Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Impact of Traditional Plants and their Secondary Metabolites in the Discovery of COVID-19 Treatment

Author(s): Shabana Bibi*, Ayesha Sarfraz, Ghazala Mustafa, Zeeshan Ahmad, Muhammad A. Zeb, Yuan-Bing Wang, Tahir Khan, Muhammad S. Khan, Mohammad A. Kamal and Hong Yu*

Volume 27, Issue 9, 2021

Published on: 18 November, 2020

Page: [1123 - 1143] Pages: 21

DOI: 10.2174/1381612826666201118103416

Price: $65

Abstract

Background: Coronavirus Disease-2019 belongs to the family of viruses which cause serious pneumonia along with fever, breathing issues and infection of lungs, and was first reported in China and later spread worldwide.

Objective: Several studies and clinical trials have been conducted to identify potential drugs and vaccines for Coronavirus Disease-2019. The present study listed natural secondary metabolites identified from plant sources with antiviral properties and could be a safer and tolerable treatment for Coronavirus Disease-2019.

Methods: A comprehensive search on the reported studies was conducted using different search engines such as Google Scholar, SciFinder, Sciencedirect, Medline PubMed, and Scopus for the collection of research articles based on plant-derived secondary metabolites, herbal extracts, and traditional medicine for coronavirus infections.

Results: Status of COVID-19 worldwide and information of important molecular targets involved in COVID- 19 are described, and through literature search, it is highlighted that numerous plant species and their extracts possess antiviral properties and are studied with respect to coronavirus treatments. Chemical information, plant source, test system type with a mechanism of action for each secondary metabolite are also mentioned in this review paper.

Conclusion: The present review has listed plants that have presented antiviral potential in the previous coronavirus pandemics and their secondary metabolites, which could be significant for the development of novel and a safer drug which could prevent and cure coronavirus infection worldwide.

Keywords: COVID-19, coronavirus, dietary supplementation, herbal medicine, plant, secondary metabolites, TCM.

[1]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[2]
Burki TK. Coronavirus in China. Lancet Respir Med 2020; 8(3): 238.
[http://dx.doi.org/10.1016/S2213-2600(20)30056-4] [PMID: 32027848]
[3]
World Health Organization Director-General’s Remarks at the Media Briefing on 2019-NCoV on 11 February 2020. No. February 2020; pp. 1-4..
[4]
Guan W, Ni Z, Hu Y, et al. Clinical Characteristics of 2019 Novel Coronavirus Infection in China. N Engl J Med 2020; 382: 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032]
[5]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[6]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[7]
Zhou P, Yang X, Wang X, Hu B, Zhang L. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. naturecom 2020.
[8]
Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[9]
Tignanelli CJ, Ingraham NE, Sparks MA, et al. Antihypertensive drugs and risk of COVID-19? Lancet Respir Med 2020; 8(5): e30-1.
[http://dx.doi.org/10.1016/S2213-2600(20)30153-3] [PMID: 32222166]
[10]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[11]
Wang N, Shi X, Jiang L, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 2013; 23(8): 986-93.
[http://dx.doi.org/10.1038/cr.2013.92] [PMID: 23835475]
[12]
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251-4.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[13]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[14]
Meyer KC. The role of immunity in susceptibility to respiratory infection in the aging lung. Respir Physiol 2001; 128(1): 23-31.
[http://dx.doi.org/10.1016/S0034-5687(01)00261-4] [PMID: 11535259]
[15]
Thevarajan I, Nguyen THO, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med 2020; 26(4): 453-5.
[http://dx.doi.org/10.1038/s41591-020-0819-2] [PMID: 32284614]
[16]
Fisher D, Heymann D Q Q. &A: The Novel Coronavirus Outbreak Causing COVID-19 BMC Med 2020; 18(57)
[17]
Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun 2020; 87: 53-4.
[http://dx.doi.org/10.1016/j.bbi.2020.04.040] [PMID: 32311498]
[18]
Nieman DC, Wentz LM. The compelling link between physical activity and the body’s defense system. J Sport Health Sci 2019; 8(3): 201-17.
[http://dx.doi.org/10.1016/j.jshs.2018.09.009] [PMID: 31193280]
[19]
Cordain L, Eaton SB, Sebastian A, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005; 81(2): 341-54.
[http://dx.doi.org/10.1093/ajcn.81.2.341] [PMID: 15699220]
[20]
Macht M. How emotions affect eating: a five-way model. Appetite 2008; 50(1): 1-11.
[http://dx.doi.org/10.1016/j.appet.2007.07.002] [PMID: 17707947]
[21]
Naja F, Hamadeh R. Nutrition amid the COVID-19 pandemic: a multi-level framework for action. Eur J Clin Nutr 2020; 74(8): 1117-21.
[http://dx.doi.org/10.1038/s41430-020-0634-3] [PMID: 32313188]
[22]
Doss M. Treatment of COVID-19 with Individualized Immune Boosting Interventions. Preprints 2020; p. 2020030319.
[http://dx.doi.org/10.20944/preprints202003.0319.v1]
[23]
Villamor E, Mbise R, Spiegelman D, et al. Vitamin A supplements ameliorate the adverse effect of HIV-1, malaria, and diarrheal infections on child growth. Pediatrics 2002; 109(1)E6
[http://dx.doi.org/10.1542/peds.109.1.e6] [PMID: 11773574]
[24]
Keil SD, Bowen R, Marschner S. Inactivation of Middle East respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment. Transfusion 2016; 56(12): 2948-52.
[http://dx.doi.org/10.1111/trf.13860] [PMID: 27805261]
[25]
Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol 2002; 71(1): 16-32.
[http://dx.doi.org/10.1189/jlb.71.1.16] [PMID: 11781377]
[26]
Hemilä H. Vitamin C Intake and Susceptibility to Pneumonia 1997.; 16.
[http://dx.doi.org/10.1097/00006454-199709000-00003]
[27]
Nonnecke BJ, McGill JL, Ridpath JF, Sacco RE, Lippolis JD, Reinhardt TA. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J Dairy Sci 2014; 97(9): 5566-79.
[http://dx.doi.org/10.3168/jds.2014-8293] [PMID: 25022687]
[28]
Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72-314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[29]
Theophrastus Paracelsus von Hohenheim. Nutritional Treatment of Coronavirus - Covid 19 - CoV 2 - Orthomolecular - Theophrastus Paracelsus von Hohenheim. Google Books. Available at:. https://books.google.com/books?hl=en&lr=&id=EEPWDwAAQBAJ&oi=fnd&pg=PA43&dq=What+Universities+in+the+US+are+treaing+COVID+19+patients+with+intravenous+vitamin+c&ots=0UPQFzJi3o&sig=VuF77K6D2CqruDZ5igH0ForPcCs#v=onepage&q=What
[30]
Wang SX, Wang Y, Lu YB, et al. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine. J Integr Med 2020; 18(4): 275-83.
[http://dx.doi.org/10.1016/j.joim.2020.04.001] [PMID: 32446813]
[31]
WHO WHO Guidelines on Safety Monitoring of Herbal Medicines in Pharmacovigilance Systems 2004 Available at:.https://doi.org/http://www.regione.emiliaromgna.it/agenziasan/mnc/pdf/documenti/oms/who_guid_pharmacovig.pdf
[32]
Panyod S, Ho CT, Sheen LY. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J Tradit Complement Med 2020; 10(4): 420-7.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.004] [PMID: 32691006]
[33]
Zhang MM, Liu XM, He L. Effect of integrated traditional Chinese and Western medicine on SARS: a review of clinical evidence. World J Gastroenterol 2004; 10(23): 3500-5.
[http://dx.doi.org/10.3748/wjg.v10.i23.3500] [PMID: 15526373]
[34]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[35]
Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 2010; 18(22): 7940-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[36]
Park JY, Kim JH, Kim YM, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem 2012; 20(19): 5928-35.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[37]
Biedenkopf N, Lange-Grünweller K, Schulte FW, et al. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Res 2017; 137: 76-81.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.011] [PMID: 27864075]
[38]
Elgner F, Sabino C, Basic M, Ploen D, Grünweller A, Hildt E. Inhibition of Zika Virus Replication by Silvestrol. Viruses 2018; 10(4): 149.
[http://dx.doi.org/10.3390/v10040149] [PMID: 29584632]
[39]
Kim S, Bang YH, Su BN, et al. Silvestrol, a Potential Anticancer Rocaglate Derivative from Aglaia Foveolata, Induces Apoptosis in LNCaP Cells through the Mitochondrial/Apoptosome Pathway without Activation of Executioner Caspase-3 or -7. Anticancer Res 2007; 27(4): 2175-83.
[40]
Müller C, Schulte FW, Lange-Grünweller K, et al. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res 2018; 150: 123-9.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.010] [PMID: 29258862]
[41]
Yang QY, Tian XY, Fang WS. Bioactive coumarins from Boenninghausenia sessilicarpa. J Asian Nat Prod Res 2007; 9(1): 59-65.
[http://dx.doi.org/10.1080/10286020500382397] [PMID: 17365191]
[42]
Chang J, Dong SJ, She B, et al. Treatment of common cold patients with the shi-cha capsule: a multicenter, double-blind, randomized, placebo-controlled, dose-escalation trial. Evid Based Complement Alternat Med 2012.2012254571
[http://dx.doi.org/10.1155/2012/254571] [PMID: 23346193]
[43]
Shen YC, Wang LT, Khalil AT, Chiang LC, Cheng PW. Bioactive pyranoxanthones from the roots of Calophyllum blancoi. Chem Pharm Bull (Tokyo) 2005; 53(2): 244-7.
[http://dx.doi.org/10.1248/cpb.53.244] [PMID: 15684529]
[44]
Vuong QV. Epidemiological evidence linking tea consumption to human health: a review. Crit Rev Food Sci Nutr 2014; 54(4): 523-36.
[http://dx.doi.org/10.1080/10408398.2011.594184] [PMID: 24237002]
[45]
Wierzejska R. Tea and health-a review of the current state of knowledge. Przegl Epidemiol 2014; 68(3): 501-506, 595-599.
[PMID: 25391016]
[46]
Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019; 11(2): 474.
[http://dx.doi.org/10.3390/nu11020474] [PMID: 30813433]
[47]
Takenaga M, Hirai A, Terano T, Tamura Y, Kitagawa H, Yoshida S. In vitro effect of cinnamic aldehyde, a main component of Cinnamomi Cortex, on human platelet aggregation and arachidonic acid metabolism. J Pharmacobiodyn 1987; 10(5): 201-8.
[http://dx.doi.org/10.1248/bpb1978.10.201] [PMID: 3040960]
[48]
Chung JW, Kim JJ, Kim SJ. Antioxidative effects of cinnamomi cortex: A potential role of iNOS and COX-II. Pharmacogn Mag 2011; 7(28): 314-9.
[http://dx.doi.org/10.4103/0973-1296.90412] [PMID: 22262934]
[49]
Nakagawa T, Goto H, Hikiami H, Yokozawa T, Shibahara N, Shimada Y. Protective effects of keishibukuryogan on the kidney of spontaneously diabetic WBN/Kob rats. J Ethnopharmacol 2007; 110(2): 311-7.
[http://dx.doi.org/10.1016/j.jep.2006.09.043] [PMID: 17123761]
[50]
Hayashi K, Imanishi N, Kashiwayama Y, et al. Inhibitory effect of cinnamaldehyde, derived from Cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antiviral Res 2007; 74(1): 1-8.
[http://dx.doi.org/10.1016/j.antiviral.2007.01.003] [PMID: 17303260]
[51]
Zhuang M, Jiang H, Suzuki Y, et al. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res 2009; 82(1): 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[52]
Sellers C. Eucalyptus: Its History, Growth, and Utilization. 1910.
[53]
Ait-Ouazzou A, Lorán S, Bakkali M, et al. Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J Sci Food Agric 2011; 91(14): 2643-51.
[http://dx.doi.org/10.1002/jsfa.4505] [PMID: 21769875]
[54]
Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 2003; 97(3): 250-6.
[http://dx.doi.org/10.1053/rmed.2003.1432] [PMID: 12645832]
[55]
Zhou JYY, Wang XF, Tang FD, et al. Inhibitory effect of 1,8-cineol (eucalyptol) on Egr-1 expression in lipopolysaccharide-stimulated THP-1 cells. Acta Pharmacol Sin 2007; 28(6): 908-12.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00555.x] [PMID: 17506951]
[56]
Worth H, Schacher C, Dethlefsen U. Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: a placebo-controlled double-blind trial. Respir Res 2009; 10: 69.
[http://dx.doi.org/10.1186/1465-9921-10-69] [PMID: 19624838]
[57]
Sharma A D, Kaur I. Molecular Docking Studies on Jensenone from Eucalyptus Essential Oil as a Potential Inhibitor of COVID 19 Corona Virus Infection. 2020.
[58]
Li H, Wu J, Zhang Z, et al. Forsythoside a inhibits the avian infectious bronchitis virus in cell culture. Phytother Res 2011; 25(3): 338-42.
[http://dx.doi.org/10.1002/ptr.3260] [PMID: 20677175]
[59]
Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[60]
Kumar M, Prasad SK, Hemalatha S. A current update on the phytopharmacological aspects of Houttuynia cordata Thunb. Pharmacogn Rev 2014; 8(15): 22-35.
[http://dx.doi.org/10.4103/0973-7847.125525] [PMID: 24600193]
[61]
Lu H, Wu X, Liang Y, Zhang J. Variation in chemical composition and antibacterial activities of essential oils from two species of Houttuynia THUNB. Chem Pharm Bull (Tokyo) 2006; 54(7): 936-40.
[http://dx.doi.org/10.1248/cpb.54.936] [PMID: 16819207]
[62]
Lu HM, Liang YZ, Yi LZ, Wu XJ. Anti-inflammatory effect of Houttuynia cordata injection. J Ethnopharmacol 2006; 104(1-2): 245-9.
[http://dx.doi.org/10.1016/j.jep.2005.09.012] [PMID: 16213118]
[63]
Lau KM, Lee KM, Koon CM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol 2008; 118(1): 79-85.
[http://dx.doi.org/10.1016/j.jep.2008.03.018] [PMID: 18479853]
[64]
Yin J, Li G, Li J, Yang Q, Ren X. In vitro and in vivo effects of Houttuynia cordata on infectious bronchitis virus. Avian Pathol 2011; 40(5): 491-8.
[http://dx.doi.org/10.1080/03079457.2011.605107] [PMID: 21848486]
[65]
Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 2005; 68(1): 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[66]
Chang SJ, Chang YC, Lu KZ, Tsou YY, Lin CW. Antiviral Activity of Isatis indigotica Extract and Its Derived Indirubin against Japanese Encephalitis Virus. Evid Based Complement Alternat Med 2012.2012925830
[http://dx.doi.org/10.1155/2012/925830] [PMID: 22911608]
[67]
Qin GW, Xu RS. Recent advances on bioactive natural products from Chinese medicinal plants. Med Res Rev 1998; 18(6): 375-82.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199811)18:6<375:AID-MED2>3.0.CO;2-8] [PMID: 9828038]
[68]
Wu X, Qin G, Cheung KK, Cheng KF. New Alkaloids from Isatis Indigotica. Tetrahedron 1997; 53(39): 13323-8.
[http://dx.doi.org/10.1016/S0040-4020(97)00846-6]
[69]
Semple SJ, Pyke SM, Reynolds GD, Flower RLP. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral Res 2001; 49(3): 169-78.
[http://dx.doi.org/10.1016/S0166-3542(01)00125-5] [PMID: 11428243]
[70]
Andersen DO, Weber ND, Wood SG, Hughes BG, Murray BK, North JA. In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives. Antiviral Res 1991; 16(2): 185-96.
[http://dx.doi.org/10.1016/0166-3542(91)90024-L] [PMID: 1665961]
[71]
Paredes A, Alzuru M, Mendez J, Rodríguez-Ortega M. Anti-Sindbis activity of flavanones hesperetin and naringenin. Biol Pharm Bull 2003; 26(1): 108-9.
[http://dx.doi.org/10.1248/bpb.26.108] [PMID: 12520185]
[72]
Kim HK, Jeon WK, Ko BS. Flavanone glycosides from Citrus junos and their anti-influenza virus activity. Planta Med 2001; 67(6): 548-9.
[http://dx.doi.org/10.1055/s-2001-16484] [PMID: 11509977]
[73]
Li SY, Chen C, Zhang HQ, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[74]
He T, Vaidya B, Perry Z, Parajuli P, Joshee N. Paulownia as a Medicinal Tree: Traditional Uses and Current Advances. European J Med Plants 2016; 14(1): 1-15.
[http://dx.doi.org/10.9734/EJMP/2016/25170]
[75]
Sciences CA. of. The Editorial Committee of Flora of China, Flora of China. Beijing Sci Press Beijing 1979; 67(2): 28.
[76]
Feng-jin QU. Research Progress of Pharmaceutical Research on Paulownia Sieb. et Zucc. Anhui Nongye Kexue 2011; 32.
[77]
Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 2013; 21(11): 3051-7.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[78]
Xiao G, Li G, Chen L, et al. Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay. J Chromatogr A 2010; 1217(34): 5470-6.
[http://dx.doi.org/10.1016/j.chroma.2010.06.041] [PMID: 20663508]
[79]
Zhao L, Huang C, Shan Z, Xiang B, Mei L. Fingerprint analysis of Psoralea corylifolia L. by HPLC and LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 821(1): 67-74.
[http://dx.doi.org/10.1016/j.jchromb.2005.04.008] [PMID: 15905140]
[80]
Jiangning G, Xinchu W, Hou W, Qinghua L, Kaishun B. Antioxidants from a Chinese Medicinal Herb - Psoralea Corylifolia L. Food Chem 2005; 91(2): 287-92.
[http://dx.doi.org/10.1016/j.foodchem.2004.04.029]
[81]
Khatune NA, Islam ME, Haque ME, Khondkar P, Rahman MM. Antibacterial compounds from the seeds of Psoralea corylifolia. Fitoterapia 2004; 75(2): 228-30.
[http://dx.doi.org/10.1016/j.fitote.2003.12.018] [PMID: 15030932]
[82]
Xu Q, Pan Y, Yi LT, et al. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. Biol Pharm Bull 2008; 31(6): 1109-14.
[http://dx.doi.org/10.1248/bpb.31.1109] [PMID: 18520040]
[83]
Choi YH, Yon GH, Hong KS, et al. In vitro BACE-1 inhibitory phenolic components from the seeds of Psoralea corylifolia. Planta Med 2008; 74(11): 1405-8.
[http://dx.doi.org/10.1055/s-2008-1081301] [PMID: 18666047]
[84]
Sun NJ, Woo SH, Cassady JM, Snapka RM. DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. J Nat Prod 1998; 61(3): 362-6.
[http://dx.doi.org/10.1021/np970488q] [PMID: 9544566]
[85]
Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[86]
Huang KC. The Pharmacology of Chinese Herbs. Routledge 1998.
[87]
McCulloch M, Broffman M, Gao J, Colford JM Jr. Chinese herbal medicine and interferon in the treatment of chronic hepatitis B: a meta-analysis of randomized, controlled trials. Am J Public Health 2002; 92(10): 1619-28.
[http://dx.doi.org/10.2105/AJPH.92.10.1619] [PMID: 12356611]
[88]
Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007; 74(2): 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[89]
Cao W, Guo X W, Zheng H Z, Li D P, Jia G B, Wang J. Current Progress of Research on Pharmacologic Actions of Salvianolic Acid B. Chinese Journal of Integrative Medicine. Chinese Journal of Integrated Traditional and Western Medicine Press 2012; 316-20..
[90]
Zhou W, Huang Q, Wu X, et al. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep 2017; 7(1): 10554.
[http://dx.doi.org/10.1038/s41598-017-10215-2] [PMID: 28874707]
[91]
Chen W, Lu Y, Chen G, Huang S. Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anticancer Agents Med Chem 2013; 13(7): 979-87.
[http://dx.doi.org/10.2174/18715206113139990115] [PMID: 23272908]
[92]
Yang WS, Jeong D, Yi YS, et al. IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediators Inflamm 2013.2013518183
[http://dx.doi.org/10.1155/2013/518183] [PMID: 24379523]
[93]
Qiang G, Yang X, Shi L, et al. Antidiabetic Effect of Salvianolic Acid A on Diabetic Animal Models via AMPK Activation and Mitochondrial Regulation. Cell Physiol Biochem 2015; 36(1): 395-408.
[http://dx.doi.org/10.1159/000430258] [PMID: 25967977]
[94]
Zandi K, Lim TH, Rahim NA, et al. Extract of Scutellaria baicalensis inhibits dengue virus replication. BMC Complement Altern Med 2013; 13: 91.
[http://dx.doi.org/10.1186/1472-6882-13-91] [PMID: 23627436]
[95]
Leonova GN, Shutikova AL, Lubova VA, Maistrovskaya OS. Inhibitory Activity of Scutellaria baicalensis Flavonoids against Tick-Borne Encephalitis Virus. Bull Exp Biol Med 2020; 168(5): 665-8.
[http://dx.doi.org/10.1007/s10517-020-04776-y] [PMID: 32246365]
[96]
Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 2012; 22(12): 4049-54.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[97]
Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004; 31(1): 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[98]
Bhagya N, Chandrashekar KR. Tetrandrine-A molecule of wide bioactivity. Phytochemistry 2016; 125: 5-13.
[http://dx.doi.org/10.1016/j.phytochem.2016.02.005] [PMID: 26899361]
[99]
Hu S, Dutt J, Zhao T, Foster CS. Tetrandrine potently inhibits herpes simplex virus type-1-induced keratitis in BALB/c mice. Ocul Immunol Inflamm 1997; 5(3): 173-80.
[http://dx.doi.org/10.3109/09273949709116892] [PMID: 9326762]
[100]
Liou JT, Chen ZY, Ho LJ, et al. Differential effects of triptolide and tetrandrine on activation of COX-2, NF-kappaB, and AP-1 and virus production in dengue virus-infected human lung cells. Eur J Pharmacol 2008; 589(1-3): 288-98.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.056] [PMID: 18565510]
[101]
Sakurai Y, Kolokoltsov A A, Chen C C, et al. Two-Pore Channels Control Ebola Virus Host Cell Entry and Are Drug Targets for Disease Treatment Science (80- ) 2015; 347(6225): 995-8..
[102]
Kim DE, Min JS, Jang MS, et al. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules 2019; 9(11)E696
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[103]
Lin W, Huang W, Ning S, Wang X, Ye Q, Wei D. De novo characterization of the Baphicacanthus cusia(Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. PLoS One 2018; 13(7)e0199788
[http://dx.doi.org/10.1371/journal.pone.0199788] [PMID: 29975733]
[104]
Chen H, Shao J, Zhang H, et al. Sequencing and Analysis of Strobilanthes cusia (Nees) Kuntze Chloroplast Genome Revealed the Rare Simultaneous Contraction and Expansion of the Inverted Repeat Region in Angiosperm. Front Plant Sci 2018; 9: 324.
[http://dx.doi.org/10.3389/fpls.2018.00324] [PMID: 29593773]
[105]
Gu W, Zhang Y, Hao XJ, et al. Indole alkaloid glycosides from the aerial parts of Strobilanthes cusia. J Nat Prod 2014; 77(12): 2590-4.
[http://dx.doi.org/10.1021/np5003274] [PMID: 25427242]
[106]
Tanaka T, Ikeda T, Kaku M, et al. A New Lignan Glycoside and Phenylethanoid Glycosides from Strobilanthes Cusia BREMEK 2004.
[http://dx.doi.org/10.1248/cpb.52.1242]
[107]
Zhou B, Yang Z, Feng Q, et al. Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells. J Ethnopharmacol 2017; 199: 60-7.
[http://dx.doi.org/10.1016/j.jep.2017.01.038] [PMID: 28119097]
[108]
Tsai YC, Lee CL, Yen HR, et al. Antiviral Action of Tryptanthrin Isolated from Strobilanthes cusia Leaf against Human Coronavirus NL63. Biomolecules 2020; 10(3)E366
[http://dx.doi.org/10.3390/biom10030366] [PMID: 32120929]
[109]
Xie DF. Therapeutic effect of total glycoside of Triptergium wilfordii on Behcet’s disease. Zhong Xi Yi Jie He Za Zhi 1983; 3(6): 349-50.
[PMID: 6229355]
[110]
Ryu YB, Park SJ, Kim YM, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett 2010; 20(6): 1873-6.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.152] [PMID: 20167482]
[111]
Outlaw WH, Zhang S, Riddle KA, et al. The Jujube (Ziziphus Jujuba Mill.), a Multipurpose Plant. Econ Bot 2002; 56(2): 198- 200..
[http://dx.doi.org/10.1663/0013-0001(2002)056[0198:TJZJMA]2.0.CO;2]
[112]
Chang SC, Hsu BY, Chen BH. Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity. Int J Biol Macromol 2010; 47(4): 445-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.06.010] [PMID: 20615429]
[113]
Choi SH, Ahn JB, Kozukue N, Levin CE, Friedman M. Distribution of free amino acids, flavonoids, total phenolics, and antioxidative activities of Jujube (Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea. J Agric Food Chem 2011; 59(12): 6594-604.
[http://dx.doi.org/10.1021/jf200371r] [PMID: 21574660]
[114]
Li J, Shan L, Liu Y, Fan L, Ai L. Screening of a functional polysaccharide from Zizyphus Jujuba cv. Jinsixiaozao and its property. Int J Biol Macromol 2011; 49(3): 255-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.04.006] [PMID: 21539856]
[115]
Xu YL, Miao MS, Sun YH, Miao YY. Effect of Fructus Jujubae Polysaccharide on the Hematopoietic Function in Mice Model of Both Qi and Blood Deficiencies. Zhongguo Linchuang Kangfu 2004; 8(24): 5050-1.
[116]
Zhao Z, Liu M, Tu P. Characterization of Water Soluble Polysaccharides from Organs of Chinese Jujube (Ziziphus Jujuba Mill. Cv. Dongzao). Eur Food Res Technol 2008; 226(5): 985-9.
[http://dx.doi.org/10.1007/s00217-007-0620-1]
[117]
Yu L, Jiang BP, Luo D, et al. Bioactive components in the fruits of Ziziphus jujuba Mill. against the inflammatory irritant action of Euphorbia plants. Phytomedicine 2012; 19(3-4): 239-44.
[http://dx.doi.org/10.1016/j.phymed.2011.09.071] [PMID: 21982434]
[118]
Tahergorabi Z, Abedini MR, Mitra M, Fard MH, Beydokhti H. “Ziziphus jujuba”: A red fruit with promising anticancer activities. Pharmacogn Rev 2015; 9(18): 99-106.
[http://dx.doi.org/10.4103/0973-7847.162108] [PMID: 26392706]
[119]
Steinkamp-Fenske K, Bollinger L, Xu H, et al. Reciprocal regulation of endothelial nitric-oxide synthase and NADPH oxidase by betulinic acid in human endothelial cells. J Pharmacol Exp Ther 2007; 322(2): 836-42.
[http://dx.doi.org/10.1124/jpet.107.123356] [PMID: 17496167]
[120]
Seo EJ, Lee SY, Kang SS, Jung YS. Zizyphus jujuba and its active component jujuboside B inhibit platelet aggregation. Phytother Res 2013; 27(6): 829-34.
[http://dx.doi.org/10.1002/ptr.4809] [PMID: 22893618]
[121]
Kang KB, Ming G, Kim GJ, et al. Jubanines F-J, cyclopeptide alkaloids from the roots of Ziziphus jujuba. Phytochemistry 2015; 119: 90-5.
[http://dx.doi.org/10.1016/j.phytochem.2015.09.001] [PMID: 26361730]
[122]
Pannell CM. Taxonomic Monograph of the Genus Aglaia Lour. Meliaceae 1992.
[123]
Kim S, Salim AA, Swanson SM, Kinghorn AD. Potential of cyclopenta[b]benzofurans from Aglaia species in cancer chemotherapy. Anticancer Agents Med Chem 2006; 6(4): 319-45.
[http://dx.doi.org/10.2174/187152006777698123] [PMID: 16842234]
[124]
Zu M, Yang F, Zhou W, Liu A, Du G, Zheng L. In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives. Antiviral Res 2012; 94(3): 217-24.
[http://dx.doi.org/10.1016/j.antiviral.2012.04.001] [PMID: 22521753]
[125]
Koňariková K, Ježovičová M, Keresteš J, Gbelcová H, Ďuračková Z, Žitňanová I. Anticancer effect of black tea extract in human cancer cell lines. Springerplus 2015; 4(1): 127.
[http://dx.doi.org/10.1186/s40064-015-0871-4] [PMID: 25825685]
[126]
Lombardo Bedran TB, Morin MP, Palomari Spolidorio D, Grenier D. Black Tea Extract and Its Theaflavin Derivatives Inhibit the Growth of Periodontopathogens and Modulate Interleukin-8 and β-Defensin Secretion in Oral Epithelial Cells. PLoS One 2015; 10(11)e0143158
[http://dx.doi.org/10.1371/journal.pone.0143158] [PMID: 26581041]
[127]
Rowe CA, Nantz MP, Bukowski JF, Percival SS, Bukowski JF. Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances γ,δ T cell function: a randomized, double-blind, placebo-controlled study. J Am Coll Nutr 2007; 26(5): 445-52.
[http://dx.doi.org/10.1080/07315724.2007.10719634] [PMID: 17914132]
[128]
Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial. BMC Complement Altern Med 2011; 11: 15.
[http://dx.doi.org/10.1186/1472-6882-11-15] [PMID: 21338496]
[129]
Cantatore A, Randall SD, Traum D, Adams SD. Effect of black tea extract on herpes simplex virus-1 infection of cultured cells. BMC Complement Altern Med 2013; 13: 139.
[http://dx.doi.org/10.1186/1472-6882-13-139] [PMID: 23777309]
[130]
Yang ZF, Bai LP, Huang WB, et al. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia 2014; 93: 47-53.
[http://dx.doi.org/10.1016/j.fitote.2013.12.011] [PMID: 24370660]
[131]
Chowdhury P, Sahuc ME, Rouillé Y, et al. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS One 2018; 13(11)e0198226
[http://dx.doi.org/10.1371/journal.pone.0198226] [PMID: 30485282]
[132]
de Oliveira A, Prince D, Lo CY, Lee LH, Chu TC. Antiviral activity of theaflavin digallate against herpes simplex virus type 1. Antiviral Res 2015; 118: 56-67.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.009] [PMID: 25818500]
[133]
Ueda K, Kawabata R, Irie T, Nakai Y, Tohya Y, Sakaguchi T. Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki) on a broad range of viruses. PLoS One 2013; 8(1)e55343
[http://dx.doi.org/10.1371/journal.pone.0055343] [PMID: 23372851]
[134]
Clark KJ, Grant PG, Sarr AB, et al. An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Vet Microbiol 1998; 63(2-4): 147-57.
[http://dx.doi.org/10.1016/S0378-1135(98)00242-9] [PMID: 9850995]
[135]
Yang J, Li L, Tan S, et al. A natural theaflavins preparation inhibits HIV-1 infection by targeting the entry step: potential applications for preventing HIV-1 infection. Fitoterapia 2012; 83(2): 348-55.
[http://dx.doi.org/10.1016/j.fitote.2011.11.016] [PMID: 22155187]
[136]
Chen CN, Lin CP, Huang KK, et al. Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3′-digallate (TF3). Evid Based Complement Alternat Med 2005; 2(2): 209-15.
[http://dx.doi.org/10.1093/ecam/neh081] [PMID: 15937562]
[137]
Lung J, Lin YS, Yang YH, et al. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol 2020; 92(6): 693-7.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[138]
Li Y, Lai Y, Wang Y, Liu N, Zhang F, Xu P. 1, 8-Cineol Protect Against Influenza-Virus-Induced Pneumonia in Mice. Inflammation 2016; 39(4): 1582-93.
[http://dx.doi.org/10.1007/s10753-016-0394-3] [PMID: 27351430]
[139]
Yang Z, Wu N, Fu Y, et al. Anti-infectious bronchitis virus (IBV) activity of 1,8-cineole: effect on nucleocapsid (N) protein. J Biomol Struct Dyn 2010; 28(3): 323-30.
[http://dx.doi.org/10.1080/07391102.2010.10507362] [PMID: 20919748]
[140]
Sharma AD, Kaur I. Eucalyptol (1, 8 Cineole) from Eucalyptus Essential Oil a Potential Inhibitor of COVID 19 Corona Virus Infection by Molecular Docking Studies. Preprints 2020.
[141]
Davin LB, Bedgar DL, Katayama T, Lewis NG. On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Phytochemistry 1992; 31(11): 3869-74.
[http://dx.doi.org/10.1016/S0031-9422(00)97544-7] [PMID: 11536515]
[142]
Fan W, Qian S, Qian P, Li X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res 2016; 220: 112-6.
[http://dx.doi.org/10.1016/j.virusres.2016.04.021] [PMID: 27126774]
[143]
Dai W, Bi J, Li F, et al. Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice. Viruses 2019; 11(7): 625.
[http://dx.doi.org/10.3390/v11070625] [PMID: 31284698]
[144]
Mehla R, Bivalkar-Mehla S, Chauhan A. A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function. PLoS One 2011; 6(11)e27915
[http://dx.doi.org/10.1371/journal.pone.0027915] [PMID: 22140483]
[145]
Hayashi K, Kamiya M, Hayashi T. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med 1995; 61(3): 237-41.
[http://dx.doi.org/10.1055/s-2006-958063] [PMID: 7617766]
[146]
Chiang LC, Chang JS, Chen CC, Ng LT, Lin CC. Anti-Herpes simplex virus activity of Bidens pilosa and Houttuynia cordata. Am J Chin Med 2003; 31(3): 355-62.
[http://dx.doi.org/10.1142/S0192415X03001090] [PMID: 12943167]
[147]
Chiow KH, Phoon MC, Putti T, Tan BKH, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med 2016; 9(1): 1-7.
[http://dx.doi.org/10.1016/j.apjtm.2015.12.002] [PMID: 26851778]
[148]
Gilbert KG, Maule HG, Rudolph B, et al. Quantitative analysis of indigo and indigo precursors in leaves of Isatis spp. and Polygonum tinctorium. Biotechnol Prog 2004; 20(4): 1289-92.
[http://dx.doi.org/10.1021/bp0300624] [PMID: 15296465]
[149]
McGovern SL, Shoichet BK. Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem 2003; 46(14): 2895-907.
[http://dx.doi.org/10.1021/jm0300330] [PMID: 12825931]
[150]
Mak NK, Leung CY, Wei XY, et al. Inhibition of RANTES expression by indirubin in influenza virus-infected human bronchial epithelial cells. Biochem Pharmacol 2004; 67(1): 167-74.
[http://dx.doi.org/10.1016/j.bcp.2003.08.020] [PMID: 14667939]
[151]
Shen L, Niu J, Wang C, et al. High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses. J Virol 2019; 93(12): e00023-19.
[http://dx.doi.org/10.1128/JVI.00023-19] [PMID: 30918074]
[152]
Oh KY, Lee JH, Curtis-Long MJ, et al. Glycosidase Inhibitory Phenolic Compounds from the Seed of Psoralea Corylifolia. Food Chem 2010; 121(4): 940-5.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.022]
[153]
Deng C, Hao X, Shi M, et al. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci 2019; 284: 1-8.
[http://dx.doi.org/10.1016/j.plantsci.2019.03.007] [PMID: 31084862]
[154]
Huang Q, Sun M, Yuan T, et al. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem 2019; 274: 368-75.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.119] [PMID: 30372953]
[155]
Sun M, Shi M, Wang Y, et al. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. J Exp Bot 2019; 70(1): 243-54.
[http://dx.doi.org/10.1093/jxb/ery349] [PMID: 30299490]
[156]
Zhou L, Chow M, Zuo Z. Improved quality control method for Danshen products-consideration of both hydrophilic and lipophilic active components. J Pharm Biomed Anal 2006; 41(3): 744-50.
[http://dx.doi.org/10.1016/j.jpba.2005.12.032] [PMID: 16458472]
[157]
Zhou L, Zuo Z, Chow MSS. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 2005; 45(12): 1345-59.
[http://dx.doi.org/10.1177/0091270005282630] [PMID: 16291709]
[158]
Wan Z, Lu Y, Liao Q, Wu Y, Chen X. Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with gp160 proteolytic processing. PLoS One 2012; 7(6)e39225
[http://dx.doi.org/10.1371/journal.pone.0039225] [PMID: 22720080]
[159]
Baba M, Okamoto M, Kashiwaba N, Ono M. Anti-HIV-1 activity and structure-activity relationship of cepharanoline derivatives in chronically infected cells. Antivir Chem Chemother 2001; 12(5): 307-12.
[http://dx.doi.org/10.1177/095632020101200506] [PMID: 11900350]
[160]
Liu X, Wang Y, Zhang M, Li G, Cen Y. [Study on the inhibitory effect of cepharanthine on herpes simplex type-1 virus (HSV-1) in vitro]. Zhong Yao Cai 2004; 27(2): 107-10. [Study on the Inhibitory Effect of Cepharanthine on Herpes Simplex Type-1 Virus (HSV-1) in Vitro]..
[PMID: 22454997]
[161]
Gu W, Wang W, Li XN, et al. A novel isocoumarin with anti-influenza virus activity from Strobilanthes cusia. Fitoterapia 2015; 107: 60-2.
[http://dx.doi.org/10.1016/j.fitote.2015.10.009] [PMID: 26506123]
[162]
Jin-Shuang M, Brach AR, Liu Q-R. A Revision of the Genus Tripterygium (Celastraceae). Edinb J Bot 1999; 56(1): 33-46.
[http://dx.doi.org/10.1017/S096042860000233X]
[163]
Kim DH, Shin EK, Kim YH, et al. Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii. Eur J Clin Invest 2009; 39(9): 819-27.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02186.x] [PMID: 19549173]
[164]
Byun JY, Kim MJ, Eum DY, et al. Reactive oxygen species-dependent activation of Bax and poly(ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol Pharmacol 2009; 76(4): 734-44.
[http://dx.doi.org/10.1124/mol.109.056259] [PMID: 19574249]
[165]
Chen J, Liu X, Li Z, et al. A Review of Dietary Ziziphus jujuba Fruit (Jujube): Developing Health Food Supplements for Brain Protection. Evid Based Complement Alternat Med 2017.20173019568
[http://dx.doi.org/10.1155/2017/3019568] [PMID: 28680447]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy