A Comprehensive Review on Fused Heterocyclic as DNA Intercalators: Promising Anticancer Agents

Author(s): Vikas Sharma, Mohit Gupta, Pradeep Kumar, Atul Sharma*

Journal Name: Current Pharmaceutical Design

Volume 27 , Issue 1 , 2021

Become EABM
Become Reviewer
Call for Editor


Since the discovery of DNA intercalating agents (by Lerman, 1961), a growing number of organic, inorganic, and metallic compounds have been developed to treat life-threatening microbial infections and cancers. Fused-heterocycles are amongst the most important group of compounds that have the ability to interact with DNA. DNA intercalators possess a planar aromatic ring structure that inserts itself between the base pairs of nucleic acids. Once inserted, the aromatic structure makes van der Waals interactions and hydrogen-bonding interactions with the base pairs. The DNA intercalator may also contain an ionizable group that can form ionic interactions with the negatively charged phosphate backbone. After the intercalation, other cellular processes could take place, leading ultimately to cell death. The heterocyclic nucleus present in the DNA intercalators can be considered as a pharmacophore that plays an instrumental role in dictating the affinity and selectivity exhibited by these compounds. In this work, we have carried out a revision of small organic molecules that bind to the DNA molecule via intercalation and cleaving and exert their antitumor activity. A general overview of the most recent results in this area, paying particular attention to compounds that are currently under clinical trials, is provided. Advancement in spectroscopic techniques studying DNA interaction can be examined in-depth, yielding important information on structure-activity relationships. In this comprehensive review, we have focused on the introduction to fused heterocyclic agents with DNA interacting features, from medicinal point of view. The structure-activity relationships points, cytotoxicity data, and binding data and future perspectives of medicinal compounds have been discussed in detail.

Keywords: Fused heterocyclic, anticancer, intercalation, ellipticine, planar molecule, DNA, Structure-activity relationships (SAR).

World Health Organization. Global Health Observatory Geneva: World Health Organization 2018.who.int/gho/database/
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
Ragavan S, Vanni A. Can international patent law help mitigate cancer inequity in LMICs? AMA J Ethics 2020; 22(2): E102-11.
[http://dx.doi.org/10.1001/amajethics.2020.102] [PMID: 32048580]
Wheate NJ, Brodie CR, Collins JG, Kemp S, Aldrich-Wright JR. DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis. Mini Rev Med Chem 2007; 7(6): 627-48.
[http://dx.doi.org/10.2174/138955707780859413] [PMID: 17584161]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007; 70(3): 461-77.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
Hamilton PL, Arya DP. Natural product DNA major groove binders. Nat Prod Rep 2012; 29(2): 134-43.
[http://dx.doi.org/10.1039/C1NP00054C] [PMID: 22183179]
Dervan PB. Molecular recognition of DNA by small molecules. Bioorg Med Chem 2001; 9(9): 2215-35.
[http://dx.doi.org/10.1016/S0968-0896(01)00262-0] [PMID: 11553460]
Martínez R, Chacón-García L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem 2005; 12(2): 127-51.
[http://dx.doi.org/10.2174/0929867053363414] [PMID: 15638732]
Huang CY, Ju DT, Chang CF, Muralidhar Reddy P, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei) 2017; 7(4): 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
Rahman A, O’Sullivan P, Rozas I. Recent developments in compounds acting in the DNA minor groove. MedChemComm 2018; 10(1): 26-40.
[http://dx.doi.org/10.1039/C8MD00425K] [PMID: 30774852]
Preobrazhenskaya MN, Shchekotikhin AE, Shtil AA, Huang H. Antitumor anthraquinone analogues for multidrug resistant tumor cells. J Med Sci - Taipei 2006; 26(1): 1-4.
Lerman LS. Structural considerations in the interaction of DNA and acridines. J Mol Biol 1961; 3(1): 18-30.
[http://dx.doi.org/10.1016/S0022-2836(61)80004-1] [PMID: 13761054]
Lerman LS. The structure of the DNA-acridine complex. Proc Natl Acad Sci USA 1963; 49(1): 94-102.
[http://dx.doi.org/10.1073/pnas.49.1.94] [PMID: 13929834]
Braña MF, Cacho M, Gradillas A, de Pascual-Teresa B, Ramos A. Intercalators as anticancer drugs. Curr Pharm Des 2001; 7(17): 1745-80.
[http://dx.doi.org/10.2174/1381612013397113] [PMID: 11562309]
Mišković K, Bujak M, Baus Lončar M, Glavaš-Obrovac L. Antineoplastic DNA-binding compounds: intercalating and minor groove binding drugs. Arh Hig Rada Toksikol 2013; 64(4): 593-602.
[http://dx.doi.org/10.2478/10004-1254-64-2013-2371] [PMID: 24384766]
Avendano C, Menéndez J. DNA Intercalators and topoisomerase inhibitors Medicinal Chemistry of Anticancer Drugs. Madrid, Spain: Elsevier Science 2008; pp. 199-228.
Goftar MK, Kor NM, Kor ZM. DNA intercalators and using them as anticancer drugs. Int J Adv Biol Biomed Res 2014; 2(3): 811-22.
Marverti G, Cusumano M, Ligabue A, et al. Studies on the anti-proliferative effects of novel DNA-intercalating bipyridyl-thiourea-Pt(II) complexes against cisplatin-sensitive and -resistant human ovarian cancer cells. J Inorg Biochem 2008; 102(4): 699-712.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.10.015] [PMID: 18082268]
Miller KJ, Newlin DD. Interactions of molecules with nucleic acids. VI. Computer design of chromophoric intercalating agents. Biopolymers 1982; 21(3): 633-52.
[http://dx.doi.org/10.1002/bip.360210311] [PMID: 7066476]
Carchman RA, Hirschberg E, Weinstein IB. Miracil D: effect on the viscosity of DNA. Biochim Biophys Acta 1969; 179(1): 158-64.
[http://dx.doi.org/10.1016/0005-2787(69)90131-2] [PMID: 5815142]
Graves DE, Velea LM. Intercalative binding of small molecules to nucleic acids. Curr Org Chem 2000; 4(9): 915-29.
Berman HM, Young PR. The interaction of intercalating drugs with nucleic acids. Annu Rev Biophys Bioeng 1981; 10(1): 87-114.
[http://dx.doi.org/10.1146/annurev.bb.10.060181.000511] [PMID: 7020585]
Gago F. Stacking interactions and intercalative DNA binding. Methods 1998; 14(3): 277-92.
[http://dx.doi.org/10.1006/meth.1998.0584] [PMID: 9571084]
Kapur A, Beck JL, Sheil MM. Observation of daunomycin and nogalamycin complexes with duplex DNA using electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom 1999; 13(24): 2489-97.
[http://dx.doi.org/10.1002/(SICI)1097-0231(19991230)13:24<2489:AID-RCM816>3.0.CO;2-F] [PMID: 10589098]
Neto BAD, Lapis AAM. Recent developments in the chemistry of deoxyribonucleic acid (DNA) intercalators: principles, design, synthesis, applications and trends. Molecules 2009; 14(5): 1725-46.
[http://dx.doi.org/10.3390/molecules14051725] [PMID: 19471193]
Deo KM, Pages BJ, Ang DL, Gordon CP, Aldrich-Wright JR. Transition metal intercalators as anticancer agents-recent advances. Int J Mol Sci 2016; 17(11): 1818.
[http://dx.doi.org/10.3390/ijms17111818] [PMID: 27809241]
Pastor J, Siró J, García-Navío JL, et al. Synthesis of new azino fused benzimidazolium salts. A new family of DNA intercalating agents. I. Bioorg Med Chem Lett 1995; 5(24): 3043-8.
Pastor J, Siró J, García-Navío JL, et al. Azino-fused benzimidazolium salts as DNA intercalating agents. 2. J Org Chem 1997; 62: 5476-83.
Li Z, Grant KB. DNA photo-cleaving agents in the far-red to near-infrared range - a review. RSC Advances 2016; 6: 24617-34.
Scatchard G. The attraction of proteins for small molecules and ions. Ann N Y Acad Sci 1949; 51(4): 660-72.
Xu Y, Qu B, Qian X, Li Y. Five-member thio-heterocyclic fused naphthalimides with aminoalkyl side chains: intercalation and photocleavage to DNA. Bioorg Med Chem Lett 2005; 15(4): 1139-42.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.011] [PMID: 15686929]
Baviskar AT, Madaan C, Preet R, et al. N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase IIα and induce apoptosis in G1/S phase. J Med Chem 2011; 54(14): 5013-30.
[http://dx.doi.org/10.1021/jm200235u] [PMID: 21644529]
Whittaker J, McFadyen WD, Wickham G, Wakelin LPG, Murray V. The interaction of DNA-targeted platinum phenanthridinium complexes with DNA. Nucleic Acids Res 1998; 26(17): 3933-9.
[http://dx.doi.org/10.1093/nar/26.17.3933] [PMID: 9705500]
Whittaker J, McFadyen WD, Baguley BC, Murray V. The interaction of DNA-targeted platinum phenanthridinium complexes with DNA in human cells. Anticancer Drug Des 2001; 16(2-3): 81-9.
[PMID: 11962516]
Mullins ST, Sammes PG, West RM, Yahioglu G. Preparation of some new intercalating europium(III) sensitizers. J Chem Soc Perkin Trans 1996; 1: 75-81.
Lynch MA, Duval O, Sukhanova A, et al. Synthesis, biological activity and comparative analysis of DNA binding affinities and human DNA topoisomerase I inhibitory activities of novel 12-alkoxy-benzo[c]phenanthridinium salts. Bioorg Med Chem Lett 2001; 11(19): 2643-6.
[http://dx.doi.org/10.1016/S0960-894X(01)00520-0] [PMID: 11551768]
Nakanishi T, Suzuki M, Mashiba A, Ishikawa K, Yokotsuka T. Synthesis of NK109, an anticancer benzo[c]phenanthridine alkaloid. J Org Chem 1998; 63: 4235-9.
Parenty ADC, Smith LV, Pickering AL, Long DL, Cronin L. General one-pot, three-step methodology leading to an extended class of N-heterocyclic cations: spontaneous nucleophilic addition, cyclization, and hydride loss. J Org Chem 2004; 69(18): 5934-46.
[http://dx.doi.org/10.1021/jo0495440] [PMID: 15373478]
Parenty ADC, Smith LV, Guthrie KM, et al. Highly stable phenanthridinium frameworks as a new class of tunable DNA binding agents with cytotoxic properties. J Med Chem 2005; 48(14): 4504-6.
[http://dx.doi.org/10.1021/jm050320z] [PMID: 15999988]
Smith LV, Parenty AD, Guthrie KM, Plumb J, Brown R, Cronin L. Dihydroimidazophenanthridinium (DIP)-based DNA binding agents with tuneable structures and biological activity. ChemBioChem 2006; 7(11): 1757-63.
[http://dx.doi.org/10.1002/cbic.200600205] [PMID: 17031882]
Catoen-Chackal S, Facompré M, Houssin R, et al. DNA binding to guide the development of tetrahydroindeno[1,2-b]pyrido[4,3,2-de]quinoline derivatives as cytotoxic agents. J Med Chem 2004; 47(14): 3665-73.
[http://dx.doi.org/10.1021/jm0400193] [PMID: 15214793]
Yao W, Qian X, Hu Q. Novel and highly efficient DNA photocleavers: hydroperoxides of heterocyclic-fused naphthalimides. Tetrahedron Lett 2000; 41: 7711-5.
Bonjean K, De Pauw-Gillet MC, Defresne MP, et al. The DNA intercalating alkaloid cryptolepine interferes with topoisomerase II and inhibits primarily DNA synthesis in B16 melanoma cells. Biochemistry 1998; 37(15): 5136-46.
[http://dx.doi.org/10.1021/bi972927q] [PMID: 9548744]
Cimanga K, De Bruyne T, Pieters L, Claeys M, Vlietinck A. New alkaloids from Cryptolepis sanguinolenta. Tetrahedron Lett 1996; 37: 1703-6.
Bamgbose SOA, Noamesi BK. Studies on cryptolepine. II: Inhibition of carrageenan induced oedema by cryptolepine. Planta Med 1981; 41(4): 392-6.
[http://dx.doi.org/10.1055/s-2007-971733] [PMID: 7255566]
Boakye-Yiadom K, Heman-Ackah SM. Cryptolepine hydrochloride effect on Staphylococcus aureus. J Pharm Sci 1979; 68(12): 1510-4.
[http://dx.doi.org/10.1002/jps.2600681212] [PMID: 43386]
Paulo A, Pimentel M, Viegas S, et al. Cryptolepis sanguinolenta activity against diarrhoeal bacteria. J Ethnopharmacol 1994; 44(2): 73-7.
[http://dx.doi.org/10.1016/0378-8741(94)90071-X] [PMID: 7853867]
Paulo A, Duarte A, Gomes ET. In vitro antibacterial screening of Cryptolepis sanguinolenta alkaloids. J Ethnopharmacol 1994; 44(2): 127-30.
[http://dx.doi.org/10.1016/0378-8741(94)90079-5] [PMID: 7853864]
Van Miert S, Hostyn S, Maes BUW, et al. Isoneocryptolepine, a synthetic indoloquinoline alkaloid, as an antiplasmodial lead compound. J Nat Prod 2005; 68(5): 674-7.
[http://dx.doi.org/10.1021/np0496284] [PMID: 15921407]
Feigon J, Denny WA, Leupin W, Kearns DR. Interactions of antitumor drugs with natural DNA: 1H NMR study of binding mode and kinetics. J Med Chem 1984; 27(4): 450-65.
[http://dx.doi.org/10.1021/jm00370a007] [PMID: 6708048]
Herbert JM, Woodgate PD, Denny WA. Potential antitumor agents. 53. Synthesis, DNA binding properties, and biological activity of perimidines designed as “minimal” DNA-intercalating agents. J Med Chem 1987; 30(11): 2081-6.
[http://dx.doi.org/10.1021/jm00394a025] [PMID: 3669016]
Fresneda PM, Molina P. Application of iminophosphorane-based methodologies for the synthesis of natural products. Synlett 2004; 1: 1-17.
Csányi D, Hajós G, Riedl Z, et al. Synthesis of two new heteroaromatic beta-carboline-fused pentacycles. Observation of a new intercalating agent. Bioorg Med Chem Lett 2000; 10(15): 1767-9.
[http://dx.doi.org/10.1016/S0960-894X(00)00339-5] [PMID: 10937744]
Mohamadi M, Hassankhani A, Ebrahimipour SY, Torkzadeh-Mahani M. In vitro and in silico studies of the interaction of three 202 tetrazoloquinazoline derivatives with DNA and BSA and their cytotoxicity activities against MCF-7, HT-29 and DPSC cell lines. Int J Biol Macromol 2017; 94(Pt A): 85-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.113] [PMID: 27717788]
Chobe SS, Dawane BS, Tumbi KM, Nandekar PP, Sangamwar AT. An ecofriendly synthesis and DNA binding interaction study of some pyrazolo [1,5-a]pyrimidines derivatives. Bioorg Med Chem Lett 2012; 22(24): 7566-72.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.027] [PMID: 23122866]
Qu X, Trent JO, Fokt I, Priebe W, Chaires JB. Allosteric, chiral-selective drug binding to DNA. Proc Natl Acad Sci USA 2000; 97(22): 12032-7.
[http://dx.doi.org/10.1073/pnas.200221397] [PMID: 11027298]
Li Z, Yang Q, Qian X. Synthesis, antitumor evaluation and DNA photocleaving activity of novel methylthiazonaphthalimides with aminoalkyl side chains. Bioorg Med Chem Lett 2005; 15(12): 3143-6.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.012] [PMID: 15876532]
Li Z, Yang Q, Qian X. Novel thiazonaphthalimides as efficient antitumor and DNA photocleaving agents: effects of intercalation, side chains, and substituent groups. Bioorg Med Chem 2005; 13(16): 4864-70.
[http://dx.doi.org/10.1016/j.bmc.2005.05.006] [PMID: 15925513]
Yin H, Xu Y, Qian X. Novel antitumor agent family of 1H-benzo[c,d]indol-2-one with flexible basic side chains: synthesis and biological evaluation. Bioorg Med Chem 2007; 15(3): 1356-62.
[http://dx.doi.org/10.1016/j.bmc.2006.11.016] [PMID: 17129733]
Yang P, Yang Q, Qian X. Novel DNA bis-intercalators of isoquinolino[4,5-bc]acridines: design, synthesis and evaluation of cytotoxic activity. Tetrahedron 2005; 61: 11895-901.
Yang P, Yang Q, Qian X, Cui J. Novel synthetic isoquinolino[5,4-ab]phenazines: inhibition toward topoisomerase I, antitumor and DNA photo-cleaving activities. Bioorg Med Chem 2005; 13(21): 5909-14.
[http://dx.doi.org/10.1016/j.bmc.2005.07.029] [PMID: 16115776]
Li Z, Yang Q, Qian X. Synthesis, antitumor and DNA photocleaving activities of novel naphthalene carboxamides: effects of different thio-heterocyclic rings and aminoalkyl side chains. Tetrahedron 2005; 61: 8711-7.
Li Z, Yang Q, Qian X. Novel 2-aminothiazonaphthalimides as visible light activatable photonucleases: effects of intercalation, heterocyclic-fused area and side chains. Bioorg Med Chem Lett 2005; 15(7): 1769-72.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.053] [PMID: 15780603]
Yin H, Xu Y, Qian X, Li Y, Liu J. Novel N-oxide of naphthalimides as prodrug leads against hypoxic solid tumor: synthesis and biological evaluation. Bioorg Med Chem Lett 2007; 17(8): 2166-70.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.015] [PMID: 17331719]
Qian X, Li Z, Yang Q. Highly efficient antitumor agents of heterocycles containing sulfur atom: linear and angular thiazonaphthalimides against human lung cancer cell in vitro. Bioorg Med Chem 2007; 15(21): 6846-51.
[http://dx.doi.org/10.1016/j.bmc.2007.07.008] [PMID: 17707644]
Zhu H, Huang M, Yang F, et al. R16, a novel amonafide analogue, induces apoptosis and G2-M arrest via poisoning topoisomerase II. Mol Cancer Ther 2007; 6(2): 484-95.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0584] [PMID: 17308047]
Yang Q, Yang P, Qian X, Tong L. Naphthalimide intercalators with chiral amino side chains: effects of chirality on DNA binding, photodamage and antitumor cytotoxicity. Bioorg Med Chem Lett 2008; 18(23): 6210-3.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.104] [PMID: 18930399]
Andaloussi M, Moreau E, Masurier N, et al. Novel imidazo[1,2-a]naphthyridinic systems (part 1): synthesis, antiproliferative and DNA-intercalating activities. Eur J Med Chem 2008; 43(11): 2505-17.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.017] [PMID: 18403058]
Hranjec M, Kralj M, Piantanida I, et al. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. J Med Chem 2007; 50(23): 5696-711.
[http://dx.doi.org/10.1021/jm070876h] [PMID: 17935309]
Li X, Lin Y, Yuan Y, Liu K, Qian X. Novel efficient anticancer agents and DNA-intercalators of 1,2,3-triazol-1,8-naphthalimides: design, synthesis, and biological activity. Tetrahedron 2011; 67: 2299-304.
Chen H, Li S, Yao Y, et al. Design, synthesis, and anti-tumor activities of novel triphenylethylene-coumarin hybrids, and their interactions with Ct-DNA. Bioorg Med Chem Lett 2013; 23(17): 4785-9.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.009] [PMID: 23902804]
Wilson WD, Ratmeyer L, Zhao M, Strekowski L, Boykin D. The search for structure-specific nucleic acid-interactive drugs: effects of compound structure on RNA versus DNA interaction strength. Biochemistry 1993; 32(15): 4098-104.
[http://dx.doi.org/10.1021/bi00066a035] [PMID: 7682441]
Islam I, Skibo EB. Synthesis and physical studies of azamitosene and iminoazamitosene reductive alkylating agents. iminoquinone hydrolytic stability, syn/anti isomerization, and electrochemistry. J Org Chem 1990; 55: 3195-205.
Islam I, Skibo EB, Dorr RT, Alberts DS. Structure-activity studies of antitumor agents based on pyrrolo[1,2-a]benzimidazoles: new reductive alkylating DNA cleaving agents. J Med Chem 1991; 34(10): 2954-61.
[http://dx.doi.org/10.1021/jm00114a003] [PMID: 1920349]
Skibo EB, Schulz WG. Pyrrolo[1,2-a]benzimidazole-based aziridinyl quinones. A new class of DNA cleaving agent exhibiting G and A base specificity. J Med Chem 1993; 36(21): 3050-5.
[http://dx.doi.org/10.1021/jm00073a002] [PMID: 8230090]
Schulz WG, Nieman RA, Skibo EB. Evidence for DNA phosphate backbone alkylation and cleavage by pyrrolo[1,2-a]benzimidazoles: small molecules capable of causing base-pair-specific phosphodiester bond hydrolysis. Proc Natl Acad Sci USA 1995; 92(25): 11854-8.
[http://dx.doi.org/10.1073/pnas.92.25.11854] [PMID: 8524862]
Skibo EB, Islam I, Heileman MJ, Schulz WG. Structure-activity studies of benzimidazole-based DNA-cleaving agents. Comparison of benzimidazole, pyrrolobenzimidazole, and tetrahydropyridobenzimidazole analogues. J Med Chem 1994; 37(1): 78-92.
[http://dx.doi.org/10.1021/jm00027a010] [PMID: 8289204]
Boruah RC, Skibo EB. A comparison of the cytotoxic and physical properties of aziridinyl quinone derivatives based on the pyrrolo[1,2-a]benzimidazole and pyrrolo[1,2-a]indole ring systems. J Med Chem 1994; 37(11): 1625-31.
[http://dx.doi.org/10.1021/jm00037a013] [PMID: 8201596]
Schulz WG, Islam I, Skibo EB. Pyrrolo[1,2-a]benzimidazole-based quinones and iminoquinones. The role of the 3-substituent on cytotoxicity. J Med Chem 1995; 38(1): 109-18.
[http://dx.doi.org/10.1021/jm00001a016] [PMID: 7837221]
Zhou R, Skibo EB. Chemistry of the pyrrolo[1,2-alpha]benzimidazole antitumor agents: influence of the 7-substituent on the ability to alkylate DNA and inhibit topoisomerase II. J Med Chem 1996; 39(21): 4321-31.
[http://dx.doi.org/10.1021/jm960064d] [PMID: 8863809]
Pastor J, Siro´ J, Garcı’a Navı’o JL, et al. Synthesis of new azino fused benzimidazolium salts. a new family of DNA intercalating agents. 1. Bioorg Med Chem Lett 1995; 5: 3043-8.
Molina A, Vaquero JJ, Garcı’a Navı’o JL, et al. Azonia derivatives of the ç-carboline system, a new class of DNA intercalators. Bioorg Med Chem Lett 1996; 13: 1453-6.
Molina A, Vaquero JJ, Garcı’a Navı’o JL, et al. Novel DNA intercalators based on the pyrazino[1¢,6¢:1,2]pyrido[4,3-b]indol-5-inium system. J Org Chem 1999; 64: 3907-15.
Siro JG. The Westphal reaction: Synthesis of novel DNA intercalating agents. Thesis, University of Alcala, Spain 1998.
Martínez V, Burgos C, Alvarez-Builla J, et al. Benzo[f]azino[2,1-a]phthalazinium cations: novel DNA intercalating chromophores with antiproliferative activity. J Med Chem 2004; 47(5): 1136-48.
[http://dx.doi.org/10.1021/jm0310434] [PMID: 14971893]
Khan GS, Shah A. Zia-ur-Rehman, Barker D. Chemistry of DNA minor groove binding agents. J Photochem Photobiol B 2012; 115: 105-18.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.07.003] [PMID: 22857824]
Sinan M, Panda M, Ghosh A, et al. Mild synthesis of a family of planar triazinium cations via proton-assisted cyclization of pyridyl containing azo compounds and studies on DNA intercalation. J Am Chem Soc 2008; 130(15): 5185-93.
[http://dx.doi.org/10.1021/ja710211u] [PMID: 18335991]
Costa M. Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol 1991; 31: 321-37.
[http://dx.doi.org/10.1146/annurev.pa.31.040191.001541] [PMID: 2064378]
Costa M, Heck JD. Metal ion carcinogenesis - mechanistic insights Metal ions in biological systems. New York: Marcel Dekker 1986; pp. 259-78.
Nieboer E, Maxwell RI, Rossetto RE, Stafford AR, Stetsko PI. Concepts in Nickel Carcinogenesis Frontiers of bioinorganic chemistry. Weinheim: VCH 1986; pp. 142-51.
Kasprzak KS. The role of oxidative damage in metal carcinogenicity. Chem Res Toxicol 1991; 4(6): 604-15.
[http://dx.doi.org/10.1021/tx00024a002] [PMID: 1807443]
Ciccarelli RB, Wetterhahn KE. Nickel-bound chromatin, nucleic acids, and nuclear proteins from kidney and liver of rats treated with nickel carbonate in vivo. Cancer Res 1984; 44(9): 3892-7.
[PMID: 6204748]
Ciccarelli RB, Wetterhahn KE. Nickel distribution and DNA lesions induced in rat tissues by the carcinogen nickel carbonate. Cancer Res 1982; 42(9): 3544-9.
[PMID: 7105030]
Ciccarelli RB, Hampton TH, Jennette KW. Nickel carbonate induces DNA-protein crosslinks and DNA strand breaks in rat kidney. Cancer Lett 1981; 12(4): 349-54.
[http://dx.doi.org/10.1016/0304-3835(81)90178-6] [PMID: 7306939]
Adam S, Bourtayre P, Liquier J, Taillandier E. Interaction of transition metal ions with Z form poly d(A-C).poly d(G-T) and poly d(A-T) studied by I.R. spectroscopy. Nucleic Acids Res 1986; 14(8): 3501-13.
[http://dx.doi.org/10.1093/nar/14.8.3501] [PMID: 3703681]
Taboury JA, Bourtayre P, Liquier J, Taillandier E. Interaction of Z form poly(dG-dC).poly(dG-dC) with divalent metal ions: localization of the binding sites by I.R. spectroscopy. Nucleic Acids Res 1984; 12(10): 4247-58.
[http://dx.doi.org/10.1093/nar/12.10.4247] [PMID: 6728678]
Mack DP, Dervan PB. Sequence-specific oxidative cleavage of DNA by a designed metalloprotein, Ni(II).GGH(Hin139-190). Biochemistry 1992; 31(39): 9399-405.
[http://dx.doi.org/10.1021/bi00154a011] [PMID: 1390723]
Sudhamani CN, Naik HS, Naik TRR, Prabhakara MC. Synthesis, DNA binding and cleavage studies of Ni(II) complexes with fused aromatic N-containing ligands. Spectrochim Acta A Mol Biomol Spectrosc 2009; 72(3): 643-7.
[http://dx.doi.org/10.1016/j.saa.2008.11.025] [PMID: 19124268]
Lamani DS, Venugopala Reddy KR, Bhojya Naik HS, Prakash Naik HR, Naik LR. An efficient carbodiimide-mediated synthesis and DNA-binding studies of novel 2-chloro/mercapto-quinoline-fused 1,3-thiazolidinones via one-pot three-component condensation. J Sulfur Chem 2010; 31: 49-59.
Miri R, Javidnia K, Hemmateenejad B, Azarpira A, Amirghofran Z. Synthesis, cytotoxicity, QSAR, and intercalation study of new diindenopyridine derivatives. Bioorg Med Chem 2004; 12(10): 2529-36.
[http://dx.doi.org/10.1016/j.bmc.2004.03.032] [PMID: 15110835]
Atwell GJ, Rewcastle GW, Baguley BC, Denny WA. Potential antitumor agents. 50. In vivo solid-tumor activity of derivatives of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. J Med Chem 1987; 30(4): 664-9.
[http://dx.doi.org/10.1021/jm00387a014] [PMID: 3560161]
Atwell GJ, Baguley BC, Denny WA. Potential antitumor agents. 57. 2-Phenylquinoline-8-carboxamides as “minimal” DNA-intercalating antitumor agents with in vivo solid tumor activity. J Med Chem 1989; 32(2): 396-401.
[http://dx.doi.org/10.1021/jm00122a018] [PMID: 2913299]
Porter CW, Bergeron RJ, Stolowich NJ. Biological properties of N4-spermidine derivatives and their potential in anticancer chemotherapy. Cancer Res 1982; 42(10): 4072-8.
[PMID: 7105005]
Burger AM, Double JA, Konopa J, Bibby MC. Preclinical evaluation of novel imidazoacridinone derivatives with potent activity against experimental colorectal cancer. Br J Cancer 1996; 74(9): 1369-74.
[http://dx.doi.org/10.1038/bjc.1996.551] [PMID: 8912531]
Baranovskii SF, Bolotin PA, Evstigneev MP, Chernyshev DN. Complexation of heterocyclic ligands with DNA in aqueous solution. J Appl Spectrosc 2008; 75: 242-9.
Caprasse M, Houssier C. Do planar alkaloids from Strychnos usambarensis intercalate into the DNA helix? Biochimie 1983; 65(2): 157-67.
[http://dx.doi.org/10.1016/S0300-9084(83)80187-4] [PMID: 6405806]
Qian X, Huang TB, Wei DZ, Zhu DH, Fan MC, Yao W. Interaction of naphthyl heterocycles with DNA: effects of thiono and thio groups. J Chem Soc Perkin Trans 2000; 2: 715-8.
Braña MF, Cacho M, García MA, et al. Synthesis, antitumor activity, molecular modeling, and DNA binding properties of a new series of imidazonaphthalimides. J Med Chem 2002; 45(26): 5813-6.
[http://dx.doi.org/10.1021/jm020950q] [PMID: 12477366]
Braña MF, Cacho M, García MA, et al. New analogues of amonafide and elinafide, containing aromatic heterocycles: synthesis, antitumor activity, molecular modeling, and DNA binding properties. J Med Chem 2004; 47(6): 1391-9.
[http://dx.doi.org/10.1021/jm0308850] [PMID: 14998328]
Braña MF, Cacho M, Ramos A, et al. Synthesis, biological evaluation and DNA binding properties of novel mono and bisnaphthalimides. Org Biomol Chem 2003; 1(4): 648-54.
[http://dx.doi.org/10.1039/b209042b] [PMID: 12929451]
Tan S, Yin H, Chen Z, Qian X, Xu Y. Oxo-heterocyclic fused naphthalimides as antitumor agents: synthesis and biological evaluation. Eur J Med Chem 2013; 62: 130-8.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.039] [PMID: 23353750]
Shankaraiah N, Kumar NP, Tokala R, Gayatri BS, Tallab V, Santos LS. Synthesis of new 1,2,3-triazolo-naphthalimide/phthalimide conjugates via ‘click’ reaction: DNA intercalation and cytotoxic studies. J Braz Chem Soc 2019; 30: 454-61.
Roque Marques KM, do Desterro MR, de Arruda SM, et al. 5-nitro-thiophene-thiosemicarbazone derivatives present antitumor activity mediated by apoptosis and DNA intercalation. Curr Top Med Chem 2019; 19(13): 1075-91.
[http://dx.doi.org/10.2174/1568026619666190621120304] [PMID: 31223089]
Harlepp S, Chardon E, Bouché M, Dahm G, Maaloum M, Bellemin-Laponnaz S. N-heterocyclic carbene-platinum complexes featuring an anthracenyl moiety: Anti-cancer activity and DNA interaction. Int J Mol Sci 2019; 20(17): 4198.
[http://dx.doi.org/10.3390/ijms20174198] [PMID: 31461928]
Jafari F, Baghayi H, Lavaee P, et al. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur J Med Chem 2019; 164: 292-303.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.060] [PMID: 30599418]
Zhou Q, Wu H, You C, et al. 1,3-dimethyl-6-nitroacridine derivatives induce apoptosis in human breast cancer cells by targeting DNA. Drug Dev Ind Pharm 2019; 45(2): 212-21.
[http://dx.doi.org/10.1080/03639045.2018.1529185] [PMID: 30256663]
Al-Sehemi AG, El-Gogary SR. Synthesis and photooxygenation of furo[3,2-c]coumarin derivatives as antibacterial and DNA intercalating agent. Chin J Chem 2012; 30: 316-20.
Murray RDH. Coumarins. Nat Prod Rep 1989; 6(6): 591-624.
[http://dx.doi.org/10.1039/np9890600591] [PMID: 2699016]
Lauria A, Delisi R, Mingoia F, et al. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions. Eur J Org Chem 2014; 3289-306.
Krezel I. New derivatives of imidazole as potential anticancer agents. Farmaco 1998; 53(5): 342-5.
[http://dx.doi.org/10.1016/S0014-827X(98)00031-7] [PMID: 9679284]
Skipper HE, Schabel FM Jr, Wilcox WS. Experimental evaluation of potential anticancer agents. XIV. Further study of certain basic concepts underlying chemotherapy of leukemia. Cancer Chemother Rep 1965; 45: 5-28.
[PMID: 14321918]
Le Pecq JB. Nguyen-Dat-Xuong, Gosse C, Paoletti C. A new antitumoral agent: 9-hydroxyellipticine. Possibility of a rational design of anticancerous drugs in the series of DNA intercalating drugs. Proc Natl Acad Sci USA 1974; 71(12): 5078-82.
[http://dx.doi.org/10.1073/pnas.71.12.5078] [PMID: 4531039]
Denny WA, Atwell GJ, Baguley BC. Potential antitumor agents. 38. 3-substituted 5-carboxamido derivatives of amsacrine. J Med Chem 1983; 26(11): 1619-25.
[http://dx.doi.org/10.1021/jm00365a013] [PMID: 6688829]
Baguley BC, Denny WA, Atwell GJ, Cain BF. Potential antitumor agents. 35. Quantitative relationships between antitumor (L1210) potency and DNA binding for 4′-(9-acridinylamino) methanesulfon-m-anisidide analogues. J Med Chem 1981; 24(5): 520-5.
[http://dx.doi.org/10.1021/jm00137a009] [PMID: 6894620]
Denny WA, Cain BF, Atwell GJ, Hansch C, Panthananickal A, Leo A. Potential antitumor agents. 36. Quantitative relationships between experimental antitumor activity, toxicity, and structure for the general class of 9-anilinoacridine antitumor agents. J Med Chem 1982; 25(3): 276-315.
[http://dx.doi.org/10.1021/jm00345a015] [PMID: 7069706]
Collins JF, Brown JP, Dawson SV, Marty MA. Risk assessment for benzo[a]pyrene. Regul Toxicol Pharmacol 1991; 13(2): 170-84.
[http://dx.doi.org/10.1016/0273-2300(91)90020-V] [PMID: 1852928]
Meehan T, Gamper H, Becker JF. Characterization of reversible, physical binding of benzo[a]pyrene derivatives to DNA. J Biol Chem 1982; 257(17): 10479-85.
[PMID: 6286655]
Thomas T, Balabhadrapathruni S, Gallo MA, Thomas TJ. Development of polyamine analogs as cancer therapeutic agents. Oncol Res 2002; 13(3): 123-35.
[PMID: 12555742]
Kong Thoo Lin P, Dance AM, Bestwick C, Milne L. The biological activities of new polyamine derivatives as potential therapeutic agents. Biochem Soc Trans 2003; 31(2): 407-10.
[http://dx.doi.org/10.1042/bst0310407] [PMID: 12653648]
Xu Y, Zhang YX, Sugiyama H, Umano T, Osuga H, Tanaka K. (P)-helicene displays chiral selection in binding to Z-DNA. J Am Chem Soc 2004; 126(21): 6566-7.
[http://dx.doi.org/10.1021/ja0499748] [PMID: 15161280]
Passeri R, Aloisi GG, Elisei F, et al. Photophysical properties of N-alkylated azahelicene derivatives as DNA intercalators: counterion effects. Photochem Photobiol Sci 2009; 8(11): 1574-82.
[http://dx.doi.org/10.1039/b9pp00015a] [PMID: 19862416]
Eissa IH, El-Naggar AM, El-Hashash MA. Design, synthesis, molecular modeling and biological evaluation of novel 1H-pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents. Bioorg Chem 2016; 67: 43-56.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.006] [PMID: 27253830]
Carter SK. Adriamycin-a review. Oxford University Press 1975.
Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta 2014; 1845(1): 84-9.
[PMID: 24361676]
Levin M, Silber R, Israel M, Goldfeder A, Khetarpal VK, Potmesil M. Protein-associated DNA breaks and DNA-protein cross-links caused by DNA nonbinding derivatives of adriamycin in L1210 cells. Cancer Res 1981; 41(3): 1006-10.
[PMID: 7459847]
Bachur NR, Gordon SL, Gee MV. A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res 1978; 38(6): 1745-50.
[PMID: 25710]
Rodríguez-Loaiza P, Quintero A, Rodríguez-Sotres R, Solano JD, Lira-Rocha A. Synthesis and evaluation of 9-anilinothiazolo[5,4-b]quinoline derivatives as potential antitumorals. Eur J Med Chem 2004; 39(1): 5-10.
[http://dx.doi.org/10.1016/j.ejmech.2003.05.002] [PMID: 14987829]
Zerial A, Thuong NT, Hélène C. Selective inhibition of the cytopathic effect of type A influenza viruses by oligodeoxynucleotides covalently linked to an intercalating agent. Nucleic Acids Res 1987; 15(23): 9909-19.
[http://dx.doi.org/10.1093/nar/15.23.9909] [PMID: 3697085]
Cazenave C, Loreau N, Thuong NT, Toulmé JJ, Hélène C. Enzymatic amplification of translation inhibition of rabbit β-globin mRNA mediated by anti-messenger oligodeoxynucleotides covalently linked to intercalating agents. Nucleic Acids Res 1987; 15(12): 4717-36.
[http://dx.doi.org/10.1093/nar/15.12.4717] [PMID: 3037483]
Gupta V, Sharma M. Phytochemical analysis and evaluation of antioxidant activities of methanolic extracts of Maytenus emarginata. OMICS 2012; 16(5): 257-62.
[http://dx.doi.org/10.1089/omi.2011.0051] [PMID: 22339410]
Petiwala SM, Puthenveetil AG, Johnson JJ. Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis) for prostate cancer. Front Pharmacol 2013; 4: 29.
[http://dx.doi.org/10.3389/fphar.2013.00029] [PMID: 23531917]
Johnson JJ, Syed DN, Suh Y, et al. Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene carnosol: implications for chemoprevention. Cancer Prev Res (Phila) 2010; 3(9): 1112-23.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0168] [PMID: 20736335]
Jiang M-C, Yang-Yen H-F, Lin J-K, Yen JJ. Differential regulation of p53, c-Myc, Bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene 1996; 13(3): 609-16.
[PMID: 8760302]
Hsu W-H, Chang C-C, Huang K-W, et al. Evaluation of the medicinal herb Graptopetalum paraguayense as a treatment for liver cancer. PLoS One 2015; 10(4)e0121298
[http://dx.doi.org/10.1371/journal.pone.0121298] [PMID: 25849560]
Chen S-J, Chung J-G, Chung Y-C, Chou S-T. In vitro antioxidant and antiproliferative activity of the stem extracts from Graptopetalum paraguayense. Am J Chin Med 2008; 36(2): 369-83.
[http://dx.doi.org/10.1142/S0192415X08005837] [PMID: 18457367]
Mandal A, Bhattacharya P, Das AK, Basak A. A Garratt-Braverman cyclization route towards the synthesis of phenanthridine derivatives and their DNA-binding studies. Tetrahedron 2019; 75: 1975-87.
Inxight: Drugs.. Available from: https://drugs-02.ncats.io/drug/1F1959S062
Demetri GD, von Mehren M, Jones RL, et al. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: Results of a phase III randomized multicenter clinical trial. J Clin Oncol 2016; 34(8): 786-93.
[http://dx.doi.org/10.1200/JCO.2015.62.4734] [PMID: 26371143]
Doxorubicin. Available from: https://www.drugs.com/mtm/doxorubicin.html
Frederick CA, Williams LD, Ughetto G, et al. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 1990; 29(10): 2538-49.
[http://dx.doi.org/10.1021/bi00462a016] [PMID: 2334681]
Momparler RL, Karon M, Siegel SE, Avila F. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 1976; 36(8): 2891-5.
[PMID: 1277199]
Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 2010; 17(5): 421-33.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012] [PMID: 20534341]
Pang B, Qiao X, Janssen L, et al. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat Commun 2013; 4(1): 1908.
[http://dx.doi.org/10.1038/ncomms2921] [PMID: 23715267]
Pang B, de Jong J, Qiao X, Wessels LFA, Neefjes J. Chemical profiling of the genome with anti-cancer drugs defines target specificities. Nat Chem Biol 2015; 11(7): 472-80.
[http://dx.doi.org/10.1038/nchembio.1811] [PMID: 25961671]
Daunorubicin hydrochloride Available form: https://www.drugs.com/monograph/daunorubicin-hydrochloride.html
Kagan VE. Tocopherol stabilizes membrane against phospholipase A, free fatty acids, and lysophospholipids. Ann N Y Acad Sci 1989; 570(1): 121-35.
[http://dx.doi.org/10.1111/j.1749-6632.1989.tb14913.x] [PMID: 2698101]
Arbiser JL, Moschella SL. Clofazimine: a review of its medical uses and mechanisms of action. J Am Acad Dermatol 1995; 32(2 Pt 1): 241-7.
[http://dx.doi.org/10.1016/0190-9622(95)90134-5] [PMID: 7829710]
Morrison N. The mode of action of clofazimine. DNA binding studies. Int J Lepr Other Mycobact Dis 1976; 44(1-2): 133-4.
Parker C, Waters R, Leighton C, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 2010; 376(9757): 2009-17.
[http://dx.doi.org/10.1016/S0140-6736(10)62002-8] [PMID: 21131038]
Fox EJ. Management of worsening multiple sclerosis with mitoxantrone: a review. Clin Ther 2006; 28(4): 461-74.
[http://dx.doi.org/10.1016/j.clinthera.2006.04.013] [PMID: 16750460]
Kapuscinski J, Darzynkiewicz Z. Interactions of antitumor agents ametantrone* and mitoxantrone (novatrone)† with double-stranded DNA. Biochem Pharmacol 1985; 34(24): 4203-13.
[http://dx.doi.org/10.1016/0006-2952(85)90275-8] [PMID: 4074383]
Mitoxantrone Available from: https://www.drugs.com/cdi/mitoxantrone.html
Pharmaceuticals E. Valstar Available from: https://www.valstarsolution.com/patient/
Sobell HM. Actinomycin and DNA transcription. Proc Natl Acad Sci USA 1985; 82(16): 5328-31.
[http://dx.doi.org/10.1073/pnas.82.16.5328] [PMID: 2410919]
Müller W, Crothers DM. Studies of the binding of actinomycin and related compounds to DNA. J Mol Biol 1968; 35(2): 251-90.
[http://dx.doi.org/10.1016/S0022-2836(68)80024-5] [PMID: 4107107]
Sobell HM, Jain SC. Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J Mol Biol 1972; 68(1): 21-34.
[http://dx.doi.org/10.1016/0022-2836(72)90259-8] [PMID: 4115109]
Avendaño C, Menéndez JC. Anticancer drugs acting via radical species, photosensitizers and photodynamic therapy of cancer Medicinal Chemistry of Anticancer Drugs. Amsterdam: Elsevier 2008; pp. 93-138.
Trioxsalen Available from: https://www.drugs.com/cons/trioxsalen.html
Methoxsalen Available from: https://www.drugs.com/mtm/methoxsalen.html
Gatasheh MK, Kannan S, Hemalatha K, Imrana N. Proflavine an acridine DNA intercalating agent and strong antimicrobial possessing potential properties of carcinogen. Karbala International J Modern Sci 2017; 3(4): 272-8.
Arlin ZA, Gaddipati J, Ahmed T, Mittelman A, Friedland M, Rieber E. Treatment of acute leukemia with amsacrine and high-dose cytarabine. Cancer Treat Rep 1985; 69(9): 1001-2.
[PMID: 3839713]
Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009; 9(5): 338-50.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
Horstmann MA, Hassenpflug WA, zur Stadt U, Escherich G, Janka G, Kabisch H. Amsacrine combined with etoposide and high-dose methylprednisolone as salvage therapy in acute lymphoblastic leukemia in children. Haematologica 2005; 90(12): 1701-3.
[PMID: 16330449]
DeMarini DM, Doerr CL, Meyer MK, Brock KH, Hozier J, Moore MM. Mutagenicity of m-AMSA and o-AMSA in mammalian cells due to clastogenic mechanism: possible role of topoisomerase. Mutagenesis 1987; 2(5): 349-55.
[http://dx.doi.org/10.1093/mutage/2.5.349] [PMID: 2830452]
Wadkins RM, Graves DE. Thermodynamics of the interactions of m-AMSA and o-AMSA with nucleic acids: influence of ionic strength and DNA base composition. Nucleic Acids Res 1989; 17(23): 9933-46.
[http://dx.doi.org/10.1093/nar/17.23.9933] [PMID: 2602146]
Bleomycin Sulfate. Available form: https://www.drugs.com/monograph/bleomycin-sulfate.html
Anand K, Naicker T, Baijnath S, et al. TPGS-mediated one-pot synthesis, XRD structural analysis, antimicrobial evaluation and molecular docking of novel heterocycles as potential inhibitors of p53-MDM2 protein. J Mol Struct 2020; 1202127252
Benigni R, Bossa C, Tcheremenskaia O, Giuliani A. Alternatives to the carcinogenicity bioassay: in silico methods, and the in vitro and in vivo mutagenicity assays. Expert Opin Drug Metab Toxicol 2010; 6(7): 809-19.
[http://dx.doi.org/10.1517/17425255.2010.486400] [PMID: 20438313]
Ding Y-L, Lyu Y-C, Leong MK. In silico prediction of the mutagenicity of nitroaromatic compounds using a novel two-QSAR approach. Toxicol In Vitro 2017; 40: 102-14.
[http://dx.doi.org/10.1016/j.tiv.2016.12.013] [PMID: 28027902]
Shukla RR. Polycyclic quinolones: design, synthesis, preliminary in vitro and in silico studies. Memorial University of Newfoundland 2012.
Gour J, Gatadi S, Pooladanda V, et al. Facile synthesis of 1,2,3-triazole-fused indolo- and pyrrolo[1,4]diazepines, DNA-binding and evaluation of their anticancer activity. Bioorg Chem 2019; 93103306
[http://dx.doi.org/10.1016/j.bioorg.2019.103306] [PMID: 31586710]

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 17 November, 2020
Page: [15 - 42]
Pages: 28
DOI: 10.2174/1381612826666201118113311

Article Metrics

PDF: 58