Diagnosis and Management of Endocrine Hypertension in Children and Adolescents

Author(s): Eleni P. Kotanidou, Styliani Giza, Vasiliki-Regina Tsinopoulou, Maria Vogiatzi, Assimina Galli-Tsinopoulou*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 43 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Hypertension in childhood and adolescence has increased in prevalence. Interest in the disease was raised after the 2017 clinical practice guidelines of the American Academy of Paediatrics on the definition and classification of paediatric hypertension. Among the secondary causes of paediatric hypertension, endocrine causes are relatively rare but important due to their unique treatment options. Excess of catecholamine, glucocorticoids and mineralocorticoids, congenital adrenal hyperplasia, hyperaldosteronism, hyperthyroidism and other rare syndromes with specific genetic defects are endocrine disorders leading to paediatric and adolescent hypertension. Adipose tissue is currently considered the major endocrine gland. Obesity-related hypertension constitutes a distinct clinical entity leading to an endocrine disorder. The dramatic increase in the rates of obesity during childhood has resulted in a rise in obesity-related hypertension among children, leading to increased cardiovascular risk and associated increased morbidity and mortality. This review presents an overview of pathophysiology and diagnosis of hypertension resulting from hormonal excess, as well as obesity-related hypertension during childhood and adolescence, with a special focus on management.

Keywords: Endocrine hypertension, paediatric, adolescents, obesity, adipose tissue, endocrine disorder.

[1]
Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 2017; 140(6): e20173035.
[http://dx.doi.org/10.1542/peds.2017-1904] [PMID: 29192011]
[2]
Gupta-Malhotra M, Banker A, Shete S, et al. Essential hypertension vs. secondary hypertension among children. Am J Hypertens 2015; 28(1): 73-80.
[http://dx.doi.org/10.1093/ajh/hpu083] [PMID: 24842390]
[3]
Gomes RS, Quirino IG, Pereira RM, et al. Primary versus secondary hypertension in children followed up at an outpatient tertiary unit. Pediatr Nephrol 2011; 26(3): 441-7.
[http://dx.doi.org/10.1007/s00467-010-1712-x] [PMID: 21174218]
[4]
Flynn J, Zhang Y, Solar-Yohay S, Shi V. Clinical and demographic characteristics of children with hypertension. Hypertension 2012; 60(4): 1047-54.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.197525] [PMID: 22892814]
[5]
Pons Fernández N, Moreno F, Morata J, et al. Familial hyperaldosteronism type III a novel case and review of literature. Rev Endocr Metab Disord 2019; 20(1): 27-36.
[http://dx.doi.org/10.1007/s11154-018-9481-0] [PMID: 30569443]
[6]
Raina R, Krishnappa V, Das A, et al. Overview of Monogenic or Mendelian Forms of Hypertension. Front Pediatr 2019; 7: 263.
[http://dx.doi.org/10.3389/fped.2019.00263] [PMID: 31312622]
[7]
Dörr HG, Wollmann HA, Hauffa BP, Woelfle J. German Society of Pediatric Endocrinology and Diabetology. Mortality in children with classic congenital adrenal hyperplasia and 21-hydroxylase deficiency (CAH) in Germany. BMC Endocr Disord 2018; 18(1): 37.
[http://dx.doi.org/10.1186/s12902-018-0263-1] [PMID: 29884168]
[8]
Stratakis CA. Cushing syndrome in pediatrics. Endocrinol Metab Clin North Am 2012; 41(4): 793-803.
[http://dx.doi.org/10.1016/j.ecl.2012.08.002] [PMID: 23099271]
[9]
Romero M, Kapur G, Baracco R, Valentini RP, Mattoo TK, Jain A. Treatment of hypertension in children with catecholamine-secreting tumors: a systematic approach. J Clin Hypertens (Greenwich) 2015; 17(9): 720-5.
[http://dx.doi.org/10.1111/jch.12571] [PMID: 26010736]
[10]
Garnier S, Réguerre Y, Orbach D, Brugières L, Kalfa N. Pediatric pheochromocytoma and paraganglioma: an update. Bull Cancer 2014; 101(10): 966-75.
[http://dx.doi.org/10.1684/bdc.2014.2031] [PMID: 25373696]
[11]
Hanley P, Lord K, Bauer AJ. Thyroid Disorders in Children and Adolescents: A Review. JAMA Pediatr 2016; 170(10): 1008-19.
[http://dx.doi.org/10.1001/jamapediatrics.2016.0486] [PMID: 27571216]
[12]
Cheung PC, Cunningham SA, Narayan KM, Kramer MR. Childhood Obesity Incidence in the United States: A Systematic Review. Child Obes 2016; 12(1): 1-11.
[http://dx.doi.org/10.1089/chi.2015.0055] [PMID: 26618249]
[13]
Baracco R, Kapur G, Mattoo T, et al. Prediction of primary vs secondary hypertension in children. J Clin Hypertens (Greenwich) 2012; 14(5): 316-21.
[http://dx.doi.org/10.1111/j.1751-7176.2012.00603.x] [PMID: 22533658]
[14]
Nguyen T, Lau DC. The obesity epidemic and its impact on hypertension. Can J Cardiol 2012; 28(3): 326-33.
[http://dx.doi.org/10.1016/j.cjca.2012.01.001] [PMID: 22595448]
[15]
Flynn J. The changing face of pediatric hypertension in the era of the childhood obesity epidemic. Pediatr Nephrol 2013; 28(7): 1059-66.
[http://dx.doi.org/10.1007/s00467-012-2344-0] [PMID: 23138756]
[16]
Flynn JT, Alderman MH. Characteristics of children with primary hypertension seen at a referral center. Pediatr Nephrol 2005; 20(7): 961-6.
[http://dx.doi.org/10.1007/s00467-005-1855-3] [PMID: 15864653]
[17]
Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol (Oxf) 2007; 66(5): 607-18.
[http://dx.doi.org/10.1111/j.1365-2265.2007.02775.x] [PMID: 17492946]
[18]
Thomas RM, Ruel E, Shantavasinkul PC, Corsino L. Endocrine hypertension: An overview on the current etiopathogenesis and management options. World J Hypertens 2015; 5(2): 14-27.
[http://dx.doi.org/10.5494/wjh.v5.i2.14] [PMID: 26413481]
[19]
Gaddam K, Corros C, Pimenta E, et al. Rapid reversal of left ventricular hypertrophy and intracardiac volume overload in patients with resistant hypertension and hyperaldosteronism: a prospective clinical study. Hypertension 2010; 55(5): 1137-42.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.141531] [PMID: 20351345]
[20]
Baguet JP, Steichen O, Mounier-Véhier C, Gosse P. SFE/SFHTA/AFCE consensus on primary aldosteronism, part 1: Epidemiology of PA, who should be screened for sporadic PA? Ann Endocrinol (Paris) 2016; 77(3): 187-91.
[http://dx.doi.org/10.1016/j.ando.2016.01.006] [PMID: 27087531]
[21]
Li X, Goswami R, Yang S, Li Q. Aldosterone/direct renin concentration ratio as a screening test for primary aldosteronism: A meta-analysis. J Renin Angiotensin Aldosterone Syst 2016; 17(3): 1470320316657450.
[http://dx.doi.org/10.1177/1470320316657450] [PMID: 27534428]
[22]
Reznik Y, Amar L, Tabarin A. SFE/SFHTA/AFCE consensus on primary aldosteronism, part 3: Confirmatory testing. Ann Endocrinol (Paris) 2016; 77(3): 202-7.
[http://dx.doi.org/10.1016/j.ando.2016.01.007] [PMID: 27318644]
[23]
Wu S, Yang J, Hu J, et al. Confirmatory tests for the diagnosis of primary aldosteronism: A systematic review and meta-analysis. Clin Endocrinol (Oxf) 2019; 90(5): 641-8.
[http://dx.doi.org/10.1111/cen.13943] [PMID: 30721529]
[24]
Bardet S, Chamontin B, Douillard C, et al. SFE/SFHTA/AFCE consensus on primary aldosteronism, part 4: Subtype diagnosis. Ann Endocrinol (Paris) 2016; 77(3): 208-13.
[http://dx.doi.org/10.1016/j.ando.2016.01.008] [PMID: 27036860]
[25]
ElHaddad A, Castellani C, Sorantin E, et al. Minimally Invasive Surgery for Pediatric Adrenal Masses-Report on Four Cases. European J Pediatr Surg Rep 2019; 7(1): e75-8.
[http://dx.doi.org/10.1055/s-0039-1694058] [PMID: 31681529]
[26]
Steichen O, Amar L, Chaffanjon P, Kraimps JL, Ménégaux F, Zinzindohoue F. SFE/SFHTA/AFCE consensus on primary aldosteronism, part 6: Adrenal surgery. Ann Endocrinol (Paris) 2016; 77(3): 220-5.
[http://dx.doi.org/10.1016/j.ando.2016.01.009] [PMID: 27297451]
[27]
Pechère-Bertschi A, Herpin D, Lefebvre H. SFE/SFHTA/AFCE consensus on primary aldosteronism, part 7: Medical treatment of primary aldosteronism. Ann Endocrinol (Paris) 2016; 77(3): 226-34.
[http://dx.doi.org/10.1016/j.ando.2016.01.010] [PMID: 27315759]
[28]
Quack I, Vonend O, Rump LC. Familial hyperaldosteronism I-III. Horm Metab Res 2010; 42(6): 424-8.
[http://dx.doi.org/10.1055/s-0029-1246187] [PMID: 20131203]
[29]
Dluhy RG, Anderson B, Harlin B, Ingelfinger J, Lifton R. Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J Pediatr 2001; 138(5): 715-20.
[http://dx.doi.org/10.1067/mpd.2001.112648] [PMID: 11343049]
[30]
Stowasser M, Gordon RD. Primary aldosteronism: learning from the study of familial varieties. J Hypertens 2000; 18(9): 1165-76.
[http://dx.doi.org/10.1097/00004872-200018090-00002] [PMID: 10994747]
[31]
Zennaro MC, Jeunemaitre X. SFE/SFHTA/AFCE consensus on primary aldosteronism, part 5: Genetic diagnosis of primary aldosteronism. Ann Endocrinol (Paris) 2016; 77(3): 214-9.
[http://dx.doi.org/10.1016/j.ando.2016.02.006] [PMID: 27315758]
[32]
Litchfield WR, Anderson BF, Weiss RJ, Lifton RP, Dluhy RG. Intracranial aneurysm and hemorrhagic stroke in glucocorticoid-remediable aldosteronism. Hypertension 1998; 31(1 Pt 2): 445-50.
[http://dx.doi.org/10.1161/01.HYP.31.1.445] [PMID: 9453343]
[33]
Stowasser M, Sharman J, Leano R, et al. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab 2005; 90(9): 5070-6.
[http://dx.doi.org/10.1210/jc.2005-0681] [PMID: 15941863]
[34]
Funder JW, Carey RM, Mantero F, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2016; 101(5): 1889-916.
[http://dx.doi.org/10.1210/jc.2015-4061] [PMID: 26934393]
[35]
Nimkarn S, New M. Endocrine Hypertension in Childhood. Endotext [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK279110/
[36]
Kamboj M, Gupta V, Torres A, Patel DR. Endocrine causes of systemic hypertension in children and adolescents: a clinical review. Pediatric Health Med Ther 2011; 2: 39-47.
[37]
Mulatero P, Williams TA, Monticone S, Veglio F. Is familial hyperaldosteronism underdiagnosed in hypertensive children? Hypertension 2011; 57(6): 1053-5.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.172916] [PMID: 21502569]
[38]
Stowasser M, Gordon RD. Familial hyperaldosteronism. J Steroid Biochem Mol Biol 2001; 78(3): 215-29.
[http://dx.doi.org/10.1016/S0960-0760(01)00097-8] [PMID: 11595502]
[39]
Pallauf A, Schirpenbach C, Zwermann O, et al. The prevalence of familial hyperaldosteronism in apparently sporadic primary aldosteronism in Germany: a single center experience. Horm Metab Res 2012; 44(3): 215-20.
[http://dx.doi.org/10.1055/s-0031-1299730] [PMID: 22274719]
[40]
Stowasser M. Update in primary aldosteronism. J Clin Endocrinol Metab 2009; 94(10): 3623-30.
[http://dx.doi.org/10.1210/jc.2009-1399] [PMID: 19737921]
[41]
Scholl UI, Stölting G, Schewe J, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 2018; 50(3): 349-54.
[http://dx.doi.org/10.1038/s41588-018-0048-5] [PMID: 29403011]
[42]
Perez-Rivas LG, Williams TA, Reincke M. Inherited Forms of Primary Hyperaldosteronism: New Genes, New Phenotypes and Proposition of A New Classification. Exp Clin Endocrinol Diabetes 2019; 127(2-03): 93-9.
[http://dx.doi.org/10.1055/a-0713-0629] [PMID: 30199917]
[43]
De Sousa K, Abdellatif AB, El Zein RM, Zennaro MC. Molecular mechanisms in primary aldosteronism. J Mol Endocrinol 2019; 242(3): R67-79.
[PMID: 31397984]
[44]
Hassan-Smith Z, Stewart PM. Inherited forms of mineralocorticoid hypertension. Curr Opin Endocrinol Diabetes Obes 2011; 18(3): 177-85.
[http://dx.doi.org/10.1097/MED.0b013e3283469444] [PMID: 21494136]
[45]
Geller DS, Zhang J, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab 2008; 93(8): 3117-23.
[http://dx.doi.org/10.1210/jc.2008-0594] [PMID: 18505761]
[46]
Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011; 331(6018): 768-72.
[http://dx.doi.org/10.1126/science.1198785] [PMID: 21311022]
[47]
Monticone S, Tetti M, Burrello J, et al. Familial hyperaldosteronism type III. J Hum Hypertens 2017; 31(12): 776-81.
[http://dx.doi.org/10.1038/jhh.2017.34] [PMID: 28447626]
[48]
Scholl UI, Stölting G, Nelson-Williams C, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. eLife 2015; 4: e06315.
[http://dx.doi.org/10.7554/eLife.06315] [PMID: 25907736]
[49]
Monticone S, Buffolo F, Tetti M, Veglio F, Pasini B, Mulatero P. GENETICS IN ENDOCRINOLOGY: The expanding genetic horizon of primary aldosteronism. Eur J Endocrinol 2018; 178(3): R101-11.
[http://dx.doi.org/10.1530/EJE-17-0946] [PMID: 29348113]
[50]
Palermo M, Quinkler M, Stewart PM. Apparent mineralocorticoid excess syndrome: an overview. Arq Bras Endocrinol Metabol 2004; 48(5): 687-96.
[http://dx.doi.org/10.1590/S0004-27302004000500015] [PMID: 15761540]
[51]
Khattab AM, Shackleton CH, Hughes BA, Bodalia JB, New MI. Remission of hypertension and electrolyte abnormalities following renal transplantation in a patient with apparent mineralocorticoid excess well documented throughout childhood. J Pediatr Endocrinol Metab 2014; 27(1-2): 17-21.
[http://dx.doi.org/10.1515/jpem-2013-0235] [PMID: 23945123]
[52]
Liddle GW, Bledsoe T, Coppage W. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 1963; 76: 199-213.
[53]
Tetti M, Monticone S, Burrello J, et al. Liddle Syndrome: Review of the Literature and Description of a New Case. Int J Mol Sci 2018; 19(3): E812.
[http://dx.doi.org/10.3390/ijms19030812] [PMID: 29534496]
[54]
Gordon RD, Geddes RA, Pawsey CG, O’Halloran MW. Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med 1970; 19(4): 287-94.
[http://dx.doi.org/10.1111/imj.1970.19.4.287] [PMID: 5490655]
[55]
O’Shaughnessy KM. Gordon Syndrome: a continuing story. Pediatr Nephrol 2015; 30(11): 1903-8.
[http://dx.doi.org/10.1007/s00467-014-2956-7] [PMID: 25503323]
[56]
Athimulam S, Lazik N, Bancos I. Low-Renin Hypertension. Endocrinol Metab Clin North Am 2019; 48(4): 701-15.
[http://dx.doi.org/10.1016/j.ecl.2019.08.003] [PMID: 31655771]
[57]
Bhavani N. Pediatric endocrine hypertension. Indian J Endocrinol Metab 2011; 15(Suppl. 4): S361-6.
[http://dx.doi.org/10.4103/2230-8210.86980] [PMID: 22145140]
[58]
Zennaro MC, Boulkroun S, Fernandes-Rosa F. Inherited forms of mineralocorticoid hypertension. Best Pract Res Clin Endocrinol Metab 2015; 29(4): 633-45.
[http://dx.doi.org/10.1016/j.beem.2015.04.010] [PMID: 26303089]
[59]
Geller DS, Rodriguez-Soriano J, Vallo Boado A, et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 1998; 19(3): 279-81.
[http://dx.doi.org/10.1038/966] [PMID: 9662404]
[60]
Rafestin-Oblin ME, Souque A, Bocchi B, Pinon G, Fagart J, Vandewalle A. The severe form of hypertension caused by the activating S810L mutation in the mineralocorticoid receptor is cortisone related. Endocrinology 2003; 144(2): 528-33.
[http://dx.doi.org/10.1210/en.2002-220708] [PMID: 12538613]
[61]
Hurley DM, Accili D, Stratakis CA, et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest 1991; 87(2): 680-6.
[http://dx.doi.org/10.1172/JCI115046] [PMID: 1704018]
[62]
Nicolaides NC, Charmandari E. Chrousos syndrome: from molecular pathogenesis to therapeutic management. Eur J Clin Invest 2015; 45(5): 504-14.
[http://dx.doi.org/10.1111/eci.12426] [PMID: 25715669]
[63]
Bouligand J, Delemer B, Hecart AC, et al. Familial glucocorticoid receptor haploinsufficiency by non-sense mediated mRNA decay, adrenal hyperplasia and apparent mineralocorticoid excess. PLoS One 2010; 5(10): e13563.
[http://dx.doi.org/10.1371/journal.pone.0013563] [PMID: 21042587]
[64]
Hinz L, Pacaud D, Kline G. Congenital adrenal hyperplasia causing hypertension: an illustrative review. J Hum Hypertens 2018; 32(2): 150-7.
[PMID: 29255217]
[65]
El-Maouche D, Arlt W, Merke DP. Congenital adrenal hyperplasia. Lancet 2017; 390(10108): 2194-210.
[PMID: 28576284]
[66]
Magiakou MA, Smyrnaki P, Chrousos GP. Hypertension in Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab 2006; 20(3): 467-82.
[PMID: 16980206]
[67]
Storr HL, Chan LF, Grossman AB, Savage MO. Paediatric Cushing’s syndrome: epidemiology, investigation and therapeutic advances. Trends Endocrinol Metab 2007; 18(4): 167-74.
[http://dx.doi.org/10.1016/j.tem.2007.03.005] [PMID: 17412607]
[68]
Shah NS, Lila A. Childhood Cushing disease: a challenge in diagnosis and management. Horm Res Paediatr 2011; 76(Suppl. 1): 65-70.
[http://dx.doi.org/10.1159/000329173] [PMID: 21778752]
[69]
Güemes M, Murray PG, Brain CE, et al. Management of Cushing syndrome in children and adolescents: experience of a single tertiary centre. Eur J Pediatr 2016; 175(7): 967-76.
[http://dx.doi.org/10.1007/s00431-016-2727-5] [PMID: 27169546]
[70]
Lodish MB, Sinaii N, Patronas N, et al. Blood pressure in pediatric patients with Cushing syndrome. J Clin Endocrinol Metab 2009; 94(6): 2002-8.
[http://dx.doi.org/10.1210/jc.2008-2694] [PMID: 19293264]
[71]
Lodish MB, Keil MF, Stratakis CA. Cushing’s Syndrome in Pediatrics: An Update. Endocrinol Metab Clin North Am 2018; 47(2): 451-62.
[http://dx.doi.org/10.1016/j.ecl.2018.02.008] [PMID: 29754644]
[72]
Tatsi C, Stratakis CA. Neonatal Cushing Syndrome: A rare but potentially devastating disease. Clin Perinatol 2018; 45(1): 103-18.
[http://dx.doi.org/10.1016/j.clp.2017.10.002] [PMID: 29406000]
[73]
Shaikh ST, Karmarkar VS, Deopujari CE. Pediatric Cushing’s Disease: Dichotomy in Lateralization between Imaging and Inferior Petrosal Sinus Sampling with Review of Literature. J Pediatr Neurosci 2017; 12(4): 349-52.
[http://dx.doi.org/10.4103/JPN.JPN_57_17] [PMID: 29675075]
[74]
Carroll T, Raff H, Findling JW. Late-night salivary cortisol for the diagnosis of Cushing syndrome: a meta-analysis. Endocr Pract 2009; 15(4): 335-42.
[http://dx.doi.org/10.4158/EP09023OR] [PMID: 19502211]
[75]
Cicala MV, Mantero F. Hypertension in Cushing’s syndrome: from pathogenesis to treatment. Neuroendocrinology 2010; 92(Suppl. 1): 44-9.
[http://dx.doi.org/10.1159/000314315] [PMID: 20829617]
[76]
Keil MF. Quality of life and other outcomes in children treated for Cushing syndrome. J Clin Endocrinol Metab 2013; 98(7): 2667-78.
[http://dx.doi.org/10.1210/jc.2013-1123] [PMID: 23640970]
[77]
Magiakou MA, Mastorakos G, Zachman K, Chrousos GP. Blood pressure in children and adolescents with Cushing’s syndrome before and after surgical care. J Clin Endocrinol Metab 1997; 82(6): 1734-8.
[PMID: 9177372]
[78]
Sacerdote A, Weiss K, Tran T, Rokeya Noor B, McFarlane SI. Hypertension in patients with Cushing’s disease: pathophysiology, diagnosis, and management. Curr Hypertens Rep 2005; 7(3): 212-8.
[http://dx.doi.org/10.1007/s11906-005-0013-4] [PMID: 15913497]
[79]
Banerjee RR, Marina N, Katznelson L, Feldman BJ. Mifepristone Treatment of Cushing’s Syndrome in a Pediatric Patient. Pediatrics 2015; 136(5): e1377-81.
[http://dx.doi.org/10.1542/peds.2015-0684] [PMID: 26459648]
[80]
Havekes B, Romijn JA, Eisenhofer G, Adams K, Pacak K. Update on pediatric pheochromocytoma. Pediatr Nephrol 2009; 24(5): 943-50.
[http://dx.doi.org/10.1007/s00467-008-0888-9] [PMID: 18566838]
[81]
Sarathi V. Characteristics of Pediatric Pheochromocytoma/paraganglioma. Indian J Endocrinol Metab 2017; 21(3): 470-4.
[http://dx.doi.org/10.4103/ijem.IJEM_558_16] [PMID: 28553607]
[82]
Bholah R, Bunchman TE. Review of Pediatric Pheochromocytoma and Paraganglioma. Front Pediatr 2017; 5: 155.
[http://dx.doi.org/10.3389/fped.2017.00155] [PMID: 28752085]
[83]
Dias Pereira B, Nunes da Silva T, Bernardo AT, et al. A clinical roadmap to investigate the genetic basis of pediatric pheochromocytoma: which genes should physicians think about? Int J Endocrinol 2018; 2018: 8470642.
[http://dx.doi.org/10.1155/2018/8470642] [PMID: 29755524]
[84]
Pourian M, Mostafazadeh DB, Soltani A. Does this patient have pheochromocytoma? A systematic review of clinical signs and symptoms. J Diabetes Metab Disord 2016; 15: 11.
[http://dx.doi.org/10.1186/s40200-016-0226-x] [PMID: 27034920]
[85]
Lenders JW, Duh QY, Eisenhofer G, et al. Endocrine Society. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2014; 99(6): 1915-42.
[http://dx.doi.org/10.1210/jc.2014-1498] [PMID: 24893135]
[86]
Barontini M, Levin G, Sanso G. Characteristics of pheochromocytoma in a 4- to 20-year-old population. Ann N Y Acad Sci 2006; 1073: 30-7.
[http://dx.doi.org/10.1196/annals.1353.003] [PMID: 17102069]
[87]
Waguespack SG, Rich T, Grubbs E, et al. A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2010; 95(5): 2023-37.
[http://dx.doi.org/10.1210/jc.2009-2830] [PMID: 20215394]
[88]
Sbardella E, Maunsell Z, May CJH, et al. Random ‘spot’ urinary metanephrines compared with 24-h-urinary and plasma results in phaeochromocytomas and paragangliomas. Eur J Endocrinol 2020; 183(2): 129-39.
[http://dx.doi.org/10.1530/EJE-19-0809] [PMID: 32413848]
[89]
Boyle JG, Davidson DF, Perry CG, Connell JM. Comparison of diagnostic accuracy of urinary free metanephrines, vanillyl mandelic Acid, and catecholamines and plasma catecholamines for diagnosis of pheochromocytoma. J Clin Endocrinol Metab 2007; 92(12): 4602-8.
[http://dx.doi.org/10.1210/jc.2005-2668] [PMID: 17635948]
[90]
Chen Y, Xiao H, Zhou X, et al. Accuracy of plasma free metanephrines in the diagnosis of pheochromocytoma and paraganglioma: a systematic review and meta-analysis. Endocr Pract 2017; 23(10): 1169-77.
[http://dx.doi.org/10.4158/EP171877.OR] [PMID: 28704098]
[91]
Sarathi V, Pandit R, Patil VK, Lia AR, Bandgar TR, Shah NS. Performance of plasma fractionated free metanephrines by enzyme immunoassay in the diagnosis of pheochromocytoma and paraganglioma in children. Endocr Pract 2012; 18(5): 694-9.
[http://dx.doi.org/10.4158/EP12050.OR] [PMID: 22982790]
[92]
Jain A, Baracco R, Kapur G. Pheochromocytoma and paraganglioma-an update on diagnosis, evaluation, and management. Pediatr Nephrol 2020; 35(4): 581-94.
[http://dx.doi.org/10.1007/s00467-018-4181-2] [PMID: 30603807]
[93]
Eisenhofer G, Lenders JW, Siegert G, et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer 2012; 48(11): 1739-49.
[http://dx.doi.org/10.1016/j.ejca.2011.07.016] [PMID: 22036874]
[94]
Malhotra AK, Yan R, Tabeshi R, Nadel H, Tran H, Masterson J. Case - Bladder paraganglioma in a pediatric patient. Can Urol Assoc J 2018; 12(5): E260-4.
[http://dx.doi.org/10.5489/cuaj.4937] [PMID: 29405904]
[95]
Bílek R, Vlček P, Šafařík L, et al. Chromogranin A in the Laboratory Diagnosis of Pheochromocytoma and Paraganglioma. Cancers (Basel) 2019; 11(4): 586.
[http://dx.doi.org/10.3390/cancers11040586] [PMID: 31027285]
[96]
Thompson MJ, Parameswaran V, Burgess JR. Clinical utility of chromogranin A for the surveillance of succinate dehydrogenase B- and succinate dehydrogenase D-related paraganglioma. Ann Clin Biochem 2019; 56(1): 163-9.
[http://dx.doi.org/10.1177/0004563218811865] [PMID: 30373390]
[97]
Stridsberg M, Eriksson B, Fellström B, Kristiansson G, Tiensuu Janson E. Measurements of chromogranin B can serve as a complement to chromogranin A. Regul Pept 2007; 139(1-3): 80-3.
[http://dx.doi.org/10.1016/j.regpep.2006.10.008] [PMID: 17116339]
[98]
Stenman A, Svahn F, Hojjat-Farsangi M, et al. Molecular Profiling of Pheochromocytoma and Abdominal Paraganglioma Stratified by the PASS Algorithm Reveals Chromogranin B as Associated With Histologic Prediction of Malignant Behavior. Am J Surg Pathol 2019; 43(3): 409-21.
[http://dx.doi.org/10.1097/PAS.0000000000001190] [PMID: 30451732]
[99]
Ramachandran R, Bech P, Murphy KG, et al. Comparison of the utility of Cocaine- and Amphetamine-Regulated Transcript (CART), chromogranin A, and chromogranin B in neuroendocrine tumor diagnosis and assessment of disease progression. J Clin Endocrinol Metab 2015; 100(4): 1520-8.
[http://dx.doi.org/10.1210/jc.2014-3640] [PMID: 25664601]
[100]
Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab 2010; 95(6): 2596-606.
[http://dx.doi.org/10.1210/jc.2009-2604] [PMID: 20392867]
[101]
Kan Y, Zhang S, Wang W, Liu J, Yang J, Wang Z. 68Ga-somatostatin receptor analogs and 18F-FDG PET/CT in the localization of metastatic pheochromocytomas and paragangliomas with germline mutations: a meta-analysis. Acta Radiol 2018; 59(12): 1466-74.
[http://dx.doi.org/10.1177/0284185118764206] [PMID: 29566550]
[102]
Jha A, Ling A, Millo C, et al. Superiority of 68Ga-DOTATATE over 18F-FDG and anatomic imaging in the detection of succinate dehydrogenase mutation (SDHx )-related pheochromocytoma and paraganglioma in the pediatric population. Eur J Nucl Med Mol Imaging 2018; 45(5): 787-97.
[http://dx.doi.org/10.1007/s00259-017-3896-9] [PMID: 29204718]
[103]
Babic B, Patel D, Aufforth R, et al. Pediatric patients with pheochromocytoma and paraganglioma should have routine preoperative genetic testing for common susceptibility genes in addition to imaging to detect extra-adrenal and metastatic tumors. Surgery 2017; 161(1): 220-7.
[http://dx.doi.org/10.1016/j.surg.2016.05.059] [PMID: 27865588]
[104]
Lee H, Jeong S, Yu Y, et al. Risk of metastatic pheochromocytoma and paraganglioma in SDHx mutation carriers: a systematic review and updated meta-analysis. J Med Genet 2020; 57(4): 217-25.
[http://dx.doi.org/10.1136/jmedgenet-2019-106324] [PMID: 31649053]
[105]
Nagaraja V, Eslick GD, Edirimanne S. Recurrence and functional outcomes of partial adrenalectomy: a systematic review and meta-analysis. Int J Surg 2015; 16(Pt A): 7-13.
[http://dx.doi.org/10.1016/j.ijsu.2015.01.015] [PMID: 25681039]
[106]
Peard L, Cost NG, Saltzman AF. Pediatric pheochromocytoma: current status of diagnostic imaging and treatment procedures. Curr Opin Urol 2019; 29(5): 493-9.
[http://dx.doi.org/10.1097/MOU.0000000000000650] [PMID: 31246590]
[107]
Rufini V, Treglia G, Castaldi P, Perotti G, Giordano A. Comparison of metaiodobenzylguanidine scintigraphy with positron emission tomography in the diagnostic work-up of pheochromocytoma and paraganglioma: a systematic review. Q J Nucl Med Mol Imaging 2013; 57(2): 122-33.
[PMID: 23822989]
[108]
van Hulsteijn LT, Niemeijer ND, Dekkers OM, Corssmit EP. (131)I-MIBG therapy for malignant paraganglioma and phaeochromocytoma: systematic review and meta-analysis. Clin Endocrinol (Oxf) 2014; 80(4): 487-501.
[http://dx.doi.org/10.1111/cen.12341] [PMID: 24118038]
[109]
Niemeijer ND, Alblas G, van Hulsteijn LT, Dekkers OM, Corssmit EP. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: systematic review and meta-analysis. Clin Endocrinol (Oxf) 2014; 81(5): 642-51.
[http://dx.doi.org/10.1111/cen.12542] [PMID: 25041164]
[110]
Berta E, Lengyel I, Halmi S, et al. Hypertension in Thyroid Disorders. Front Endocrinol (Lausanne) 2019; 10: 482.
[http://dx.doi.org/10.3389/fendo.2019.00482] [PMID: 31379748]
[111]
Kotsis V, Alevizaki M, Stabouli S, et al. Hypertension and hypothyroidism: results from an ambulatory blood pressure monitoring study. J Hypertens 2007; 25(5): 993-9.
[http://dx.doi.org/10.1097/HJH.0b013e328082e2ff] [PMID: 17414663]
[112]
Stabouli S, Papakatsika S, Kotsis V. Hypothyroidism and hypertension. Expert Rev Cardiovasc Ther 2010; 8(11): 1559-65.
[http://dx.doi.org/10.1586/erc.10.141] [PMID: 21090931]
[113]
Rodondi N, den Elzen WP, Bauer DC, et al. Thyroid Studies Collaboration. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 2010; 304(12): 1365-74.
[http://dx.doi.org/10.1001/jama.2010.1361] [PMID: 20858880]
[114]
He W, Li S, Wang B, et al. Dose-response relationship between thyroid stimulating hormone and hypertension risk in euthyroid individuals. J Hypertens 2019; 37(1): 144-53.
[PMID: 29985205]
[115]
Cai P, Peng Y, Chen Y, et al. Association of thyroid function with white coat hypertension and sustained hypertension. J Clin Hypertens (Greenwich) 2019; 21(5): 674-83.
[http://dx.doi.org/10.1111/jch.13536] [PMID: 30973206]
[116]
Ittermann T, Thamm M, Wallaschofski H, Rettig R, Völzke H. Serum thyroid-stimulating hormone levels are associated with blood pressure in children and adolescents. J Clin Endocrinol Metab 2012; 97(3): 828-34.
[http://dx.doi.org/10.1210/jc.2011-2768] [PMID: 22205713]
[117]
Chen H, Xi Q, Zhang H, et al. Investigation of thyroid function and blood pressure in school-aged subjects without overt thyroid disease. Endocrine 2012; 41(1): 122-9.
[http://dx.doi.org/10.1007/s12020-011-9517-7] [PMID: 21986920]
[118]
Barjaktarovic M, Korevaar TIM, Gaillard R, et al. Childhood thyroid function, body composition and cardiovascular function. Eur J Endocrinol 2017; 177(4): 319-27.
[http://dx.doi.org/10.1530/EJE-17-0369] [PMID: 28724570]
[119]
Le TN, Celi FS, Wickham EP III. Thyrotropin Levels Are Associated with Cardiometabolic Risk Factors in Euthyroid Adolescents. Thyroid 2016; 26(10): 1441-9.
[http://dx.doi.org/10.1089/thy.2016.0055] [PMID: 27599541]
[120]
Zhang J, Jiang R, Li L, et al. Serum thyrotropin is positively correlated with the metabolic syndrome components of obesity and dyslipidemia in chinese adolescents. Int J Endocrinol 2014; 2014: 289503.
[http://dx.doi.org/10.1155/2014/289503] [PMID: 25214835]
[121]
Park BH, Baik SJ, Lee HA, Hong YS, Kim HS, Park H. The association of thyroid hormones and blood pressure in euthyroid preadolescents. J Pediatr Endocrinol Metab 2016; 29(4): 459-64.
[http://dx.doi.org/10.1515/jpem-2015-0084] [PMID: 26812772]
[122]
Cerbone M, Capalbo D, Wasniewska M, et al. Cardiovascular risk factors in children with long-standing untreated idiopathic subclinical hypothyroidism. J Clin Endocrinol Metab 2014; 99(8): 2697-703.
[http://dx.doi.org/10.1210/jc.2014-1761] [PMID: 24840815]
[123]
Cerbone M, Capalbo D, Wasniewska M, et al. Effects of L-thyroxine treatment on early markers of atherosclerotic disease in children with subclinical hypothyroidism. Eur J Endocrinol 2016; 175(1): 11-9.
[http://dx.doi.org/10.1530/EJE-15-0833] [PMID: 27068687]
[124]
Prisant LM, Gujral JS, Mulloy AL. Hyperthyroidism: a secondary cause of isolated systolic hypertension. J Clin Hypertens (Greenwich) 2006; 8(8): 596-9.
[http://dx.doi.org/10.1111/j.1524-6175.2006.05180.x] [PMID: 16896276]
[125]
Chopra S, Cherian D, Jacob JJ. The thyroid hormone, parathyroid hormone and vitamin D associated hypertension. Indian J Endocrinol Metab 2011; 15(Suppl. 4): S354-60.
[http://dx.doi.org/10.4103/2230-8210.86979] [PMID: 22145139]
[126]
Collet TH, Gussekloo J, Bauer DC, et al. Thyroid Studies Collaboration. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med 2012; 172(10): 799-809.
[http://dx.doi.org/10.1001/archinternmed.2012.402] [PMID: 22529182]
[127]
Yi LF, Wen HX, Qiu M. [Correlations of thyroid hormone with deceleration capacity of heart rate and heart rate variability in children with hyperthyroidism]. Zhongguo Dang Dai Er Ke Za Zhi 2018; 20(10): 814-8.
[PMID: 30369355]
[128]
Iglesias P, Acosta M, Sánchez R, Fernández-Reyes MJ, Mon C, Díez JJ. Ambulatory blood pressure monitoring in patients with hyperthyroidism before and after control of thyroid function. Clin Endocrinol (Oxf) 2005; 63(1): 66-72.
[http://dx.doi.org/10.1111/j.1365-2265.2005.02301.x] [PMID: 15963064]
[129]
Lillevang-Johansen M, Abrahamsen B, Jørgensen HL, Brix TH, Hegedüs L. Duration of hyperthyroidism and lack of sufficient treatment are associated with increased cardiovascular risk. Thyroid 2019; 29(3): 332-40.
[http://dx.doi.org/10.1089/thy.2018.0320] [PMID: 30648498]
[130]
Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017; 390(10113): 2627-42.
[http://dx.doi.org/10.1016/S0140-6736(17)32129-3] [PMID: 29029897]
[131]
Binka E, Brady TM. Real-World Strategies to Treat Hypertension Associated with Pediatric Obesity. Curr Hypertens Rep 2019; 21(2): 18.
[http://dx.doi.org/10.1007/s11906-019-0922-2] [PMID: 30747290]
[132]
Styne DM, Arslanian SA, Connor EL, et al. Pediatric obesity-assessment, treatment, and prevention: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2017; 102(3): 709-57.
[http://dx.doi.org/10.1210/jc.2016-2573] [PMID: 28359099]
[133]
Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr 2007; 150(1): 12-17.e2.
[http://dx.doi.org/10.1016/j.jpeds.2006.08.042] [PMID: 17188605]
[134]
Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 1995; 25(4 Pt 2): 893-7.
[http://dx.doi.org/10.1161/01.HYP.25.4.893] [PMID: 7721450]
[135]
Sorof JM, Poffenbarger T, Franco K, Bernard L, Portman RJ. Isolated systolic hypertension, obesity, and hyperkinetic hemodynamic states in children. J Pediatr 2002; 140(6): 660-6.
[http://dx.doi.org/10.1067/mpd.2002.125228] [PMID: 12072867]
[136]
Gilardini L, Parati G, Sartorio A, Mazzilli G, Pontiggia B, Invitti C. Sympathoadrenergic and metabolic factors are involved in ambulatory blood pressure rise in childhood obesity. J Hum Hypertens 2008; 22(2): 75-82.
[http://dx.doi.org/10.1038/sj.jhh.1002288] [PMID: 17882228]
[137]
Feber J, Ruzicka M, Geier P, Litwin M. Autonomic nervous system dysregulation in pediatric hypertension. Curr Hypertens Rep 2014; 16(5): 426.
[http://dx.doi.org/10.1007/s11906-014-0426-z] [PMID: 24633841]
[138]
Altuncu ME, Baspinar O, Keskin M. The use of short-term analysis of heart rate variability to assess autonomic function in obese children and its relationship with metabolic syndrome. Cardiol J 2012; 19(5): 501-6.
[http://dx.doi.org/10.5603/CJ.2012.0091] [PMID: 23042314]
[139]
Paschoal MA, Brunelli AC, Tamaki GM, Magela SS. Cardiac autonomic adjustments during baroreflex test in obese and non-obese preadolescents. Arq Bras Cardiol 2016; 106(4): 297-303.
[http://dx.doi.org/10.5935/abc.20160040] [PMID: 27007224]
[140]
Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 2015; 116(6): 991-1006.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305697] [PMID: 25767285]
[141]
Hall ME, do Carmo JM, da Silva AA, Juncos LA, Wang Z, Hall JE. Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renovasc Dis 2014; 7: 75-88.
[http://dx.doi.org/10.2147/IJNRD.S39739] [PMID: 24600241]
[142]
Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension 2011; 58(5): 784-90.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.175315] [PMID: 21931075]
[143]
Prodam F, Ricotti R, Agarla V, et al. High-end normal adrenocorticotropic hormone and cortisol levels are associated with specific cardiovascular risk factors in pediatric obesity: a cross-sectional study. BMC Med 2013; 11: 44.
[http://dx.doi.org/10.1186/1741-7015-11-44] [PMID: 23425018]
[144]
Csábi GY, Juricskay S, Molnár D. Urinary cortisol to cortisone metabolites in hypertensive obese children. J Endocrinol Invest 2000; 23(7): 435-9.
[http://dx.doi.org/10.1007/BF03343752] [PMID: 11005267]
[145]
Litwin M, Michałkiewicz J, Trojanek J, Niemirska A, Wierzbicka A, Szalecki M. Altered genes profile of renin-angiotensin system, immune system, and adipokines receptors in leukocytes of children with primary hypertension. Hypertension 2013; 61(2): 431-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00181] [PMID: 23266543]
[146]
Yu Z, Eckert GJ, Liu H, Pratt JH, Tu W. Adiposity has unique influence on the renin-aldosterone axis and blood pressure in black children. J Pediatr 2013; 163(5): 1317-22.e1.
[http://dx.doi.org/10.1016/j.jpeds.2013.06.082] [PMID: 23941668]
[147]
Lemes VAF, Neves AL, Guazzelli IC, et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with increased adiposity and blood pressure in obese children and adolescents. Gene 2013; 532(2): 197-202.
[http://dx.doi.org/10.1016/j.gene.2013.09.065] [PMID: 24076353]
[148]
Petrovič D, Bidovec M, Peterlin B. Gene polymorphisms of the renin-angiotensin-aldosterone system and essential arterial hypertension in childhood. Folia Biol (Krakow) 2002; 50(1-2): 53-6.
[PMID: 12597535]
[149]
He WJ, Li C, Rao DC, et al. Associations of renin-angiotensin-aldosterone system genes with blood pressure changes and hypertension incidence. Am J Hypertens 2015; 28(11): 1310-5.
[http://dx.doi.org/10.1093/ajh/hpv033] [PMID: 25820244]
[150]
Sun C, Ponsonby AL, Carlin JB, et al. Childhood adiposity, adult adiposity, and the ACE gene insertion/deletion polymorphism: evidence of gene-environment interaction effects on adult blood pressure and hypertension status in adulthood. J Hypertens 2018; 36(11): 2168-76.
[http://dx.doi.org/10.1097/HJH.0000000000001816] [PMID: 29939946]
[151]
El-Kabbany ZA, Hamza RT, Shinkar DM, et al. Screening of Egyptian obese children and adolescents for insertion/deletion (I/D) polymorphism in angiotensin-converting enzyme gene. Int J Pediatr Adolesc Med 2019; 6(1): 21-4.
[http://dx.doi.org/10.1016/j.ijpam.2019.02.008] [PMID: 31304224]
[152]
Fujita Y, Kouda K, Ohara K, Nakamura H, Iki M. Leptin mediates the relationship between fat mass and blood pressure: The Hamamatsu School-based health study. Medicine (Baltimore) 2019; 98(12): e14934.
[http://dx.doi.org/10.1097/MD.0000000000014934] [PMID: 30896657]
[153]
von Schnurbein J, Manzoor J, Brandt S, et al. Leptin Is Not Essential for Obesity-Associated Hypertension. Obes Facts 2019; 12(4): 460-75.
[http://dx.doi.org/10.1159/000501319] [PMID: 31357197]
[154]
McCourt HJ, Hunter SJ, Cardwell CR, et al. Adiponectin multimers, body weight and markers of cardiovascular risk in adolescence: Northern Ireland Young Hearts Project. Int J Obes 2013; 37(9): 1247-53.
[http://dx.doi.org/10.1038/ijo.2012.214] [PMID: 23318722]
[155]
Kolsgaard ML, Wangensteen T, Brunborg C, et al. Elevated visfatin levels in overweight and obese children and adolescents with metabolic syndrome. Scand J Clin Lab Invest 2009; 69(8): 858-64.
[http://dx.doi.org/10.3109/00365510903348677] [PMID: 19929281]
[156]
Güneş H, Alkan Baylan F, Güneş H, Temiz F. Can Nesfatin-1 Predict Hypertension in Obese Children? J Clin Res Pediatr Endocrinol 2020; 12(1): 29-36.
[http://dx.doi.org/10.4274/jcrpe.galenos.2019.2019.0072] [PMID: 31339256]
[157]
Li G, Esangbedo IC, Xu L, et al. Childhood retinol-binding protein 4 (RBP4) levels predicting the 10-year risk of insulin resistance and metabolic syndrome: the BCAMS study. Cardiovasc Diabetol 2018; 17(1): 69.
[http://dx.doi.org/10.1186/s12933-018-0707-y] [PMID: 29759068]
[158]
Ooi DS, Ong SG, Heng CK, Loke KY, Lee YS. In-vitro function of upstream visfatin polymorphisms that are associated with adverse cardiometabolic parameters in obese children. BMC Genomics 2016; 17(1): 974.
[http://dx.doi.org/10.1186/s12864-016-3315-9] [PMID: 27887573]
[159]
Ostrow V, Wu S, Aguilar A, Bonner R Jr, Suarez E, De Luca F. Association between oxidative stress and masked hypertension in a multi-ethnic population of obese children and adolescents. J Pediatr 2011; 158(4): 628-633.e1.
[http://dx.doi.org/10.1016/j.jpeds.2010.09.081] [PMID: 21075381]
[160]
Paripović D, Kotur-Stevuljević J, Vukašinović A, Ilisić T, Miloševski-Lomić G, Peco-Antić A. The influence of oxidative stress on cardiac remodeling in obese adolescents. Scand J Clin Lab Invest 2018; 78(7-8): 595-600.
[http://dx.doi.org/10.1080/00365513.2018.1528504] [PMID: 30755099]
[161]
Dennis BA, Ergul A, Gower BA, Allison JD, Davis CL. Oxidative stress and cardiovascular risk in overweight children in an exercise intervention program. Child Obes 2013; 9(1): 15-21.
[http://dx.doi.org/10.1089/chi.2011.0092] [PMID: 23270535]
[162]
Aroor AR, Jia G, Sowers JR. Cellular mechanisms underlying obesity-induced arterial stiffness. Am J Physiol Regul Integr Comp Physiol 2018; 314(3): R387-98.
[http://dx.doi.org/10.1152/ajpregu.00235.2016] [PMID: 29167167]
[163]
Jia G, Habibi J, Aroor AR, et al. Endothelial mineralocorticoid receptor mediates diet-induced aortic stiffness in females. Circ Res 2016; 118(6): 935-43.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.308269] [PMID: 26879229]
[164]
Jia G, Aroor AR, DeMarco VG, Martinez-Lemus LA, Meininger GA, Sowers JR. Vascular stiffness in insulin resistance and obesity. Front Physiol 2015; 6: 231.
[http://dx.doi.org/10.3389/fphys.2015.00231] [PMID: 26321962]
[165]
Antonopoulos AS, Margaritis M, Coutinho P, et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes 2015; 64(6): 2207-19.
[http://dx.doi.org/10.2337/db14-1011] [PMID: 25552596]
[166]
Fu L, Zhang M, Hu YQ, et al. Gene-gene interactions and associations of six hypertension related single nucleotide polymorphisms with obesity risk in a Chinese children population. Gene 2018; 679: 320-7.
[http://dx.doi.org/10.1016/j.gene.2018.09.019] [PMID: 30217759]
[167]
Brady TM. Obesity-related hypertension in children. Front Pediatr 2017; 5: 197.
[http://dx.doi.org/10.3389/fped.2017.00197] [PMID: 28993801]
[168]
Barlow SE. Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics 2007; 120(Suppl. 4): S164-92.
[http://dx.doi.org/10.1542/peds.2007-2329C] [PMID: 18055651]
[169]
Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 2011; 128(Suppl. 5): S213-56.
[PMID: 22084329]
[170]
Paula Bricarello L, Poltronieri F, Fernandes R, Retondario A, de Moraes Trindade EBS, de Vasconcelos FAG. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on blood pressure, overweight and obesity in adolescents: A systematic review. Clin Nutr ESPEN 2018; 28: 1-11.
[PMID: 30390863]
[171]
Buendia JR, Bradlee ML, Daniels SR, Singer MR, Moore LL. Longitudinal effects of dietary sodium and potassium on blood pressure in adolescent girls. JAMA Pediatr 2015; 169(6): 560-8.
[http://dx.doi.org/10.1001/jamapediatrics.2015.0411] [PMID: 25915457]
[172]
Rivera J, McPherson AC, Hamilton J, et al. User-centered design of a mobile app for weight and health management in adolescents with complex health needs: Qualitative study. JMIR Form Res 2018; 2(1): e7.
[http://dx.doi.org/10.2196/formative.8248] [PMID: 30684409]
[173]
Raeside R, Partridge SR, Singleton A, Redfern J. Cardiovascular Disease Prevention in Adolescents: eHealth, Co-Creation, and Advocacy. Med Sci (Basel) 2019; 7(2): 34.
[http://dx.doi.org/10.3390/medsci7020034] [PMID: 30813490]
[174]
Turner T, Spruijt-Metz D, Wen CKF, Hingle MD. Prevention and treatment of pediatric obesity using mobile and wireless technologies: a systematic review. Pediatr Obes 2015; 10(6): 403-9.
[http://dx.doi.org/10.1111/ijpo.12002] [PMID: 25641770]
[175]
Leggio M, Lombardi M, Caldarone E, et al. The relationship between obesity and hypertension: an updated comprehensive overview on vicious twins. Hypertens Res 2017; 40(12): 947-63.
[http://dx.doi.org/10.1038/hr.2017.75] [PMID: 28978986]
[176]
Sharma AM, Pischon T, Engeli S, Scholze J. Choice of drug treatment for obesity-related hypertension: where is the evidence? J Hypertens 2001; 19(4): 667-74.
[http://dx.doi.org/10.1097/00004872-200104000-00001] [PMID: 11330867]
[177]
Dahlöf B, Sever PS, Poulter NR, et al. ASCOT Investigators. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet 2005; 366(9489): 895-906.
[http://dx.doi.org/10.1016/S0140-6736(05)67185-1] [PMID: 16154016]
[178]
Ruwald ACH, Westergaard B, Sehestedt T, et al. Losartan versus atenolol-based antihypertensive treatment reduces cardiovascular events especially well in elderly patients: the Losartan Intervention For Endpoint reduction in hypertension (LIFE) study. J Hypertens 2012; 30(6): 1252-9.
[http://dx.doi.org/10.1097/HJH.0b013e328352f7f6] [PMID: 22499288]
[179]
McDuffie JR, Calis KA, Uwaifo GI, et al. Three-month tolerability of orlistat in adolescents with obesity-related comorbid conditions. Obes Res 2002; 10(7): 642-50.
[http://dx.doi.org/10.1038/oby.2002.87] [PMID: 12105286]
[180]
Grossman DC, Bibbins-Domingo K, Curry SJ, et al. US Preventive Services Task Force. Screening for obesity in children and adolescents us preventive services task force recommendation statement. JAMA 2017; 317(23): 2417-26.
[http://dx.doi.org/10.1001/jama.2017.6803] [PMID: 28632874]
[181]
Czernichow S, Lee CM, Barzi F, et al. Efficacy of weight loss drugs on obesity and cardiovascular risk factors in obese adolescents: a meta-analysis of randomized controlled trials. Obes Rev 2010; 11(2): 150-8.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00620.x] [PMID: 19573052]
[182]
Sahebkar A, Simental-Mendía LE, Reiner Ž, et al. Effect of orlistat on plasma lipids and body weight: A systematic review and meta-analysis of 33 randomized controlled trials. Pharmacol Res 2017; 122: 53-65.
[http://dx.doi.org/10.1016/j.phrs.2017.05.022] [PMID: 28559211]
[183]
Yu CCW, Li AM, Chan KOW, et al. Orlistat improves endothelial function in obese adolescents: a randomised trial. J Paediatr Child Health 2013; 49(11): 969-75.
[http://dx.doi.org/10.1111/jpc.12252] [PMID: 23735004]
[184]
Danne T, Biester T, Kapitzke K, et al. Liraglutide in an Adolescent Population with Obesity: A Randomized, Double-Blind, Placebo-Controlled 5-Week Trial to Assess Safety, Tolerability, and Pharmacokinetics of Liraglutide in Adolescents Aged 12-17 Years. J Pediatr 2017; 181: 146-153.e3.
[http://dx.doi.org/10.1016/j.jpeds.2016.10.076] [PMID: 27979579]
[185]
Mastrandrea LD, Witten L, Carlsson Petri KC, Hale PM, Hedman HK, Riesenberg RA. Liraglutide effects in a paediatric (7-11 y) population with obesity: A randomized, double-blind, placebo-controlled, short-term trial to assess safety, tolerability, pharmacokinetics, and pharmacodynamics. Pediatr Obes 2019; 14(5): e12495.
[http://dx.doi.org/10.1111/ijpo.12495] [PMID: 30653847]
[186]
Tamborlane WV, Barrientos-Pérez M, Fainberg U, et al. Ellipse Trial Investigators. Liraglutide in children and adolescents with type 2 diabetes. N Engl J Med 2019; 381(7): 637-46.
[http://dx.doi.org/10.1056/NEJMoa1903822] [PMID: 31034184]
[187]
Adeyemo MA, McDuffie JR, Kozlosky M, et al. Effects of metformin on energy intake and satiety in obese children. Diabetes Obes Metab 2015; 17(4): 363-70.
[http://dx.doi.org/10.1111/dom.12426] [PMID: 25483291]
[188]
Lentferink YE, Knibbe CAJ, van der Vorst MMJ. Efficacy of Metformin Treatment with Respect to Weight Reduction in Children and Adults with Obesity: A Systematic Review. Drugs 2018; 78(18): 1887-901.
[http://dx.doi.org/10.1007/s40265-018-1025-0] [PMID: 30511324]
[189]
Schmitt F, Riquin E, Beaumesnil M, et al. Laparoscopic adjustable gastric banding in adolescents: Results at two years including psychosocial aspects. J Pediatr Surg 2016; 51(3): 403-8.
[http://dx.doi.org/10.1016/j.jpedsurg.2015.08.057] [PMID: 26490010]
[190]
Inge TH, Coley RY, Bazzano LA, et al. PCORnet Bariatric Study Collaborative. Comparative effectiveness of bariatric procedures among adolescents: the PCORnet bariatric study. Surg Obes Relat Dis 2018; 14(9): 1374-86.
[http://dx.doi.org/10.1016/j.soard.2018.04.002] [PMID: 29793877]
[191]
Inge TH, Courcoulas AP, Jenkins TM, et al. Teen–LABS Consortium. Five-year outcomes of gastric bypass in adolescents as compared with adults. N Engl J Med 2019; 380(22): 2136-45.
[http://dx.doi.org/10.1056/NEJMoa1813909] [PMID: 31116917]
[192]
Huang Y, Liu XL, Wen J, et al. Downregulation of the β1 adrenergic receptor in the myocardium results in insensitivity to metoprolol and reduces blood pressure in spontaneously hypertensive rats. Mol Med Rep 2017; 15(2): 703-11.
[http://dx.doi.org/10.3892/mmr.2016.6038] [PMID: 28000860]
[193]
Ruchaya PJ, Speretta GF, Blanch GT, et al. Overexpression of AT2R in the solitary-vagal complex improves baroreflex in the spontaneously hypertensive rat. Neuropeptides 2016; 60: 29-36.
[http://dx.doi.org/10.1016/j.npep.2016.06.006] [PMID: 27469059]
[194]
Tonne JM, Holditch SJ, Oehler EA, Schreiber CA, Ikeda Y, Cataliotti A. Cardiac BNP gene delivery prolongs survival in aged spontaneously hypertensive rats with overt hypertensive heart disease. Aging (Albany NY) 2014; 6(4): 311-9.
[http://dx.doi.org/10.18632/aging.100655] [PMID: 24799459]
[195]
Paulis L, Franke H, Simko F. Gene therapy for hypertension. Expert Opin Biol Ther 2017; 17(11): 1345-61.
[PMID: 28780894]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 43
Year: 2020
Published on: 12 November, 2020
Page: [5591 - 5608]
Pages: 18
DOI: 10.2174/1381612826666201113103614
Price: $65

Article Metrics

PDF: 42
HTML: 1