Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Development and Biocompatibility Analysis of NBD Peptide Sustained- Release Microsphere Scaffold Nanoparticle SP-Sr-CaS/NBD

Author(s): Xue Li, Lei Wang, Changbing Wang, Caixia Tan, Xifaofang Liu and Yongzhan Zhu*

Volume 18, Issue 4, 2021

Published on: 16 November, 2020

Page: [433 - 445] Pages: 13

DOI: 10.2174/1567201817999201116154935

Price: $65

Abstract

Background: In clinical treatment, it is difficult to carry out effective bone tissue transplantation and anti-inflammatory treatment at the same time due to bone defects and osteomyelitis where the tissue is contaminated or infected. As a downstream target of TNF-α, NF-κB has an inhibition effect on the proliferation and differentiation of cells surrounding the lesion. As a negative effect, it leads to a reduction in bone growth and development.

Methods: In this study, the small molecule NBD polypeptide and bone conduction matrix Sr-CaS are microspheres, formed to prepare Sr-CaS, NBD drug-loaded sustained-release microspheres in order to achieve a Sr-CaS/NBD peptide drug-loaded sustained release microsphere scaffold material (SP-Sr-CaS/NBD). We prepared the microspheres and optimized the production process to obtain particles with stable morphological properties and sustained release properties.

Result: In vitro experiments demonstrated that SP-Sr-CaS/NBD could reduce TNF-α-induced cell growth inhibition, caspase-3 activity and NF-κB transcriptional activation as the function of continuous NBD peptide dosing regimen.

Conclusion: Also, the introduction of the Sr-CaS matrix potentiates microspheres to promote cell proliferation and provides a basis to become a promising 3D bone scaffold material in the future.

Keywords: NBD, PLGA, calcium sulfate, osteomyelitis, microsphere, scaffold materials.

Graphical Abstract
[1]
Venkatesh, M.P.; Kumar, T.M.; Avinash, B.S.; Kumar, G.S. Development, in vitro and in vivo evaluation of novel injectable smart gels of azithromycin for chronic periodontitis. Curr. Drug Deliv., 2013, 10(2), 188-197.
[http://dx.doi.org/10.2174/1567201811310020005] [PMID: 23003342]
[2]
Radin, S.; El-Bassyouni, G.; Vresilovic, E.J.; Schepers, E.; Ducheyne, P. In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials, 2005, 26(9), 1043-1052.
[http://dx.doi.org/10.1016/j.biomaterials.2004.04.004] [PMID: 15369693]
[3]
Korkusuz, F.; Korkusuz, P.; Ekşioĝlu, F.; Gürsel, I.; Hasirci, V. In vivo response to biodegradable controlled antibiotic release systems. J. Biomed. Mater. Res., 2001, 55(2), 217-228.
[http://dx.doi.org/10.1002/1097-4636(200105)55:2<217::AID-JBM1008>3.0.CO;2-Y] [PMID: 11255173]
[4]
Cote, S.M.; Gilmore, T.D.; Shaffer, R.; Weber, U.; Bollam, R.; Golden, M.S.; Glover, K.; Herscovitch, M.; Ennis, T.; Allen, K.N.; Whitty, A. Mutation of nonessential cysteines shows that the NF-κB essential modulator forms a constitutive noncovalent dimer that binds IκB kinase-β with high affinity. Biochemistry, 2013, 52(51), 9141-9154.
[http://dx.doi.org/10.1021/bi401368r] [PMID: 24266532]
[5]
Pizzi, M.; Sarnico, I.; Lanzillotta, A.; Battistin, L.; Spano, P. Post-ischemic brain damage: NF-kappaB dimer heterogeneity as a molecular determinant of neuron vulnerability. FEBS J., 2009, 276(1), 27-35.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06767.x] [PMID: 19087197]
[6]
May, M.J.; D’Acquisto, F.; Madge, L.A.; Glöckner, J.; Pober, J.S.; Ghosh, S. Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science, 2000, 289(5484), 1550-1554.
[http://dx.doi.org/10.1126/science.289.5484.1550] [PMID: 10968790]
[7]
Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[8]
Houchin, M.L.; Topp, E.M. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J. Pharm. Sci., 2008, 97(7), 2395-2404.
[http://dx.doi.org/10.1002/jps.21176] [PMID: 17828756]
[9]
He, X.; Dziak, R.; Mao, K.; Genco, R.; Swihart, M.; Li, C.; Yang, S. Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration. Tissue Eng. Part A, 2013, 19(3-4), 508-518.
[http://dx.doi.org/10.1089/ten.tea.2012.0244] [PMID: 22994418]
[10]
Huang, G.; Li, F.; Zhao, X.; Ma, Y.; Li, Y.; Lin, M.; Jin, G.; Lu, T.J.; Genin, G.M.; Xu, F. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev., 2017, 117(20), 12764-12850.
[http://dx.doi.org/10.1021/acs.chemrev.7b00094] [PMID: 28991456]
[11]
Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng., 2018, 9, 2041731418776819.
[http://dx.doi.org/10.1177/2041731418776819] [PMID: 29899969]
[12]
Pförringer, D.; Obermeier, A.; Kiokekli, M.; Büchner, H.; Vogt, S.; Stemberger, A.; Burgkart, R.; Lucke, M. Antimicrobial formulations of absorbable bone substitute materials as drug carriers based on calcium sulfate. Antimicrob. Agents Chemother., 2016, 60(7), 3897-3905.
[http://dx.doi.org/10.1128/AAC.00080-16] [PMID: 27067337]
[13]
Fu, Y.C.; Wang, Y.H.; Chen, C.H.; Wang, C.K.; Wang, G.J.; Ho, M.L. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects. Int. J. Nanomedicine, 2015, 10, 7231-7240.
[http://dx.doi.org/10.2147/IJN.S88134] [PMID: 26664114]
[14]
Campana, V.; Milano, G.; Pagano, E.; Barba, M.; Cicione, C.; Salonna, G.; Lattanzi, W.; Logroscino, G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. Mater. Med., 2014, 25(10), 2445-2461.
[http://dx.doi.org/10.1007/s10856-014-5240-2] [PMID: 24865980]
[15]
Babu, A.; Amreddy, N.; Muralidharan, R.; Pathuri, G.; Gali, H.; Chen, A.; Zhao, Y.D.; Munshi, A.; Ramesh, R. Chemodrug delivery using integrin-targeted PLGA-chitosan nanoparticle for lung cancer therapy. Sci. Rep., 2017, 7(1), 14674.
[http://dx.doi.org/10.1038/s41598-017-15012-5] [PMID: 29116098]
[16]
Mantripragada, V.P.; Lecka-Czernik, B.; Ebraheim, N.A.; Jayasuriya, A.C. An overview of recent advances in designing orthopedic and craniofacial implants. J. Biomed. Mater. Res. A, 2013, 101(11), 3349-3364.
[http://dx.doi.org/10.1002/jbm.a.34605] [PMID: 23766134]
[17]
Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci., 2014, 15(3), 3640-3659.
[http://dx.doi.org/10.3390/ijms15033640] [PMID: 24590126]
[18]
Bhattarai, D.P.; Aguilar, L.E.; Park, C.H.; Kim, C.S. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes (Basel), 2018, 8(3), E62.
[http://dx.doi.org/10.3390/membranes8030062] [PMID: 30110968]
[19]
Dai, S.; Hirayama, T.; Abbas, S.; Abu-Amer, Y. The IkappaB Kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J. Biol. Chem., 2004, 279(36), 37219-37222.
[http://dx.doi.org/10.1074/jbc.C400258200] [PMID: 15252035]
[20]
Li, X.; Xu, C.P.; Hou, Y.L.; Song, J.Q.; Cui, Z.; Wang, S.N.; Huang, L.; Zhou, C.R.; Yu, B. A novel resorbable strontium-containing α-calcium sulfate hemihydrate bone substitute: a preparation and preliminary study. Biomed. Mater., 2014, 9(4), 045010.
[http://dx.doi.org/10.1088/1748-6041/9/4/045010] [PMID: 25028797]
[21]
Yang, Y.Y.; Chia, H.H.; Chung, T.S. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J. Control. Release, 2000, 69(1), 81-96.
[http://dx.doi.org/10.1016/S0168-3659(00)00291-1] [PMID: 11018548]
[22]
Sutherland, A.J.; Detamore, M.S. Bioactive microsphere-based scaffolds containing decellularized cartilage. Macromol. Biosci., 2015, 15(7), 979-989.
[http://dx.doi.org/10.1002/mabi.201400472] [PMID: 25821206]
[23]
Zhou, Z.; Yao, Q.; Li, L.; Zhang, X.; Wei, B.; Yuan, L.; Wang, L. Antimicrobial activity of 3D-printed Poly(ε-Caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded Polylactic Acid-Glycolic Acid (PLGA) microspheres. Med. Sci. Monit., 2018, 24, 6934-6945.
[http://dx.doi.org/10.12659/MSM.911770] [PMID: 30269152]
[24]
Xu, C.P.; Qi, Y.; Cui, Z.; Yang, Y.J.; Wang, J.; Hu, Y.J.; Yu, B.; Wang, F.Z.; Yang, Q.P.; Sun, H.T. Discovery of novel elongator protein 2 inhibitors by compound library screening using surface plasmon resonance. RSC Adv., 2019, 9, 1696-1704.
[25]
Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N.Jr. Statistical analysis of real-time PCR data. BMC Bioinformat., 2006, 7, 85.
[http://dx.doi.org/10.1186/1471-2105-7-85] [PMID: 16504059]
[26]
Chen, Y.; Lu, R.; Zheng, H.; Xiao, R.; Feng, J.; Wang, H.; Gao, X.; Guo, L. The NFKB1 polymorphism (rs4648068) is associated with the cell proliferation and motility in gastric cancer. BMC Gastroenterol., 2015, 15, 21.
[http://dx.doi.org/10.1186/s12876-015-0243-0] [PMID: 25888547]
[27]
Wolters, J.R.; Verweij, J.E.; Avvisati, G.; Dijkstra, M.; Kegel, W.K. Depletion-induced encapsulation by dumbbell-shaped patchy colloids stabilize microspheres against aggregation. Langmuir, 2017, 33(13), 3270-3280.
[http://dx.doi.org/10.1021/acs.langmuir.7b00014] [PMID: 28272895]
[28]
Jiang, C.; Kuang, L.; Merkel, M.P.; Yue, F.; Cano-Vega, M.A.; Narayanan, N.; Kuang, S.; Deng, M. Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat. Front. Endocrinol. (Lausanne), 2015, 6, 169.
[http://dx.doi.org/10.3389/fendo.2015.00169] [PMID: 26617571]
[29]
Beardmore, A.A.; Brooks, D.E.; Wenke, J.C.; Thomas, D.B. Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. J. Bone Joint Surg. Am., 2005, 87(1), 107-112.
[http://dx.doi.org/10.2106/00004623-200501000-00015] [PMID: 15634820]
[30]
Shen, X.; Li, T.; Chen, Z.; Geng, Y.; Xie, X.; Li, S.; Yang, H.; Wu, C.; Liu, Y. Luminescent/magnetic PLGA-based hybrid nanocomposites: a smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics. Int. J. Nanomedicine, 2017, 12, 4299-4322.
[http://dx.doi.org/10.2147/IJN.S136766] [PMID: 28652734]
[31]
Siddharth, S.; Nayak, A.; Nayak, D.; Bindhani, B.K.; Kundu, C.N. Chitosan-dextran sulfate coated doxorubicin loaded PLGA-PVA- nanoparticles caused apoptosis in doxorubicin resistance breast cancer cells through induction of DNA damage. Sci. Rep., 2017, 7(1), 2143.
[http://dx.doi.org/10.1038/s41598-017-02134-z] [PMID: 28526868]
[32]
Xi, J.; Da, L.; Yang, C.; Chen, R.; Gao, L.; Fan, L.; Han, J. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. Int. J. Nanomedicine, 2017, 12, 3331-3345.
[http://dx.doi.org/10.2147/IJN.S132270] [PMID: 28479854]
[33]
Gossmann, R.; Langer, K.; Mulac, D. New perspective in the formulation and characterization of Didodecyldimethylammonium Bromide (DMAB) stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) nanoparticles. PLoS One, 2015, 10(7), e0127532.
[http://dx.doi.org/10.1371/journal.pone.0127532] [PMID: 26147338]
[34]
Liu, R.; Wang, Y.; Li, X.; Bao, W.; Xia, G.; Chen, W.; Cheng, J.; Xu, Y.; Guo, L.; Chen, B. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin. Drug Des. Devel. Ther., 2015, 9, 2705-2719.
[http://dx.doi.org/10.2147/DDDT.S80948] [PMID: 26045659]
[35]
Chen, Y.; Zhou, Y.; Yang, S.; Li, J.J.; Li, X.; Ma, Y.; Hou, Y.; Jiang, N.; Xu, C.; Zhang, S.; Zeng, R.; Tu, M.; Yu, B. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: fabrication, characterisation and evaluation of biocompatibility. Mater. Sci. Eng. C, 2016, 66, 84-91.
[http://dx.doi.org/10.1016/j.msec.2016.04.070] [PMID: 27207041]
[36]
Shive, M.S.; Anderson, J.M. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev., 1997, 28(1), 5-24.
[http://dx.doi.org/10.1016/S0169-409X(97)00048-3] [PMID: 10837562]
[37]
Beuerlein, M.J.; McKee, M.D. Calcium sulfates: what is the evidence? J. Orthop. Trauma, 2010, 24(Suppl. 1), S46-S51.
[http://dx.doi.org/10.1097/BOT.0b013e3181cec48e] [PMID: 20182236]
[38]
Walsh, W.R.; Morberg, P.; Yu, Y.; Yang, J.L.; Haggard, W.; Sheath, P.C.; Svehla, M.; Bruce, W.J. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin. Orthop. Relat. Res., 2003, 406, 228-236.
[http://dx.doi.org/10.1097/00003086-200301000-00033] [PMID: 12579023]
[39]
Peltier, L.F. The use of plaster of Paris to fill large defects in bone: a preliminary report. 1959. Clin. Orthop. Relat. Res., 2001, 382, 3-5.
[http://dx.doi.org/10.1097/00003086-200101000-00002] [PMID: 11154001]
[40]
Blaha, J.D. Calcium sulfate bone-void filler. Orthopedics, 1998, 21(9), 1017-1019.
[PMID: 9769049]
[41]
Marie, P.J.; Felsenberg, D.; Brandi, M.L. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos. Int., 2011, 22(6), 1659-1667.
[http://dx.doi.org/10.1007/s00198-010-1369-0] [PMID: 20812008]
[42]
Peng, S.; Zhou, G.; Luk, K.D.; Cheung, K.M.; Li, Z.; Lam, W.M.; Zhou, Z.; Lu, W.W. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell. Physiol. Biochem., 2009, 23(1-3), 165-174.
[http://dx.doi.org/10.1159/000204105] [PMID: 19255511]
[43]
Sun, X.; Su, W.; Ma, X.; Zhang, H.; Sun, Z.; Li, X. Comparison of the osteogenic capability of rat bone mesenchymal stem cells on collagen, collagen/hydroxyapatite, hydroxyapatite and biphasic calcium phosphate. Regen. Biomater., 2018, 5(2), 93-103.
[http://dx.doi.org/10.1093/rb/rbx018] [PMID: 29644091]
[44]
Siddiqi, M.H.; Siddiqi, M.Z.; Ahn, S.; Kang, S.; Kim, Y.J.; Sathishkumar, N.; Yang, D.U.; Yang, D.C. Ginseng saponins and the treatment of osteoporosis: mini literature review. J. Ginseng Res., 2013, 37(3), 261-268.
[http://dx.doi.org/10.5142/jgr.2013.37.261] [PMID: 24198650]
[45]
Kanazawa, I.; Yamaguchi, T.; Yano, S.; Yamauchi, M.; Yamamoto, M.; Sugimoto, T. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol., 2007, 8, 51.
[http://dx.doi.org/10.1186/1471-2121-8-51] [PMID: 18047638]
[46]
Shiraga, H.; Min, W.; VanDusen, W.J.; Clayman, M.D.; Miner, D.; Terrell, C.H.; Sherbotie, J.R.; Foreman, J.W.; Przysiecki, C.; Neilson, E.G. Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc. Natl. Acad. Sci. USA, 1992, 89(1), 426-430.
[http://dx.doi.org/10.1073/pnas.89.1.426] [PMID: 1729712]
[47]
Young, M.F.; Kerr, J.M.; Termine, J.D.; Wewer, U.M.; Wang, M.G.; McBride, O.W.; Fisher, L.W. cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human Osteopontin (OPN). Genomics, 1990, 7(4), 491-502.
[http://dx.doi.org/10.1016/0888-7543(90)90191-V] [PMID: 1974876]
[48]
Kiefer, M.C.; Bauer, D.M.; Barr, P.J. The cDNA and derived amino acid sequence for human osteopontin. Nucleic Acids Res., 1989, 17(8), 3306.
[http://dx.doi.org/10.1093/nar/17.8.3306] [PMID: 2726470]
[49]
Lankat-Buttgereit, B.; Mann, K.; Deutzmann, R.; Timpl, R.; Krieg, T. Cloning and complete amino acid sequences of human and murine basement membrane protein BM-40 (SPARC, osteonectin). FEBS Lett., 1988, 236(2), 352-356.
[http://dx.doi.org/10.1016/0014-5793(88)80054-1] [PMID: 3410046]
[50]
Swaroop, A.; Hogan, B.L.; Francke, U. Molecular analysis of the cDNA for human SPARC/osteonectin/BM-40: sequence, expression, and localization of the gene to chromosome 5q31-q33. Genomics, 1988, 2(1), 37-47.
[http://dx.doi.org/10.1016/0888-7543(88)90107-3] [PMID: 2838412]
[51]
Hillier, L.W.; Graves, T.A.; Fulton, R.S.; Fulton, L.A.; Pepin, K.H.; Minx, P.; Wagner-McPherson, C.; Layman, D.; Wylie, K.; Sekhon, M.; Becker, M.C.; Fewell, G.A.; Delehaunty, K.D.; Miner, T.L.; Nash, W.E.; Kremitzki, C.; Oddy, L.; Du, H.; Sun, H.; Bradshaw-Cordum, H.; Ali, J.; Carter, J.; Cordes, M.; Harris, A.; Isak, A.; van Brunt, A.; Nguyen, C.; Du, F.; Courtney, L.; Kalicki, J.; Ozersky, P.; Abbott, S.; Armstrong, J.; Belter, E.A.; Caruso, L.; Cedroni, M.; Cotton, M.; Davidson, T.; Desai, A.; Elliott, G.; Erb, T.; Fronick, C.; Gaige, T.; Haakenson, W.; Haglund, K.; Holmes, A.; Harkins, R.; Kim, K.; Kruchowski, S.S.; Strong, C.M.; Grewal, N.; Goyea, E.; Hou, S.; Levy, A.; Martinka, S.; Mead, K.; McLellan, M.D.; Meyer, R.; Randall-Maher, J.; Tomlinson, C.; Dauphin-Kohlberg, S.; Kozlowicz-Reilly, A.; Shah, N.; Swearengen-Shahid, S.; Snider, J.; Strong, J.T.; Thompson, J.; Yoakum, M.; Leonard, S.; Pearman, C.; Trani, L.; Radionenko, M.; Waligorski, J.E.; Wang, C.; Rock, S.M.; Tin-Wollam, A.M.; Maupin, R.; Latreille, P.; Wendl, M.C.; Yang, S.P.; Pohl, C.; Wallis, J.W.; Spieth, J.; Bieri, T.A.; Berkowicz, N.; Nelson, J.O.; Osborne, J.; Ding, L.; Meyer, R.; Sabo, A.; Shotland, Y.; Sinha, P.; Wohldmann, P.E.; Cook, L.L.; Hickenbotham, M.T.; Eldred, J.; Williams, D.; Jones, T.A.; She, X.; Ciccarelli, F.D.; Izaurralde, E.; Taylor, J.; Schmutz, J.; Myers, R.M.; Cox, D.R.; Huang, X.; McPherson, J.D.; Mardis, E.R.; Clifton, S.W.; Warren, W.C.; Chinwalla, A.T.; Eddy, S.R.; Marra, M.A.; Ovcharenko, I.; Furey, T.S.; Miller, W.; Eichler, E.E.; Bork, P.; Suyama, M.; Torrents, D.; Waterston, R.H.; Wilson, R.K. Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature, 2005, 434(7034), 724-731.
[http://dx.doi.org/10.1038/nature03466] [PMID: 15815621]
[52]
Gu, K.; Chang, S.; Ritchie, H.H.; Clarkson, B.H.; Rutherford, R.B. Molecular cloning of a human dentin sialophosphoprotein gene. Eur. J. Oral Sci., 2000, 108(1), 35-42.
[http://dx.doi.org/10.1034/j.1600-0722.2000.00765.x] [PMID: 10706475]
[53]
Wang, S.; Wang, Q.; Crute, B.E.; Melnikova, I.N.; Keller, S.R.; Speck, N.A. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol. Cell. Biol., 1993, 13(6), 3324-3339.
[http://dx.doi.org/10.1128/MCB.13.6.3324] [PMID: 8497254]
[54]
Ogawa, E.; Inuzuka, M.; Maruyama, M.; Satake, M.; Naito-Fujimoto, M.; Ito, Y.; Shigesada, K. Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology, 1993, 194(1), 314-331.
[http://dx.doi.org/10.1006/viro.1993.1262] [PMID: 8386878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy