Childhood Infectious Encephalitis: An Overview of Clinical Features, Investigations, Treatment, and Recent Patents

Author(s): Cheuk C. Au, Kam L. Hon*, Alexander K.C. Leung, Alcy R. Torres

Journal Name: Recent Patents on Inflammation & Allergy Drug Discovery
Continued as Recent Advances in Inflammation & Allergy Drug Discovery

Volume 14 , Issue 2 , 2020


Abstract:

Background: Infectious encephalitis is a serious and challenging condition to manage. This overview summarizes the current literature regarding the etiology, clinical manifestations, diagnosis, management, and recent patents of acute childhood infectious encephalitis.

Methods: We used PubMed Clinical Queries as a search engine and used keywords of “encephalitis” AND “childhood” Patents were searched using the key term “encephalitis” in google.patents.- com and patentsonline.com.

Results: Viral encephalitis is the most common cause of acute infectious encephalitis in children. In young children, the clinical manifestations can be non-specific. Provision of empiric antimicrobial therapy until a specific infectious organism has been identified, which in most cases includes acyclovir, is the cornerstone of therapy. Advanced investigation tools, including nucleic acid-based test panel and metagenomic next-generation sequencing, improve the diagnostic yield of identifying an infectious organism. Supportive therapy includes adequate airway and oxygenation, fluid and electrolyte balance, cerebral perfusion pressure support, and seizure control. Recent patents are related to the diagnosis, treatment, and prevention of acute infectious encephalitis.

Conclusion: Viral encephalitis is the most common cause of acute infectious encephalitis in children and is associated with significant morbidity. Recent advances in understanding the genetic basis and immunological correlation of infectious encephalitis may improve treatment. Third-tier diagnostic tests may be incorporated into clinical practice. Treatment is targeted at the infectious process but remains mostly supportive. However, specific antimicrobial agents and vaccines development is ongoing.

Keywords: Antimicrobial therapy, vaccine, coma, headache, impaired consciousness, seizure, infectious encephalitis, metagenomic next-generation sequencing.

[1]
Sasaki J, Chegondi M, Raszynski A, Totapally BR. Outcome of children with acute encephalitis and refractory status epilepticus. J Child Neurol 2014; 29(12): 1638-44.
[http://dx.doi.org/10.1177/0883073813513069] [PMID: 24413358]
[2]
Cai XY, Lu XD, Lin GY, et al. Monitoring of viral pathogens in pediatric intensive care unit and analysis of clinical significance. Zhonghua Er Ke Za Zhi 2013; 51(6): 453-9.
[PMID: 24131585]
[3]
Dicky O, Cheuret E, Berthomieu L. Severe neurological forms of influenza in children: Report on three cases of severe encephalitis in France. Arch Pediatr 2014; 21(5): 514-7.
[http://dx.doi.org/10.1016/j.arcped.2014.02.015] [PMID: 24698219]
[4]
Hon KL, Leung E, Tang J, et al. Premorbid factors and outcome associated with respiratory virus infections in a pediatric intensive care unit. Pediatr Pulmonol 2008; 43(3): 275-80.
[http://dx.doi.org/10.1002/ppul.20768] [PMID: 18219695]
[5]
Hon KL, Chu WC. Hon KLL. Enterovirus type 71: Seek and ye shall find. Hong Kong Med J 2011; 17(2): 161-2.
[PMID: 21471600]
[6]
Tunkel AR, Glaser CA, Bloch KC, et al. Infectious Diseases Society of America. The management of encephalitis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2008; 47(3): 303-27.
[http://dx.doi.org/10.1086/589747] [PMID: 18582201]
[7]
Steiner I, Budka H, Chaudhuri A, et al. Viral meningoencephalitis: A review of diagnostic methods and guidelines for management. Eur J Neurol 2010; 17(8): 999-e57.
[http://dx.doi.org/10.1111/j.1468-1331.2010.02970.x] [PMID: 20236175]
[8]
Steiner I, Budka H, Chaudhuri A, et al. Viral encephalitis: A review of diagnostic methods and guidelines for management. Eur J Neurol 2005; 12(5): 331-43.
[http://dx.doi.org/10.1111/j.1468-1331.2005.01126.x] [PMID: 15804262]
[9]
Tunkel ARR, Glaser CAA, Bloch KCC, Sejvar JJJ, Marra CMM. The management of encephalitis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2008; 47(3): 303-27.
[10]
Venkatesan A, Tunkel AR, Bloch KC, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: Consensus statement of the international encephalitis consortium. Clin Infect Dis 2013; 57(8): 1114-28.
[11]
Granerod J, Cunningham R, Zuckerman M, et al. Causality in acute encephalitis: defining aetiologies. Epidemiol Infect 2010; 138(6): 783-800.
[12]
Britton PN, Eastwood K, Paterson B, et al. Consensus guidelines for the investigation and management of encephalitis in adults and children in Australia and New Zealand. Intern Med J 2015; 45(5): 563-76.
[13]
Britton PN, Dale RC, Blyth CC, et al. Causes and clinical features of childhood encephalitis: A multicenter, prospective cohort study. Clin Infect Dis 2020; 70(12): 2517-26.
[14]
DeBlauw D, Bruning AHL, Busch CBE, et al. Epidemiology and etiology of severe childhood encephalitis in the Netherlands. Pediatr Infect Dis J 2020; 39(4): 267-72.
[15]
Chokephaibulkit K, Kankirawatana P, Apintanapong S, et al. Viral etiologies of encephalitis in Thai children. Pediatr Infect Dis J 2001; 20(2): 216-8.
[16]
Hon K-LEL, Tsang YCKC, Chan LC, et al. Outcome of encephalitis in pediatric intensive care unit. Indian J Pediatr 2016; 83(10): 1098-103.
[http://dx.doi.org/10.1007/s12098-016-2068-4] [PMID: 27053179]
[17]
Valle DADo, Santos MLSF, Giamberardino HIG, Raboni SM, Scola RH. Acute childhood viral encephalitis in southern Brazil. Pediatr Infect Dis J 2020; 39(10): 894.
[18]
Jouanguy E, Béziat V, Mogensen TH, Casanova JL, Tangye SG, Zhang SY. Human inborn errors of immunity to herpes viruses. Curr Opin Immunol 2020; 62: 106-22.
[19]
Zhang SY. Herpes simplex virus encephalitis of childhood: Inborn errors of central nervous system cell-intrinsic immunity. Hum Genet 2020; 139: 911-8.
[20]
Lafaille FG, Harschnitz O, Lee YS, et al. Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nat Med 2019; 25(12): 1873-84.
[21]
Guo Y, Zhang Y, Liu P. Association of the polymorphism of rs1799822 on carnitine palmitoyltransferase II gene with severe enterovirus 71 encephalitis in Chinese children. J Mol Neurosci 2019; 69(2): 188-96.
[22]
Ellul MA, Griffiths MJ, Iyer A, et al. Anti-N-methyl-d-aspartate receptor encephalitis in a young child with histological evidence on brain biopsy of coexistent herpes simplex virus type 1 infection. Pediatr Infect Dis J 2016; 35(3): 347-9.
[http://dx.doi.org/10.1097/INF.0000000000001011]
[23]
Prüss H. Postviral autoimmune encephalitis: Manifestations in children and adults. Curr Opin Neurol 2017; 30: 327.
[24]
Armangue T, Spatola M, Vlagea A, Mattozzi S. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: A prospective observational study and retrospective analysis. Lancet Neurol 2018; 17(9): 760-2.
[25]
Westman G, Studahl M, Ahlm C, et al. N-methyl-D-aspartate receptor autoimmunity affects cognitive performance in herpes simplex encephalitis. Clin Microbiol Infect 2016; 22(11): 934-40.
[26]
Sutcu M, Akturk H, Somer A, et al. Role of autoantibodies to N -Methyl- d -Aspartate (NMDA) receptor in relapsing herpes simplex encephalitis. J Child Neurol 2016; 31(3): 345-50.
[27]
Yushvayev-Cavalier Y, Nichter C, Ramirez-Zamora A. Possible autoimmune association between herpes simplex virus infection and subsequent anti-N-methyl-d-aspartate receptor encephalitis: A pediatric patient with abnormal movements. Pediatr Neurol 2015; 52(4): 454-6.
[28]
Nosadini M, Mohammad SS, Corazza F, et al. Herpes simplex virus-induced anti-N-methyl-d-aspartate receptor encephalitis: A systematic literature review with analysis of 43 cases. Dev Med Child Neurol 2017; 59: 796-805.
[29]
Gonzalez G, Carr MJ, Kobayashi M, Hanaoka N, Fujimoto T. Enterovirus-associated hand-foot and mouth disease and neurological complications in Japan and the rest of the world. Int J Mol Sci 2019; 20(20): 5201.
[http://dx.doi.org/10.3390/ijms20205201]
[30]
Casas-Alba D, Valero-Rello A, Muchart J, et al. Cerebrospinal fluid neopterin in children with enterovirus-related brainstem encephalitis. Pediatr Neurol 2019; 96: 70-3.
[31]
Teoh HL, Mohammad SS, Britton PN, et al. Clinical characteristics and functional motor outcomes of enterovirus 71 neurological disease in children. JAMA Neurol 2016; 73(3): 300-7.
[http://dx.doi.org/10.1001/jamaneurol.2015.4388]
[32]
Kalil AC, Thomas PG. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit Care 2019; 23(1): 258.
[33]
Hon KL. Successful treatment of influenza A encephalopathy. Hong Kong Med J 2020; 26: 154.
[34]
Chen LW, Teng CK, Tsai YS, Wang JN. Influenza-associated neurological complications during 2014-2017 in Taiwan. Brain Dev 2018; 40(9): 799-806.
[35]
Paksu MS, Aslan K, Kendirli T, et al. Neuroinfluenza: Evaluation of seasonal influenza associated severe neurological complications in children (a multicenter study). Childs Nerv Syst 2018; 34(2): 335-47.
[36]
Mastrolia MV, Rubino C, Resti M, Trapani S, Galli L. Characteristics and outcome of influenza-associated encephalopathy/encephalitis among children in a tertiary pediatric hospital in Italy, 2017-2019. BMC Infect Dis 2019; 19(1): 1012.
[37]
Britton PN, Dale RC, Nissen MD. et al. Parechovirus encephalitis and neurodevelopmental outcomes. Pediatrics 2016; 137(2): e20152848.
[http://dx.doi.org/10.1542/peds.2015-2848]
[38]
Arahata Y, Fujii K, Nishimura T, Uchida T, Kitazawa K, Honda A. Longitudinal magnetic resonance imaging changes in Japanese encephalitis. Brain Dev 2019; 41(8): 731-4.
[http://dx.doi.org/10.1016/j.braindev.2019.04.005]
[39]
Salgado DM, Vega R, Rodríguez JA, et al. Clinical, laboratory and immune aspects of Zika virus-associated encephalitis in children. Int J Infect Dis 2020; 90: 104-10.
[http://dx.doi.org/10.1016/j.ijid.2019.10.030]
[40]
Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr 2017; 171: 288-95.
[41]
Bradshaw MJ, Byrge KC, Ivey KS, Pruthi S, Bloch KC. Meningoencephalitis due to spotted fever rickettsioses, including rocky mountain spotted fever. Clin Infect Dis 2020; 71(1): 188-95.
[42]
Guo Y, Jiang L. Cytomegalovirus encephalitis in immunocompetent infants: A 15-year retrospective study at a single center. Int J Infect Dis 2019; 82: 106-10.
[43]
Sigfrid L, Perfect C, Rojek A, et al. A systematic review of clinical guidelines on the management of acute, community-acquired CNS infections. BMC Med 2019; 17(1): 170.
[http://dx.doi.org/10.1186/s12916-019-1387-5]
[44]
Bale JF Jr. Viral encephalitis. Med Clin North Am 1993; 77(1): 25-42.
[http://dx.doi.org/10.1016/S0025-7125(16)30270-X] [PMID: 8419720]
[45]
Ellul M, Solomon T. Acute encephalitis - diagnosis and management. Clin Med (Lond) 2018; 18: 155-9.
[46]
Da Costa BK, Sato DK. Viral encephalitis: A practical review on diagnostic approach and treatment. J Pediatr 2020; 96: 12-9.
[47]
Bonadio W. Pediatric lumbar puncture and cerebrospinal fluid analysis. J Emerg Med 2014; 46: 141-50.
[48]
Rawal G, Yadav S, Wani UR, Ambastha AK. HSV encephalitis with normal CSF -A case report with review of literature. J Clin Diagn Res 2015; 9(12): OD06-7.
[49]
Rawal G, Yadav S, Wani UR, Ambastha AK. OD06-OD07 Case Report. J Clin Diagn Res 2015; 9(12)
[50]
Iro MA, Martin NG, Absoud M, Pollard AJ. Intravenous immunoglobulin for the treatment of childhood encephalitis. Cochrane Database Syst Rev 2017; 10(10): CD011367.
[51]
Venkatesan A. Epidemiology and outcomes of acute encephalitis. Curr Opin Neurol 2015; 28(3): 277-82.
[http://dx.doi.org/10.1097/WCO.0000000000000199] [PMID: 25887770]
[52]
Sarkis RA, Nehme R, Chemali ZN. Neuropsychiatric and seizure outcomes in nonparaneoplastic autoimmune limbic encephalitis. Epilepsy Behav 2014; 39: 21-5.
[53]
Tansarli GS, Chapin KC. Diagnostic test accuracy of the BioFire® FilmArray® meningitis/encephalitis panel: A systematic review and meta-analysis. Clin Microbiol Infect 2020; 26: 281-90.
[54]
Leber AL, Everhart K. Multicenter evaluation of biofire filmarray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J Clin Microbiol 2016; 54(9): 2251-61.
[55]
Liesman RM, Strasburg AP, Heitman AK, Theel ES, Patel R, Binnicker MJ. Evaluation of a commercial multiplex molecular panel for diagnosis of infectious meningitis and encephalitis. J Clin Microbiol 2018; 56(4): e01927-17.
[56]
Hagen A, Eichinger A, Meyer-Buehn M, Schober T, Huebner J. Comparison of antibiotic and acyclovir usage before and after the implementation of an on-site FilmArray meningitis/encephalitis panel in an academic tertiary pediatric hospital: A retrospective observational study. BMC Pediatr 2020; 20(1): 56.
[57]
Blaschke AJ, Holmberg KM, Daly JA, et al. Retrospective evaluation of infants aged 1 to 60 days with residual Cerebrospinal Fluid (CSF) tested using the FilmArray Meningitis/Encephalitis (ME) panel. J Clin Microbiol 2018; 56(7): e00277-18.
[58]
Tarai B, Das P. FilmArray® Meningitis/Encephalitis (ME) panel, a rapid molecular platform for diagnosis of CNS infections in a tertiary care hospital in North India: One-and-half-year review. Neurol Sci 2019; 40(1): 81-8.
[59]
Radmard S, Reid S, Ciryam P, Boubour A. Clinical utilization of the FilmArray Meningitis/Encephalitis (ME) multiplex Polymerase Chain Reaction (PCR) assay. Front Neurol 2019; 10: 281.
[60]
Polage CR, Cohen SH. State-of-the-art microbiologic testing for community-acquired meningitis and encephalitis. J Clin Microbiol 2016; 54: 1197-202.
[61]
Pandey U, Greninger AL, Levin GR, Jerome KR, Anand VC, Bard JD. Pathogen or bystander: Clinical significance of detecting human herpesvirus 6 in pediatric cerebrospinal fluid. J Clin Microbiol 2020; 58(5): e00313-20.
[62]
Pellett Madan R, Hand J. Human herpesvirus 6, 7, and 8 in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33(9): e13518.
[63]
Pellett PE, Ablashi DV, Ambros PF, et al. Chromosomally integrated human herpesvirus 6: Questions and answers. Rev Med Virol 2012; 22: 144-55.
[64]
Wilson MR, Sample HA, Zorn KC, Arevalo S. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med 2019; 380(24): 2327-40.
[65]
Wilson MR, O’Donovan BD, Gelfand JM, et al. Chronic meningitis investigated via metagenomic next-generation sequencing. JAMA Neurol 2018; 75(8): 947-55.
[66]
Miller S, Naccache SN, Samayoa E, et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res 2019; 29(5): 831-42.
[http://dx.doi.org/10.1101/gr.238170.118]
[67]
Deng X, Achari A, Federman S, et al. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat Microbiol 2020; 5(3): 443-54.
[http://dx.doi.org/10.1038/s41564-019-0637-9] [PMID: 31932713]
[68]
Kufner V, Plate A, Schmutz S, et al. Two years of viral metagenomics in a tertiary diagnostics unit: Evaluation of the first 105 cases. Genes (Basel) 2019; 10(9): 661.
[69]
Fang M, Weng X, Chen L, et al. Fulminant central nervous system varicella-zoster virus infection unexpectedly diagnosed by metagenomic next-generation sequencing in an HIV-infected patient: A case report. BMC Infect Dis 2020; 20(1): 159.
[70]
Hu Z, Weng X, Xu C, et al. Metagenomic next-generation sequencing as a diagnostic tool for toxoplasmic encephalitis. Ann Clin Microbiol Antimicrob 2018; 17(1): 45.
[71]
Zhang Y, Hong K, Zou Y. Rapid detection of human herpes virus by next-generation sequencing in a patient with encephalitis. Virol J 2019; 16(1): 104.
[72]
Yang Y, Hu X, Min L, Dong X, Guan Y. Balamuthia mandrillaris-related primary amoebic encephalitis in china diagnosed by next generation sequencing and a review of the literature. Lab Med 2020; 51(2): e20-6.
[73]
Leon KE, Schubert RD. Genomic and serologic characterization of enterovirus A71 brainstem encephalitis. Neurol Neuroimmunol neuroinflammation 2020; 7(3): e703.
[74]
Saha S, Ramesh A, Kalantar K, et al. Unbiased metagenomic sequencing for pediatric meningitis in bangladesh reveals neuroinvasive chikungunya virus outbreak and other unrealized pathogens. MBio 2019; 10(6): e02877.
[75]
Fulton BD, Proudman DG, Sample HA, Gelfand JM, Chiu CY. Exploratory analysis of the potential for advanced diagnostic testing to reduce healthcare expenditures of patients hospitalized with meningitis or encephalitis. PLoS One 2020; 15(1): e0226895.
[76]
Zheng G, Zhang Y, Zhang L, Qian L, Cai Y. Evaluation of a micro/nanofluidic chip platform for diagnosis of central nervous system infections: A multi-center prospective study. Sci Rep 2020; 10(1): 1568.
[77]
Aonuma H, Badolo A, Okado K, Kanuka H. Detection of mutation by allele-specific loop-mediated isothermal amplification (AS-LAMP). Methods Mol Biol 2013; 1039: 121-7.
[78]
Bharucha T, Gangadharan B, Kumar A. Mass spectrometry-based proteomic techniques to identify cerebrospinal fluid biomarkers for diagnosing suspected central nervous system infections. A systematic review. J Infect 2019; 79(5): 407-18.
[79]
Domingues RB, Teixeira AL. Management of acute viral encephalitis in Brazil. Braz J Infect Dis 2009; 13(6): 433-9.
[PMID: 20464335]
[80]
Pandey S, Rathore C, Michael BD. Antiepileptic drugs for the primary and secondary prevention of seizures in viral encephalitis. Cochrane Database Syst Rev 2016; 2016(5): CD010247.
[81]
Pascual-Goñi E, Josa M, Launes C, et al. Excellent response to plasma exchange in three patients with enterovirus-71 neurological disease. Front Neurol 2019; 10: 548.
[82]
Rana M, Torres AR, Hon KL, Leung AKC, Jonas R. Febrile infection-related epilepsy syndrome. J Pediatr Epilepsy 2019; 8(3): 83-92.
[83]
Meyfroidt G, Kurtz P, Sonneville R. Critical care management of infectious meningitis and encephalitis. Intensive Care Med 2020; 46(2): 192-201.
[http://dx.doi.org/10.1007/s00134-019-05901-w]
[84]
Kumar R, Singhi S, Singhi P, Jayashree M, Bansal A, Bhatti A. Randomized controlled trial comparing cerebral perfusion pressure-targeted therapy versus intracranial pressure-targeted therapy for raised intracranial pressure due to acute CNS infections in children. Crit Care Med 2014; 42(8): 1775-87.
[http://dx.doi.org/10.1097/CCM.0000000000000298]
[85]
Hon KLL, Luk MPP, Fung WMM, et al. Mortality, length of stay, bloodstream and respiratory viral infections in a pediatric intensive care unit. J Crit Care 2017; 38: 57-61.
[86]
Mao Q, Wang Y, Bian L, Xu M, Liang Z. EV-A71 vaccine licensure: A first step for multivalent enterovirus vaccine to control HFMD and other severe diseases. Emerg Microbes Infect 2016; 5(7): e75.
[87]
Klein M, Chong P. Is a multivalent hand, foot, and mouth disease vaccine feasible? Hum Vaccin Immunother 2015; 11: 2688-704.
[88]
Lee PI, Huang YC, Hwang KP, et al. Recommendations for the use of Japanese encephalitis vaccines. Pediatr Neonatol 2020; 61: 3-8.
[89]
Zandi K, Bassit L, Amblard F, et al. Nucleoside analogs with selective antiviral activity against dengue fever and Japanese encephalitis viruses. Antimicrob Agents Chemother 2019; 63(7): e00397-19.
[http://dx.doi.org/10.1128/AAC.00397-19]
[90]
Cao HJ, Liang SB, Zhou W, Wu JR, Zhang CL. Evaluation of the adjunctive effect of Xing Nao Jing Injection for viral encephalitis: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2019; 98(15): e15181.
[91]
Manuguerra J, Vanhomwegen J, Despres P, Paulous S. Multiplex immuno screening assay. US10209248, 2019.
[92]
Pasteur S. Vaccination against Japanese encephalitis, measles, mumps and rubella. US20150273035, 2015.
[93]
Chang Gwong-Jen J. Nucleic acids encoding chimeric flavivirus immunogens comprising the Japanese Encephalitis Virus (JEV) PRM signal sequence. US7662394, 2010.
[94]
Chang G-JJ. Methods of inducing flavivirus immune responses through the administration of recombinant flaviviruses comprising an engineered Japanese encephalitis virus signal sequence. US7632510, 2009.
[95]
Whitehead SS, Bennett RS, Murphy BR. Live attenuated virus vaccines for La Crosse virus and other bunyaviridae. US20190117762, 2019.
[96]
Akahata W, Ueno R. Virus like particle comprising modified envelope protein E3. US10385101, 2019.
[97]
Sumathy K, Ella KM. Vaccine compositions. US20170014502, 2017.
[98]
Gray NS, Yang PL, Liu Q, de Wispelaere M. Host targeted inhibitors of Dengue virus and other viruses. US20190292178, 2019.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 2
Year: 2020
Published on: 24 November, 2020
Page: [156 - 165]
Pages: 10
DOI: 10.2174/1872213X14999201124195724
Price: $65

Article Metrics

PDF: 266
HTML: 1