-M, Li A. GANcon: Protein contact map prediction with deep generative adversarial network. IEEE Access 2020; 8: 80899-907.
[http://dx.doi.org/10.1109/ACCESS.2020.2991605]
[97]
Tang W, Liu Y, Zhang C, Cheng J, Peng H, Chen X. Green fluorescent protein and phase-contrast image fusion via generative adversarial networks. Comput Math Methods Medicine 2019; 2019: 5450373.
[http://dx.doi.org/10.1155/2019/5450373]
[98]
Singh VK, Romani S, Rashwan HA, et al. Conditional generative adversarial and convolutional networks for X-ray breast mass segmentation and shape classification.MICCAI 2018; 833-40.
[99]
Rezaei M, Yang H, Meinel C. Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation. WACV 2019; 1836-45.
[100]
Schlegl T, Seeböck P, Waldstein SM, Langs G, Schmidt-Erfurth U. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Med Image Anal 2019; 54: 30-44.
[http://dx.doi.org/10.1016/j.media.2019.01.010] [PMID: 30831356]
[101]
Schlegl T, Waldstein SM, Vogl W-D, Schmidt-Erfurth U, Langs G. Predicting semantic descriptions from medical images with convolutional neural networks. IPMI 2015; 437-48.
[102]
Mahapatra D, Bozorgtabar B, Garnavi R. Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput Med Imaging Graph 2019; 71: 30-9.
[http://dx.doi.org/10.1016/j.compmedimag.2018.10.005] [PMID: 30472408]
[103]
Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H. Synthetic data augmentation using GAN for improved liver lesion classification. ISBI 2018; 289-93.
[104]
Beers A, Brown JM, Chang K, et al. High-resolution medical image synthesis using progressively grown generative adversarial networks. CoRR 2018.
[105]
Philbrick KA, Weston AD, Akkus Z, et al. RIL-contour: a medical imaging dataset annotation tool for and with deep learning. J Digit Imaging 2019; 32(4): 571-81.
[http://dx.doi.org/10.1007/s10278-019-00232-0] [PMID: 31089974]
[106]
Haehn D. Slice: drop: collaborative medical imaging in the browser. SIGGRAPH Computer Animation Festival 2013; 104.
[107]
Wollny G, Kellman P, Ledesma-Carbayo M-J, Skinner MM, Hublin J-J, Hierl T. MIA - A free and open source software for gray scale medical image analysis. Source Code Biol Med 2013; 8(1): 20.
[http://dx.doi.org/10.1186/1751-0473-8-20] [PMID: 24119305]
[108]
Hamarneh G, Jassi P, Tang L. Simulation of ground-truth validation data via physically- and statistically-based warps. MICCAI 2008; 459-67.
[109]
Yuan R, Shi S, Chen J, Cheng G. Radiomics in rayplus: a web-based tool for texture analysis in medical images. J Digit Imaging 2019; 32(2): 269-75.
[http://dx.doi.org/10.1007/s10278-018-0128-1] [PMID: 30350006]
[110]
Liebgott A, Küstner T, Strohmeier H, et al. ImFEATbox: a toolbox for extraction and analysis of medical image features. Int J CARS 2018; 13(12): 1881-93.
[http://dx.doi.org/10.1007/s11548-018-1859-7] [PMID: 30229363]
[111]
Queirós S, Morais P, Barbosa D, Fonseca JC, Vilaça JL, D’Hooge J. MITT: Medical image tracking toolbox. IEEE Trans Med Imaging 2018; 37(11): 2547-57.
[http://dx.doi.org/10.1109/TMI.2018.2840820] [PMID: 29993570]
[112]
Rocha GMd. Ciferri CDA, Img DW. Generator: a tool for generating data for medical image data warehouses. SBBD Companion 2018; 23-8.
[113]
Malmberg F, Nordenskjöld R, Strand R, Kullberg J. SmartPaint: a tool for interactive segmentation of medical volume images. CMBBE: Imaging & Visualization 2017; 5(1): 36-44.
[http://dx.doi.org/10.1080/21681163.2014.960535]
[114]
Izzo R, Steinman DA, Manini S, Faggiano E, Antiga L. The vascular modeling toolkit: a python library for the analysis of tubular structures in medical images. J Open Source Soft 2018; 745.
[115]
Wu C-M, Chen Y-C, Hsieh K-S. Texture features for classification of ultrasonic liver images. IEEE Trans Med Imaging 1992; 11(2): 141-52.
[http://dx.doi.org/10.1109/42.141636] [PMID: 18218367]
[116]
Sujana H, Swarnamani S, Suresh S. Application of artificial neural networks for the classification of liver lesions by image texture parameters. Ultrasound Med Biol 1996; 22(9): 1177-81.
[http://dx.doi.org/10.1016/S0301-5629(96)00144-5] [PMID: 9123642]
[117]
Chen EL, Chung P-C, Chen C-L, Tsai H-M, Chang C-I. An automatic diagnostic system for CT liver image classification. IEEE Trans Biomed Eng 1998; 45(6): 783-94.
[http://dx.doi.org/10.1109/10.678613] [PMID: 9609943]
[118]
Asvestas P, Matsopoulos GK, Nikita KS. A power differentiation method of fractal dimension estimation for 2-D signals. J Vis Commun Image Represent 1998; 9(4): 392-400.
[http://dx.doi.org/10.1006/jvci.1998.0394]
[119]
Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017; 19: 221-48.
[http://dx.doi.org/10.1146/annurev-bioeng-071516-044442] [PMID: 28301734]
[120]
Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation 2018; 529-36.
[http://dx.doi.org/10.1007/978-3-030-00928-1_60]
[121]
Mirsky Y, Mahler T, Shelef I, Elovici Y CT-GAN. Malicious Tampering of 3D Medical Imagery using Deep Learning 2019; 461-78.
[122]
Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unreasonable effectiveness of deep features as a perceptual metric. arXiv preprint 2018.
[123]
Armanious K, Jiang C, Fischer M, et al. MedGAN: Medical image translation using GANs. Comput Med Imaging Graph 2020; 79.
[http://dx.doi.org/10.1016/j.compmedimag.2019.101684] [PMID: 31812132]
[124]
Salimans T, Goodfellow IJ, Zaremba W, Cheung V, Radford A, Chen X. Improved Techniques Training GANs 2016; 2226-34.
[125]
Odena A, Olah C, Shlens J. Conditional Image Synthesis with Auxiliary Classifier GANs. arXiv 2017; 2642-51.
[126]
Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. GANs trained by a two time-scale update rule converge to a local nash equilibrium. 31st Conference on Neural Information Processing Systems (NIPS 2017) 2017; 6626-37.
[127]
Botvinick MM, Plaut DC. Short-term memory for serial order: a recurrent neural network model. Psychol Rev 2006; 113(2): 201-33.
[http://dx.doi.org/10.1037/0033-295X.113.2.201] [PMID: 16637760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy